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Abstract The RAS proteins are GTP-dependent switches that regulate signaling pathways and

are frequently mutated in cancer. RAS proteins concentrate in the plasma membrane via lipid-

tethers and hypervariable region side-chain interactions in distinct nano-domains. However, little is

known about RAS membrane dynamics and the details of RAS activation of downstream signaling.

Here, we characterize RAS in live human and mouse cells using single-molecule-tracking methods

and estimate RAS mobility parameters. KRAS4b exhibits confined mobility with three diffusive

states distinct from the other RAS isoforms (KRAS4a, NRAS, and HRAS); and although most of the

amino acid differences between RAS isoforms lie within the hypervariable region, the additional

confinement of KRAS4b is largely determined by the protein’s globular domain. To understand the

altered mobility of an oncogenic KRAS4b, we used complementary experimental and molecular

dynamics simulation approaches to reveal a detailed mechanism.

Introduction
RAS is an oncoprotein that functions as a molecular switch at the apex of a signaling network

(Stephen et al., 2014) regulating cell differentiation and sustaining cell proliferation, survival, and

migration. In oncogenic mutants, this molecular switch mechanism is damaged, and RAS becomes

constitutively active—or locked in a GTP-loaded state. In this active state, RAS is in a conformation

that favors interaction with several effectors, including RAF, a serine/threonine kinase that, when

complexed with RAS at the membrane, phosphorylates its substrate MEK and initiates the mito-

genic-activated protein kinase signaling cascade (Moodie et al., 1993; Van Aelst et al., 1993;

Warne et al., 1993). RAS biology is characterized by its dynamic association with the plasma mem-

brane. The protein’s lateral mobility, nanoclustering of both RAS and lipid species, and interactions

between specific lipid species and amino acid residues in the C-terminal hypervariable region (HVR)

are all necessary for its function; however, precisely how this is regulated, and in what order events

occur has not been fully characterized (Murakoshi et al., 2004)((Lommerse et al., 2005; Nan et al.,

2015; Zhou et al., 2017).
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RAS proteins associate with the plasma membrane (PM) through the HVR. These 22 to 23 amino

acids mediate interactions with the lipid bilayer and contain key residues that are post-translationally

modified (Ahearn et al., 2012). All RAS isoforms contain a C-terminal cysteine residue that is farne-

sylated and carboxymethylated. HRAS, NRAS, and KRAS4a isoforms contain one or two additional

cysteine residues that can be reversibly palmitoylated (Figure 1a). In contrast to the other isoforms,

KRAS4b is not palmitoylated, but contains a series of six adjacent charged lysine residues

(Figure 1a). These lysines carry positive charges at a neutral pHand favor electrostatic interactions

with anionic lipids, present in cellular membranes enriched with phosphatidylserine and other nega-

tively charged lipids (Ahearn et al., 2012). These electrostatic interactions facilitate lipid-based par-

titioning and sorting of KRAS4b into the disordered domain of membrane (Zhou et al., 2017).

The PM is a highly heterogeneous organelle composed of approximately half lipid and half pro-

tein by mass (Cooper, 2000). The physical and chemical properties of the lipids, proteins, and asso-

ciated actin cytoskeleton create a multi-tiered, hierarchical 2D structure where molecules diffuse

between compartments with length scales on the order of hundreds of nanometers and encounter

subdomains with smaller dimensions (Kusumi et al., 2012). Diffusing molecules such as RAS traverse

these hierarchical, non-equilibrated environments, which create highly transitory, reversible and

dynamic subdomains. Using single molecule FRET experiments, Marakoski and colleagues showed

that the mobility of membrane-bound KRAS and HRAS was reduced upon growth factor stimulation

(Murakoshi et al., 2004). This suggests that activated or oncogenic RAS molecules become more

confined (Lommerse et al., 2005; Murakoshi et al., 2004). These investigators have proposed mod-

els where oncogenic and activated RAS associate in signaling complexes, perhaps in association with

scaffolding molecules and the actin cytoskeleton.

In this study, we use single molecule tracking to detect the mobility of RAS in living cells (Fig-

ure 1—figure supplement 1a). Using advanced optical microscopy and image analysis techniques

combined with engineered cell lines expressing a variety of constructs, we characterize and dissect

the relative contributions of the G-domain and the HVR region of KRAS4b to its mobility and com-

pare it to the mobility of other RAS isoforms (Figure 1a). We observed that KRAS4b has more con-

fined diffusion in the cell membrane compared to other RAS isoforms, and a unique mobility pattern

that is best fit by a three-component model composed of fast, intermediate, and relatively immobile

states (Figure 1b). By assembling a data set with thousands of trajectories from each cell, we

observe transitions between these states; and consequently, we can quantify the probabilities that

single molecules of RAS will change states. Intriguingly, we observe that these transitions follow a

pattern that is suggestive of a molecular assembly process. We hypothesize that these states are

dependent on both GTP-bound G-domain interactions and electrostatic interactions of KRAS4b’s

unique, highly charged HVR. To develop a molecularly detailed understanding, we use atomistic

molecular dynamics simulations to probe the relative contributions of these domains. The results of

these simulations are well correlated to our experimental results and provided further testable

hypotheses that we explore in cell experiments. We propose a model where on tethering to the

membrane via its farnesyl tail, KRAS4b molecules explore the membrane lipid environment in a fast-

moving state. While exploring the membrane environment, negatively charged lipids cluster around

the lysines in the HVR of KRAS4b forming a nanodomain. When KRAS4b molecules are GTP-loaded

within these nanoclusters, KRAS4b can interact with effectors and transition to slower moving states

where it can further assemble with effectors and lipids to form a relatively immobile and confined

complex competent to signal downstream.

Results

KRAS4b diffusion in live cells is characterized by a 3-state hidden
Markov model
To measure KRAS4b diffusion in living cells, we used total internal reflection microscopy (TIRF), an

electron-multiplying charge-coupled device (EMCCD) camera which supports fast frame acquisition

and high sensitivity, and bright organic dyes covalently linked to HaloTagged RAS molecules (for

clarity, all molecules studied by single molecule tracking in this set up were HaloTagged, and so the

HaloTagged nomenclature will be omitted in the rest of the results section), to visualize single mole-

cules of KRAS4b in the plasma membrane at a 10 ms frame rate. Bright and photostable dyes
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Figure 1. HMM and MSD analysis results of KRAS4b and isoforms in HeLa and MEF cells. (a) Illustration of combinations of fusion proteins between

hypervariable region (HVR) and G-domain of RAS isoforms with HaloTag that were expressed in HeLa and RAS-less MEF cells. (b) Hidden Markov

modeling (HMM) using vbSPT of single molecule tracking (SMT) measurements showed different mobile patterns and was described with three and two

diffusive states for KRAS4b and HRAS, respectively. Each diffusion (state) coefficient is pseudo-color coded, as marked by the rainbow scale bar and

Figure 1 continued on next page
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allowed us to observe single molecules of RAS for up to seconds at a time. We used the Variational

Bayes for Single Particle Tracking (vbSPT) algorithm (Persson et al., 2013), based on a hidden Mar-

kov model (HMM), to analyze the heterogeneous mobility of RAS molecules in the plasma mem-

brane, and we identified a three-state model for KRAS4b diffusion in live cell membranes. We

observed this behavior in HeLa cells, three different KRAS mutant cancer cell lines (Figure 1—figure

supplement 2), and mouse embryonic fibroblast (MEF) cells that only express one isoform of human

RAS at a time (Tables 1–2) In all cells tested, KRAS4b molecules show three different diffusion com-

ponents. To test whether this three-component system and associated diffusion rates were depen-

dent on RAS density, we developed a DOX-inducible KARS4b cell line to be able to control

expression levels. Increasing the density of KRAS4b at the membrane did not appreciably change

the diffusion rates or impact the number of states (Figure 1—figure supplement 3) (Table 3). Rep-

resentative results in a HeLa cell line include one dominant fast mobile component (0.95+ /- 0.03

mm2/s), an intermediate component (0.24+ /- 0.03 mm2/s) and a slow component (0.06+ /- 0.01 mm2/

s), and fractional occupancy of the three states at 64% (+ /- 2), 22% (+ /- 2) and 14% (+ /- 3) respec-

tively (Table 1). Mobility of all RAS isoforms and mutants in various cell lines are shown in Tables 1–

7.

Figure 1 continued

probability of transitions between states per frame rate (Dt = 10 ms). (c) The Mean Squared Displacement (MSD) vs. time plot showed highest

confinement of KRAS4b whereas the least for HRAS (* indicates three displacement values under shaded area are significantly different, p<0.05). (d)

Diffusion coefficients and occupancy (HMM analysis) from various isoforms of RAS molecules on HeLa cell membrane are summarized in pie charts. (e)

MSD analysis on SMT measurements on RAS-less MEF cells for various RAS isoforms (* indicates three displacement values under shaded area are

significantly different, p<0.05). (f) The summary of diffusive states from HMM analysis on MEF cells are presented in pie charts for KRAS4b, HRAS,

KRAS4a and NRAS. (g) MSD plot showing a significant difference (p<0.05) in confinement (bending of curve) of diffusion between KRAS4b full-length

and its truncated HVR, whereas no significant difference was found in case of HRAS. (h) Pie charts show both KRAS4b and HRAS HVRs diffusion were

best described by a two-state model using HMM analysis.

The online version of this article includes the following video, source data, and figure supplement(s) for figure 1:

Source data 1. MSD values over time (plotted in Figure 1c) for Halotag-KRAS4b, -KRAS4a, -HRAS, and -NRAS transiently expressed in HeLa cells and

recorded with TIRF microscopy.

Source data 2. Diffusion coefficients and occupancy fractions obtained by HMM analysis (plotted in Figure 1d) of Halotag-KRAS4b, -KRAS4a, -HRAS,

and -NRAS transiently expressed in HeLa cells.

Source data 3. MSD values over time (plotted in Figure 1e) for Halotag-KRAS4b, -KRAS4a, -HRAS, and -NRAS expressed in isogenic Mouse Embryonic

Fibroblast cell pools.

Source data 4. Diffusion coefficients and occupancy fractions obtained by HMM analysis (plotted in Figure 1f) of Halotag-KRAS4b, -KRAS4a, -HRAS,

and -NRAS expressed in isogenic Mouse Embryonic Fibroblasts.

Source data 5. MSD values over time (plotted in Figure 1g) for Halotag-KRAS4b, Halotag-KRAS4b HVR (lacking the G domain), Halotag-HRAS, and

Halotag-HRAS HVR transiently expressed in HeLa cells.

Source data 6. Diffusion coefficients and occupancy fractions obtained by HMM analysis (plotted in Figure 1h) of Halotag-KRAS4b HVR and Halotag-

HRAS HVR transiently expressed in HeLa cells.

Figure supplement 1. Detection of HaloTagged RAS protein constructs in live cells by single molecule tracking and confocal imaging.

Figure supplement 2. HMM and MSD analysis results of KRAS4b G12D diffusion in cancer cell lines.

Figure supplement 2—source data 1. MSD values over time (plotted in Figure 1—figure supplement 2a) for overexpressed, exogenous Halotag-

KRAS4b G12D in a panel of pancreatic cancer cell lines with existing KRAS4b G12D mutations (SU.86.86, hTERT-HPNE , and PANC-1).

Figure supplement 2—source data 2. Diffusion coefficients and occupancy fractions obtained by HMM analysis (plotted in Figure 1—figure supple-

ment 2b) for overexpressed, exogenous Halotag-KRAS4b G12D in a panel of pancreatic cancer cell lines with existing KRAS4b G12D mutations

(SU.86.86, hTERT-HPNE , and Panc-1).

Figure supplement 3. Single detection, trajectories of KRAS4b diffusion and Dox-induced KRAS4b diffusion.

Figure supplement 3—source data 1. Diffusion coefficients and occupancy fractions obtained by HMM analysis (plotted in Figure 1—figure supple-

ment 3d) of Halotag-KRAS4b for increasing concentrations of doxycycline in a dox-inducible Halotag-KRAS4b HeLa cell pool.

Figure supplement 4. Basal signaling profiles and Ras expression levels of isogenic MEF pools.

Figure 1—video 1. TIRF video microscopy of HaloTag-KRAS4b in a live HeLa cell.

https://elifesciences.org/articles/47654#fig1video1

Figure 1—video 2. 16mm x16mm region of interest of the plasma membrane in Hela cell and tracks.

https://elifesciences.org/articles/47654#fig1video2

Figure 1—video 3. TIRF video microscopy of HaloTag-KRAS4b-C185S mutant in live Hela cell.

https://elifesciences.org/articles/47654#fig1video3
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HMM analysis also returns the transition rate between states (Persson et al., 2013), which reflects

how frequently KRAS4b switches between its subdiffusive states under the influence of membrane

dynamics. The transition probability [Dt�1] between states for KRAS4b revealed that a direct conver-

sion from a fast diffusing state to the slowest state, or vice versa, is over 10 times less likely than via

the intermediate state (Figure 1b). Since KRAS4b molecules must traverse an intermediate state, it

implies that KRAS4b diffusion and the mobility changes it undergoes are part of an ordered process

on the PM, although whether this represents an assembly or oligomerization process or whether

KRAS4b itself is modifying the lipid environment is not known. Interestingly, in comparison to

KRAS4b, the fraction of slow moving KRAS4a and NRAS molecules decreased markedly in cells over-

expressing these isoforms and becomes lower for HRAS. For HRAS and NRAS we used a two-state

diffusion model (Figures 1b, d and f) since the occupancy of the slowest diffusing species in the

three-state models was less than 5%, and we believe this to be negligible background signal. Taken

together, this data suggests that KRAS4b has unique diffusion characteristics in cells.

To evaluate whether the tagged RAS molecules are indeed functional we took advantage of the

RAS-dependent MEF system. These cells are dependent on MAP kinase signaling for proliferation,

and it is only through the re-introduction of an isoform of RAS, or through the introduction of a con-

stitutively active form of proteins in the MAP kinase pathway, such as BRAF V600E, that the cells will

re-enter the cell division cycle (Drosten et al., 2010). This is an ideal system for evaluating the ability

of specific proteins to restore the MAP kinase signaling required for their proliferation. To verify that

the RAS molecules measured on the cytoplasmic face of the plasma membrane in living cells are

functionally competent, we integrated HaloTag-RAS fusion constructs in the genomic DNA of MEFs

that are devoid of endogenous KRAS, HRAS, and NRAS molecules by viral transduction (Figure 1—

figure supplement 4). After transduction, we observed that the MEFs were rescued from their qui-

escence state and reentered the proliferation cycle (Drosten et al., 2010). Using imaging, we

observed, furthermore, that the tagged KRAS4b molecules can localize correctly to the plasma

membrane. Finally, we found that the levels of pAKT, pMEK and pERK are at levels comparable to

Table 1. Diffusion rates and percent occupancy in RAS isoforms, and their HVRs.

Dataset
HeLa

Diffusion coefficient (mm2/s) Occupancy (%)

D1 D2 D3 F1 F2 F3

KRAS4b 0.95 ± 0.03 0.24 ± 0.03 0.06 ± 0.01 64 ± 2 22 ± 2 14 ± 3

KRAS4a 0.82 ± 0.04 0.26 ± 0.01 0.05 ± 0.01 67 ± 2 26 ± 3 7 ± 2

NRAS 0.84 ± 0.04 0.23 ± 0.08 81 ± 2 19 ± 1

HRAS 0.81 ± 0.02 0.1 ± 0.03 81 ± 1 19 ± 1

KRAS4b HVR 0.97 ± 0.03 0.1 ± 0.05 87 ± 3 13 ± 3

HRAS HVR 0.82 ± 0.06 0.1 ± 0.03 87 ± 2 13 ± 2

NRAS HVR 0.95 ± 0.08 0.15 ± 0.05 86 ± 1 14 ± 1

Table 2. Diffusion rates and percent occupancy of KRAS4b in cancer cell lines

Dataset
KRAS4b

Diffusion coefficient (mm2/s) Occupancy (%)

D1 D2 D3 F1 F2 F3

HeLa
(KRAS4b WT)

0.95 ± 0.03 0.24 ± 0.03 0.06 ± 0.01 64 ± 2 22 ± 2 14 ± 3

MEF
(KRAS4b WT)

0.73 ± 0.12 0.25 ± 0.09 0.05 ± 0.01 42 ± 9 30 ± 8 28 ± 2

PANC-1
(KRAS4b G12D)

0.84 ± 0.06 0.22 ± 0.01 0.04 ± 0.01 43 ± 6 40 ± 4 17 ± 2

SU.86.86
(KRAS4b G12D)

0.8 ± 0.16 0.18 ± 0.09 0.02 ± 0.01 66 ± 14 28 ± 9 6 ± 5

hTERT-HPNE
(KRAS4b G12D)

0.92 ± 0.06 0.25 ± 0.02 0.06 ± 0.01 55 ± 3 29 ± 1 16 ± 3
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WT MEF cells as measured in western blots (Figure 1—figure supplement 3). Taken together, these

results indicate that the HaloTag fusion proteins are functional, properly localized, and sufficient to

restore the appropriate signaling in the cells.

To further confirm that the overexpression of the fusion constructs is not causing any artifactual

membrane association, we introduced a point mutation at the terminal cysteine residue to serine

(C185S) that would stop the post-translational farnesylation of KRAS4b required for membrane asso-

ciation. This modification prevents stable membrane association in HeLa cells, as observed by a sig-

nificant reduction in residence time at the membrane (Figure 1—figure supplement 2c). We

recorded transient flashes of KRAS4b C185S molecules on the PM as opposed to longer, trackable

trajectories in the wildtype protein (Figure 1—figure supplement 3c).

KRAS4b diffusion shows anomalous, confined diffusion by Mean
Squared Displacement analysis
To further evaluate the unique diffusion properties of KRAS4b, we used Mean Squared Displacement

(MSD) analysis to characterize the diffusion behaviors of RAS molecules in the plasma membrane

(Matysik and Kraut, 2014). In MSD plots, the curvature of the graph indicates the extent of confine-

ment of the molecules as they diffuse in the plasma membrane—the more bent the curve, the

greater the confinement. We analyzed each isoform of RAS molecule to see whether diffusion

behavior reflects the heterogeneity in RAS membrane association and subdomain preferences, as

we might predict based on the differential post-translational lipid modifications across all these iso-

forms (Figure 1a). In the line graphs of the four different RAS species, KRAS4b, KRAS4a, NRAS and

HRAS, in HeLa and isoform-specific MEF cells, respectively, we see clear differences in the diffusion

behavior of KRAS4b compared to the other isoforms (Figure 1c–f). Our analysis (Figure 1c and e)

shows that KRAS4b has the highest level of confinement (anomalous diffusion), whereas HRAS was

the least confined. Interestingly, KRAS4a and NRAS, both with one palmitoylation site, are interme-

diate to HRAS and KRAS4b (Figure 1c and e). To assess the generalizability of KRAS4b diffusion

behavior, we overexpressed and evaluated KRAS4bG12D mobility in various cell lines (Figure 1—fig-

ure supplement 2), such as pancreatic cancer lines harboring endogenous mutant KRAS4bG12D, a

ductal epithelial cell line, and importantly, in MEF cell lines that are devoid of any endogenous RAS

protein (Figure 1e), and in all cases, we observed similar diffusion behavior.

Table 3. Diffusion rates and percent occupancy in full length KRAS4b with increasing concentrations of doxycycline in a dox-inducible

HeLa cell pool

Dataset
HeLa

Diffusion coefficient (mm2/s) Occupancy (%)

D1 D2 D3 F1 F2 F3

DOX 1 ng/mL 0.96 ± 0.04 0.33 ± 0.04 0.09 ± 0.01 71 ± 1 20 ± 2 9 ± 1

DOX 2 ng/mL 0.93 ± 0.02 0.26 ± 0.01 0.07 ± 0.002 68 ± 2 22 ± 2 10 ± 1

DOX 5 ng/mL 0.95 ± 0.04 0.27 ± 0.01 0.07 ± 0.01 66 ± 3 24 ± 1 10 ± 2

Table 4. Diffusion rates and percent occupancy in full length KRAS4b wildtype and with G-domain mutations ESR, GNK, and HEK

Dataset
HeLa

Diffusion coefficient (mm2/s) Occupancy (%)

D1 D2 D3 F1 F2 F3

KRAS4b 0.84 ± 0.02 0.22 ± 0.01 0.05 ± 0.003 57 ± 1 27 ± 1 14 ± 1

KRAS4b ESR
(D126E/T127S/K128R)

0.91 ± 0.04 0.25 ± 0.02 0.06 ± 0.01 63 ± 4 25 ± 2 12 ± 2

KRAS4b GNK
(E91G/H94N/H95K)

0.85 ± 0.01 0.22 ± 0.01 0.05 ± 0.01 66 ± 1 22 ± 2 12 ± 1

KRAS4b HEK
(Q131H/D132E/R135K)

0.90 ± 0.06 0.24 ± 0.01 0.06 ± 0.003 58 ± 5 28 ± 1 14 ± 4
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The higher confinement in mobility is exclusively experienced by full
length KRAS4b
Recruitment and association of RAS molecules with the PM requires the HVR, and it is in this region

of the protein that the amino acid sequence differs between isoforms (Figure 1a). To explore the

contribution of the HVR to the increased confinement level of KRAS4b, we compared the MSD

behaviors of the full-length proteins with the truncated HVRs with the entire G-domain deleted

(Figure 1g, Figure 1—figure supplement 1b). We found that the HaloTagged HVRs express well,

localize to the plasma membrane, and laterally diffuse at the membrane forming trajectories which

we can track. In comparison with KRAS4b, all HVRs show very little confinement (Figure 1g). Nota-

bly, we determined that the KRAS4b HVR, when expressed as a truncation mutant without the

G-domain, shows free mobility in contrast to the full-length protein, which shows confinement. This

data suggests that the confined behavior of KRAS4b is dependent on the G-domain of the protein

and is not attributable to the electrostatic and other side chain interactions with the PM contributed

by the HVR.

KRAS4b confinement may in part be due to dynamic G-domain contacts
with the lipid bilayer
To better characterize the possible interactions of the G-domain of KRAS4b with lipids, we con-

ducted atomistic simulations of KRAS4b molecules in association with a lipid bilayer (POPC: POPS,

80:20). These simulations showed that G-domain residues formed transient interactions with lipid

head groups and we modeled these residues onto a structure of KRAS4b (Figure 2a) selecting a

series of mutants in three clusters that also correspond to amino acid differences between RAS iso-

forms. We tested these mutants in simulations and in living cells. Atomistic simulation of the various

KRAS4b’s G-domain mutants on membrane (POPC: POPS, 80:20) altered the distribution of posi-

tions of the molecule (Figure 2b). Consistent with the results from the simulation, MSD analysis of

single molecule trajectories in living cells showed that the 4b-GNK mutant (N-like: E91G/H94N/

H95K) and the 4b-ESR mutant (H-like: D126E/T127S/K128R) had less confinement (Figure 2c), and

vbSPT analysis showed that the fast-moving fraction of the 4b-ESR mutant increased, and its slow-

moving components decreased (Figure 2d) (Table 4).

Table 5. Diffusion rates and percent occupancy in full length KRAS4b, the HVR, and HVR mutants in

HeLa cells

Dataset
HeLa

Diffusion coefficient (mm2/s) Occupancy (%)

D1 D2 D3 F1 F2 F3

KRAS4b 0.95 ± 0.06 0.24 ± 0.03 0.06 ± 0.01 66 ± 2 23 ± 2 14 ± 3

4bHVR 0.98 ± 0.03 0.17 ± 0.03 87 ± 5 13 ± 5

4bHVR-3A 1.08 ± 0.06 0.13 ± 0.04 87 ± 6 13 ± 5

4bHVR-5A 1.07 ± 0.04 0.15 ± 0.02 82 ± 8 18 ± 6

4bHVR-5Ea 1.21 ± 0.05 0.15 ± 0.05 87 ± 3 13 ± 4

4bHVR-5Eb N/A N/A N/A N/A N/A N/A

Table 6. Diffusion rates and percent occupancy in full length KRAS4b, KRAS4b Q61R, KRAS4b Y40C, and KRAS4b Y40C-Q61R in

HeLa cells

Dataset
HeLa

Diffusion coefficient (mm2/s) Occupancy (%)

D1 D2 D3 F1 F2 F3

KRAS4b Q61R 0.90 ± 0.07 0.25 ± 0.02 0.06 ± 0.01 51 ± 5 33 ± 3 16 ± 1

KRAS4b 0.88 ± 0.06 0.25 ± 0.02 0.08 ± 0.01 56 ± 2 28 ± 8 16 ± 1

KRAS4b Y40C 0.94 ± 0.07 0.27 ± 0.02 0.07 ± 0.01 66 ± 6 23 ± 5 12 ± 2

KRAS4b Y40C-Q61R 0.92 ± 0.05 0.31 ± 0.04 0.08 ± 0.02 62 ± 6 26 ± 4 11 ± 2
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The charge state of 4bHVR only influences the fast state: fast
component dominated by charge of HVR
In addition to the insertion of the farnesyl group, the electrostatic interaction between the positively

charged HVR and the negatively charged lipid head groups is a necessary second signal for KRAS4b

molecules to associate with the membrane (Ahearn et al., 2012), and is involved with signaling

through both lipid recruitment and effector interactions (Terrell et al., 2019; Zhou et al., 2017). We

modified the charge states of the KRAS4b HVR and tested their mobility following the charge adjust-

ment by transient expression in HeLa cells of HaloTagged fusion proteins lacking the G-domain

(Figure 3a). For all the charge mutants tested, except for 4bHVR-5Eb, we acquired appreciable sin-

gle molecule trajectories (Figure 3b), indicating that not all electrostatic interactions are necessary

for stable membrane association and mobility. We also observed that all the isolated 4bHVRs had a

negligible fraction of the slow or immobile component; and therefore, to simplify analysis, we use a

two-state model to describe their motion.

Figure 3c and (Table 5) show the mobility of the two components (a fast state and an intermedi-

ate state), as a function of the HVR charge state and demonstrates that the fast component is a func-

tion of the lysine residues in the HVRs. We see a linear and significant increase in the fast

component diffusion rate as the positive charge density on the HVR is reduced (Figure 3a gives the

sequence and charge states of the mutated HVRs), and the charge reversal mutant 4bHVR-5EA has

the highest mobility in the fast state (~1.2 mm2/s). We do not see a significant difference in the state

occupancy of these mutants (Figure 3d). In addition to an increase in its fast component diffusion

rate, 4bHVR-5Ea shows a shorter residence time on the membrane (Figure 3e), suggesting impeded

membrane association. The 5Ea mutant also exhibits a lower probability of transitioning from the

fast to slow diffusion states (Figure 3f). The wild type 4bHVR (WT HVR) construct is fully able to

associate with the membrane and has the lowest mobility (corresponding to the fast component of

the full-length protein). Interestingly, the HVR charge states did not impact the slower mobility com-

ponent, which suggests that any diffusing molecule in the membrane can experience local environ-

ments of confinement—perhaps due to molecular crowding or structural features in the membrane.

4bHVR-5EB has the same charge distribution as the 4bHVR-5EA but does not associate appreci-

ably with the membrane (Figure 3—figure supplement 1), indicating that HVR lysines are not simply

bearing charge, but that the position of the charge impacts membrane association. Since 4bHVR-

5EA and 4bHVR-5EB have the same total negative charge (�1.1 CC), we attribute their differential

membrane association to lysine 184 next to the C terminal (KTKC) and hypothesize that this lysine

and the farnesyl group together may be key for KRAS membrane association. In fact, in Dharmaiah

et al, the cocrystal structure of KRAS4b and its chaperone PDEd, shows that K184 forms multiple

hydrogen bonds with the main chain in PDEd, stabilizing the interaction with the chaperone. Consis-

tent with our results, reversal of the charge on K184 would be expected to disrupt this interaction

and could disrupt KRAS4b transport to the membrane (Dharmaiah et al., 2016). The alanine

mutants 4bHVR-5A and 4bHVR-3A retain net positive charges (3.9 and 5.9 CC, respectively) and can

associate with the membrane but also with higher mobility than the wild type HVR (8.9 CC).

Since we show that the mobility of the fast component is sensitive to the charge carried by the

lysine residues in the HVR, we hypothesized that the free diffusion of RAS in the plasma membrane

is driven by electrostatic interactions with negatively charged phospholipids, such as phosphatidyl-

serine. We tested this supposition with molecular dynamics simulations. Figure 4a shows a series of

snapshots from the atomistic MD simulation (using a CHARMM36 Force Field) of the various HVR

mutants and the WT HVR in association with a simple membrane (POPC: POPS, 80:20). The snapshot

Table 7. Diffusion rates and percent occupancy in Ras isoforms, and MEF serum starved cell recovery with serum complete media

Dataset
KRAS4b

Diffusion coefficient (mm2/s) Occupancy (%)

D1 D2 D3 F1 F2 F3

MEF 0.73 ± 0.12 0.25 ± 0.09 0.05 ± 0.01 42 ± 3 30 ± 3 28 ± 4

MEF (srm 0’) 0.72 ± 0.02 0.22 ± 0.02 0.07 ± 0.01 50 ± 3 27 ± 0.8 23 ± 3

MEF (srm 15’) 0.77 ± 0.04 0.22 ± 0.02 0.06 ± 0.01 47 ± 3 28 ± 3 25 ± 2

MEF (srm 60’) 0.85 ± 0.03 0.21 ± 0.02 0.06 ± 0.01 44 ± 4 29 ± 3 27 ± 2
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Figure 2. HMM and MSD analysis results of KRAS4b with mutated contact points of G-domain with the lipids and the MD simulation of KRAS4b and

the same mutant. (a) Ribbon diagram of the G-domain of KRAS depicts locations of transitory contact points with the lipids and the following table

shows mutations made to the G-domain to mimic H-like or N-like RAS at those key residues. (b) Snapshots from simulations of KRAS4b on lipid

membrane (POPC: POPS, 80:20) are shown where G-domain makes transitory contacts with the lipids via salt bridges, with the ghost/shadow

Figure 2 continued on next page
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represents the average positioning data and shows that the WT HVR is the most closely associated

with the membrane—due to electrostatic interactions of the lysines with negatively charged lipids.

Figure 4b shows a similar group of snapshots, this time with a systematic increase (D10% steps) in

the relative proportion of phosphatidylserine (POPS) in the simulation (from 0% to 40%). In these

snapshots, we see that the average position of the WT HVR in the cloud of positions sampled

becomes more closely associated with the membrane as the PS concentration increases (Figure 4b).

The average distance of the lipid head group and amino acid side chains is quantified in line plots

and shows the same trend (Figure 4c and d). Furthermore, the simulation result shows that 4bHVR-

5EB does not interact with the membrane, which agrees well with our experimental result showing

that the construct forms few trajectories (Figure 3b), and poor membrane localization (Figure 3—

figure supplement 1). A snapshot of POPS clustering around the HVR is shown (Figure 4e), and

quantification of the ratio of POPS:POPC during the evolution of the simulation through time

(Figure 4f) shows that WT HVR coalesces and reorganizes the negatively charged lipids compared

to the HVR mutants with the neutral alanine side chains replacing lysines. Together these data show

the critical function of the electrostatic interactions between the positively charged lysine residues in

the HVR and the negatively charged head groups in the membrane and show that the HVR is dynam-

ically clustering PS in the membrane leading to membrane reorganization.

Mutations in the G-domain do not change lateral mobility; however,
activated KRAS shows higher occupancy in the intermediate and slow
states
We used KRAS4b and its mutants Q61R and Y40C (Figure 5a) to analyze KRAS mobility and relate

mobility to biology and signaling. The Q61R oncogenic mutant has intrinsically poor GTP hydrolysis

activity and is therefore constitutively loaded with GTP. We expect that it will be a highly active iso-

form interacting with effector molecules such as RAF (Novelli et al., 2018). The Switch 1 Y40C muta-

tion has been shown previously to disrupt RAF binding (Joneson et al., 1996). An MSD versus time

plot (Figure 5b) shows the levels of confinement for the different species when transiently expressed

in HeLa cells. Consistent with a model that confinement is in part due to assembly with effectors, we

found that the activated Q61R RAS molecule is the most confined in mobility, while the Q61R/Y40C

double mutant is the least confined in mobility among the three species. Figure 5c shows the mobil-

ity of the four types of KRAS molecules with their respective state occupancy fractions in Figure 5d.

The mobility of all components of the three species are similar in magnitude. The Q61R mutant has

a significantly higher fraction in the slow-moving component, and a smaller fraction in the fast-mov-

ing component compared to the Y40 and Q61R/Y40C double mutant. In contrast, Q61R/Y40C, a

switch one mutant impaired in its ability to bind its effector RAF, shows a significantly higher fast

component fraction and smaller slower component fractions (Table 6). These findings indicate that

the confinement level of KRAS4b is related to the activity of RAS; specifically, GTP-loaded oncogenic

KRAS4b is in a conformation that favors interaction with effectors, and therefore these molecules are

more likely to be found in signaling complexes. We infer that the increase state occupancy of Q61R

mutants in the slow state indicates that KRAS4b signaling complexes are relatively immobile. Con-

versely, Y40C mutants are not competent to interact with effectors, especially RAF1 (Joneson et al.,

1996), and we see fewer Y40C molecules in the slow state.

Figure 2 continued

representation exhibiting space that G-domain has sampled. (c) MSD plot from the H-like or N-like mutants are relatively less confined compared to

WT-KRAS4b (the asterisk * indicates three displacement values under shaded area are significantly different, p<0.05). (d) Diffusion coefficients and

occupancy obtained from HMM analysis are compared for each mutant; no significant difference was found between mutants.

The online version of this article includes the following source data for figure 2:

Source data 1. MSD values over time (plotted in Figure 2c) of Halotag-KRAS4b and G-domain mutants 4b-ESR (HRAS-like), 4b-GNK (NRAS-like), and

4b-HEK (NRAS-like).

Source data 2. Diffusion coefficients and occupancy fractions obtained by HMM analysis of Halotag-KRAS4b and G-domain mutants 4b-ESR (HRAS-

like), 4b-GNK (NRAS-like), and 4b-HEK (NRAS-like).
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Figure 3. HMM analysis of KRAS4b HVR and mutations that adjusted the charges of the HVR. (a) Table shows HaloTag HVR (of KRAS4b) constructs

over-expressed in HeLa cells by transient transfection with charge-neutral and charge-reversed substitution mutations of lysine residues with varying net

charge content (*CC). (b) Single molecule tracks are shown for WT HVR and each of the mutant HVRs, color-coded according to their residence time at

the membrane. The color bar encodes time from 0.0 s to 0.6 s. (c and d) Diffusion coefficient and occupancy of the fast and slow diffusing species are

Figure 3 continued on next page
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Signaling from G-domain influences KRAS4b confinement
To further test the hypothesis that confinement is related to the biological and functional activity of

RAS, we serum starved confluent MEF cells (expressing HaloTag-KRAS4b) for 18 hr and performed

single molecule tracking experiments. Significantly, MSD analysis shows that RAS molecules in serum

starved cells are less confined (Figure 6a). When starved cells are rescued with complete medium,

the molecules show increased confinement within 15 min. HMM analysis of the same experiment

showed a significant increase in fast moving molecules (8%), and a corresponding decrease (5%) in

the slow diffusing species (Figure 6b and c) (Table 7). Taken together with the data with the Q61R

and Y40C mutants, these data demonstrate that RAS diffusion behavior correlates with known RAS

biochemistry in which activated, GTP-loaded RAS associates with effectors and activates down-

stream signaling (Figure 6—figure supplement 1).

Discussion
RAS is primarily associated with the inner leaflet of the cell plasma membrane and membrane associ-

ation is critical to its activity (Simanshu et al., 2017). One distinct feature of all RAS isoforms lies in

the sequence specificity of their HVRs, which may influence where in the plasma membrane RAS

molecules associate or may itself influence the assembly of lipid domains through the recruitment of

lipids into nanoclusters. RAS shows a high degree of lateral mobility in the PM, and the PM is heter-

ogenous and contains distinct lipid domains that may influence RAS and cell signaling

(Kusumi et al., 2012). Understanding how these dynamics are associated with RAS activity, and

whether RAS plays a role in regulating these interactions, is a key focus of this work. In this study, we

tested the hypothesis that the unique diffusion characteristics of KRAS4b are due to features of the

full-length protein, and that these features lead to unique interactions with the PM and to an assem-

bly process of the signaling complex.

KRAS4b shows mobility characterized by three states: a fast, intermediate and slow diffusion rate.

The transition probabilities show that the transition between slow and fast states is rare; specifically,

the transitions occur through the intermediate state. In light of these findings, we propose a model

(Figure 6d) in which the fast state represents RAS molecules that are not complexed with effector

molecules and are diffusing with lipid molecules, and in which the two slower states represent differ-

ent points in the assembly process—the intermediate state representing slowing, partially com-

plexed, RAS molecules, and the slow state representing fully assembled RAS molecules in a

signaling complex (that might be highly constrained by unique structural features in the plasma

membrane such as a actin corral as proposed by Kusumi et al., 2012). In support of our model, we

can control the fractional occupancy of these states by either serum starving KRAS4b-dependent

MEFS, which increases the fast state occupancy, or stimulating starved cells with serum, which

increases the number of molecules transitioning to the intermediate and slow states. This along with

the mutational analysis we collected in HeLa cells, is strong evidence that transition to the slower

states of KRAS4b is dependent on G-domain interactions.

We used simulations of KRAS4b and the 4bHVR in defined lipid environments to observe in atom-

istic detail the correlation of amino acid and lipid interactions and distance measurements and com-

pared them to our experimental data. Computer simulations predict that the positive charges on the

HVR recruit negatively charged lipids and bring the HVR into closer proximity to lipids in the mem-

brane. Correspondingly, in experiments if we neutralize or reverse the positive charges in the HVR,

Figure 3 continued

plotted in red and black solid circles respectively for each charge-altered mutant. While the fast diffusing species exhibit a gradual, significant (p<0.05)

increase in diffusion coefficient as the lysine charges are neutralized and then reversed, the slow species remain the same and the relative fraction of

fast and slow diffusing species remain unchanged. (e) Normalized average residence time from more than 5000 tracks for each mutant is shown in the

plot. Significant reduction (p<0.05) in residence time indicates impaired association between charge-reversed HVR and membrane. (f) Graph shows

transition probabilities from fast to slow diffusive state for each charge-altered mutant.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Diffusion coefficients and occupancy fractions obtained by HMM analysis (plotted in Figure 3c and d) of Halotag-KRAS4b HVR and the

charge reversal mutants 5Ea, 5A, and 3A transiently overexpressed in HeLa cells.

Figure supplement 1. Localization of KRAS4b HVR mutant constructs.
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Figure 4. Atomistic simulation of KRAS4b HVR and its mutants interacting with the artificial membrane. (a) Atomistic simulations from various KRAS4b’s

HVR mutants on membrane (POPC: POPS, 80:20) are shown in solid representation where the snapshot most closely represents the average positioning

data. In addition, the space HVR has sampled are shown in ghost/shadow representation. (b) Systematic change of POPS from 0% to 40% in the

membrane shows increasing proximity of the HVR to the membrane. (c and d) Line plot shows quantification of ‘z’ distance between lipid head groups

Figure 4 continued on next page
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we see increasing diffusion rates in the fast component, suggesting that the recruitment of nega-

tively charged lipids is responsible for the fast component’s diffusion rate (0.97 mm2/s ± 0.03).

Although we do not directly observe the recruitment of negatively charged lipid molecules around

the HVR in experimental data (as this is beyond our imaging capabilities), the atomistic MD simula-

tions clearly show this to be the case.

Furthermore, the MSD data gives direct information about KRAS4b mobility and allows us to

characterize the qualitative features of RAS diffusion; specifically, the extent to which the molecules

show diffusion patterns of free, anomalous, or more constrained diffusion. Using MSD analysis (with-

out any modeling assumptions), we show that KRAS4b shows distinctively confined diffusion behav-

ior compared to the other isoforms or truncation mutants. For membrane-associated molecules,

such as lipids and proteins, anomalous diffusion is thought to be caused by molecular crowding, or

confinement to specific subdomains in the lipid bilayer. However, we demonstrate that the confine-

ment of KRAS4b is dependent on the G-domain, since the truncated mutant HaloTag-4bHVR shows

almost free diffusion. We suspected that growth factor driven signaling followed by molecular

assembly among effector and KRAS4b, and other proteins might be responsible for slowing down

the molecular diffusion. Indeed, serum-starved MEF cells expressing the full-length protein, show

reduced confinement. When we rescue cells with complete, serum containing media, the KRAS4b

molecules change their diffusion behavior and become more confined, as indicated by the bend in

the MSD plots (Figure 6a). Furthermore, oncogenic KRAS4b-Q61R, which is constitutively loaded

with GTP, shows more confined behavior than KRAS4b molecules that express a mutation in the

switch one binding domain (Y40C), which abrogates RAF engagement with RAS. Therefore, effector

binding, and signaling in the cells plays a role in confinement of KRAS4b molecules. Finally, we

extended the study using atomistic molecular simulations where we show that specific residues in

the G-domain form transient contacts with lipids in the membrane. In follow-up biological experi-

ments, we mutated these residues in KRAS4b to be HRAS-like and NRAS-like, and we saw less con-

fined diffusion for these RAS molecules.

It is important to note that diffusion in the membrane is not linearly dependent on the size of the

diffusing species (Saffman and Delbrück, 1975); however, these findings suggest that it is both pro-

tein-protein and lipid-G-domain interactions that are influencing KRAS4b mobility in ways that are

distinct from other isoforms of RAS. We propose in our model that the positive charges on the

4bHVR recruit and cluster negatively charged lipids around RAS molecules (mutation of the HVR

lysines leads to a higher diffusion rate, suggesting that these lipid associations contribute to the fast

diffusion component), and subsequent G-domain interactions with both effectors and lipids lead to

an ordered, stepwise assembly process where KRAS4b molecules are increasingly confined to

smaller nanodomains in the formation of a signaling complex (Figure 6c).

Our study clarifies several unresolved issues in the field. Murakoshi et al. (2004) used a single

molecule fluorescence energy transfer (FRET) technique to observe single molecule activation of

RAS molecules in the plasma membrane of cells. Using a fluorescently labeled GTP analogue which

they microinjected into cells and exogenously expressed fluorescently tagged RAS fusion proteins,

they observed single molecule trajectories of activated RAS molecules loaded with the fluorescent

GTP molecule and reported slow diffusion rates for the active RAS molecules. Lommerse et al.

(2005) focused their studies on HRAS. They compared wild type, constitutively active (G12V) and

inactive (S17N) forms of HRAS and found that both mutants had two populations of either slow or

fast diffusing molecules. In the case of the G12V mutant, they found that the slow-moving molecules

were confined to small 200 nm domains, and that wild type proteins were confined to domains of

the same size upon insulin stimulation. Consistent with our observations, both studies found that

these trajectories were suppressed or immobilized upon activation of the RAS molecule. Although

these studies elegantly demonstrate that activation of RAS molecules with GTP loading or oncogenic

Figure 4 continued

and individual amino acids (carbon alpha) in the HVR obtained from the simulations. (e) A snapshot from the simulation showing clustering of POPS

around the HVR because of electrostatic interaction between positively charged lysine residues and anionic lipid head groups. Blue spheres represent

POPC, brown spheres represent POPS, and the 4bHVR is modeled in brown (POPC (80%) – POPS (20%)). (f) Quantification of POPS: POPC ratio in the

proximity of the HVR during the time course of simulation. It shows 4bHVR’s ability to concentrate POPS, compared to the charge-deficient mutants,

4bHVR-3A and 4bHVR-5A.
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Figure 5. HMM and MSD analysis results of KRAS4b and the oncogenic and RAF binding disabled mutants. (a) Structural illustration of KRAS4b in

ribbon diagram depicts amino acid locations for the mutations Y40C (green), Q61R (blue), and GTP (yellow) (b) MSD plot showed significant difference

in diffusion properties between various KRAS4b mutants transiently expressed in HeLa cells. Increased linearity in MSD profile for RAF binding-deficient

mutants Y40C and Q61R/Y40C suggests that the effector interaction is another major contributor in confinement of diffusion of KRAS4b. The three

displacement values under shaded area between Q61R and Q61R-Y40C mutants are significantly different, p<0.05). (c and d) Pie charts and line plots

show the Y40C and Q61R/Y40C mutants have higher occupancy in the fast-diffusing state while lower occupancy the intermediate-diffusing state as

determined by vbSPT HMM analysis. Occupancy of fast and intermediate diffusing species is significantly (p<0.05) different between Q61R/WT and

Y40C/Q61R-Y40C variants.

The online version of this article includes the following source data for figure 5:

Source data 1. MSD values over time, plotted in Figure 5b, of Halotag-KRAS4b, oncogenic KRAS4b-Q61R, Raf-binding deficient mutant KRAS4b Y40C,

and the combination mutant KRAS4b-Y40C-Q61R transiently expressed in HeLa cells.
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activation changes diffusion properties, we were able to extend these observations and show differ-

ences between isoforms and provide further insight to identify both G-domain and HVR contribu-

tions to this mobility pattern.

Zhou et al. (2017) showed that the amino acid sequence of the HVR of KRAS and the prenyl

group function as a code for determining the nature of RAS associated nanoclusters. Using a combi-

nation of electron microscopy, spatial mapping, and atomistic simulations, their study suggests that

HVR interactions are not just electrostatic in nature, but that specific amino acid side chains direct

which types of lipids will cluster in the plasma membrane, and that this may have implications in

downstream signaling events. Our studies complement these observations by revealing the dynam-

ics of KRAS4b and that mutations in HVR lysines change the diffusion behavior, indicating that the

assembly of signaling complexes may be dependent on the nature of the lipid clusters forming

around the HVR side chains. We add an additional level of detail, showing by atomistic molecular

dynamic simulations that G-domain residues are forming transitory contacts with lipid, and that

mutation in these residues affect diffusion behavior. Interestingly, when we convert these G-domain

residues of KRAS4b to mimic HRAS and NRAS, the diffusion properties of the molecule show less

KRAS4b-like confined behavior.

In summary, we show that the diffusion of KRAS4b in the PM is best explained by a three-state

model in which a slow (immobile) state involves G-domain interactions with both the PM and effector

engagement. Although we did not focus our efforts on characterizing them, the other RAS isoforms

clearly undergo different mechanisms of dynamic interaction with the plasma membrane, as indi-

cated by both their relative lack of confinement (MSD) and fewer states (vbSPT). Our findings

strongly suggest that the KRAS4b-plasma membrane interaction plays an important role in regulat-

ing RAS signaling through a stepwise and ordered process that gives rise to a specific transition

path with different diffusion properties. Furthermore, our study has implications for understanding

the interaction of proteins with the plasma membrane, and the active processes involved in assembly

of a signaling complex that involves both protein-lipid and protein-protein interactions.

Materials and methods

Protein constructs
HaloTag fusion proteins of RAS family members and hypervariable regions (HVRs) were generated

using combinatorial Multisite Gateway (Wall et al., 2014). Briefly, three components were mixed in

a Multisite LR reaction: a strong CMV51 promoter (att4-att5), a HaloTag (Promega) fusion protein

with upstream Kozak initiation sequence and lacking a stop codon (att5-att1), and a standard Gate-

way Entry clone of the various downstream fusion partners (att1-att2). Correct recombinants were

isolated and verified by restriction digest, and transfection-ready DNA was prepared using Qiagen

plasmid preparation kits.

Entry clones for some constructs were from the RAS mutant entry clone collection (Addgene);

those containing HVR sequences were synthesized directly as Entry clones (ATUM Bio, Inc). The

remaining clones were generated by site-directed mutagenesis from RAS mutant entry clone con-

structs using the Quickchange kit (Agilent). All Entry clones were fully sequence verified prior to sub-

cloning into the final fusion vectors.

Generation of HaloTagged RAS mutant mouse embryonic fibroblasts
DU1473, a HRAS-/-NRAS-/-, KRASlox/lox, RERTert/ert primary mouse embryonic fibroblast cell line,

generated and characterized previously (Drosten et al., 2010) was generously provided by Dr.

Mariano Barbacid (Spanish National Cancer Research Center (CNIO)). Cells were cultured in Dulbec-

co’s Minimum Essential media containing high glucose and L-glutamine (ThermoFisher, Waltham,

MA) supplemented with 10% Fetal Bovine Serum (GE Healthcare, Pittsburgh, PA). Cells were ren-

dered RAS-less by culturing in complete media supplemented with 600 nM 4-hydroxytamoxifen

Source data 2. Diffusion coefficients and occupancy fractions obtained by HMM analysis (plotted in Figure 5c) for Halotag-KRAS4b, -KRAS4b Q61R, -

KRAS4b Y40C, and -KRAS4b Y40C-Q61R.
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Figure 6. HMM and MSD analysis results of KRAS4b diffusion in MEF in starved and serum complete media rescued conditions. (a) MSD plot shows

relative changes of confinement in diffusion profile of KRAS4b in MEF cells upon serum deprivation (incubated in 0.1% FBS media for 18 hr). MEF cells

that are expressing only the KRAS4b isoform, were deprived from serum for 18 hr and then, rescued with 10% FBS containing DMEM media for 15 mins

and 60 mins respectively on each coverslip. The three displacement values under shaded area between serum substituted and depleted are

Figure 6 continued on next page
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(Sigma-Aldrich, St. Louis, MO) for 14 days to activate translocation of the estrogen receptor (ER)-

fused Cre to the nucleus for removal of the endogenous (floxed) Kras genes resulting in G1 arrest.

Cell proliferation was ‘rescued’ by transduction with lentivirus produced by the RAS Reagent Core

of the RAS Initiative containing the RAS mutant of interest tagged with HaloTag. Briefly, tamoxifen-

treated cells were seeded into six-well plates and incubated overnight at a density that yielded 60–

70% confluency at the time of transduction. Media was removed from the cultures and replaced with

1 mL media containing 8 mg/mL hexadimethrine bromide (Sigma-Aldrich, St. Louis, MO). One well

from each plate was harvested and counted to calculate the amount of virus to add per well for each

transduction. Lentivirus volume corresponding to multiplicities of infection (MOI) of 5 or 10 was

added to the hexadimethrine bromide containing media. After 24 hr incubation at 37˚C, 5% CO2,

the virus containing media was removed and replaced with pre-warmed complete media. Cells were

incubated for an additional 24 hr before the media was replaced with pre-warmed selection media

containing either Puromycin 2.5 mg/mL or Blasticidin 4 mg/mL. Cell line pools were expanded in

selection media for a minimum of 1 week prior to further testing. Cell line pools were verified via

PCR to be free of Mycoplasma contamination and were Sanger sequenced to verify the insertion of

the desired transgene sequence.

Generation of Dox-inducible HaloTag KRAS4b HeLa cell pool
HeLa cells obtained from ATCC were transduced at MOI 0.05 with lentivirus containing plasmid con-

struct R980-M38-658 (CMV13p>TetOn3G); both plasmid and virus were generated at the RAS Initia-

tive. Cells were cultured using the same DMEM media and 10% Fetal Bovine Serum as described

above. After 24 hr, media containing lentivirus was removed and replaced with pre-warmed com-

plete media. After an additional 24 hr, media was removed and replaced with pre-warmed complete

media containing 4 mg/mL Blasticidin. Cells were grown under selection for 2 weeks before viable

freeze aliquots were stored in vapor phase liquid nitrogen. The transduced HeLa cells were then re-

started in culture and transduced at MOI 10 with lentivirus containing plasmid construct R713-M15-

663 (TRE3Gp > Halotag7 Hs.KRAS4b) and were subjected to an additional 2 weeks of selection with

4 mg/mL Blasticidin and 1 mg/mL Puromycin prior to use.

Cell culture, transfection and labeling of HaloTag-Ras
For the experiments with over-expression system, HeLa cells were transfected with HaloTag fusion

constructs of various RAS isoforms, as well as HVRs, in six-well plates. Transfection was conducted

using Fugene (Promega) reagent and 1.5 mg DNA per well. The day after transfection, cells were

transferred on to clean coverglass (#1.5, plasma-cleaned) and allowed to grow for another day. On

the day of imaging, coverslips were washed with phosphate buffer saline and cells were labeled with

25pM fluorescent (JF646 or JF549) HaloTag ligand, which covalently binds to the HaloTag-RAS mol-

ecules. Fluorescent HaloTag ligands were obtained from Dr. Luke Lavis at (HHMI, Janelia Farm, Ash-

burn, VA). These fluorescent dyes are highly photostable and resistant to photobleaching

(Grimm et al., 2016).

Figure 6 continued

significantly different (p<0.05), as indicated by the asterisk ‘*’. (b) vbSPT HMM analysis from same diffusion tracks is displayed on the right-side panel,

showing reduced slow-diffusing fraction in serum-deprived state. (c) Line plots of KRAS4b diffusion coefficients and state occupancy in complete media,

depleted media and rescued with complete media after 15 and 60 min as determined by vbSPT HMM analysis. Occupancy of fast diffusing species is

significantly (p<0.05) different between serum substituted and depleted conditions. (d) Cartoon model showing KRAS4b dynamics in the membrane.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. MSD values over time (plotted in Figure 6a) of Halotag-KRAS4b in complete serum conditions (10% FBS), serum starved (0.1% FBS 18

hr), and after 15 or 60 mins of rescue with 10% FBS serum.

Source data 2. Diffusion coefficients and occupancy fractions obtained by HMM analysis (visualized in Figure 6b and Figure 6c) for Halotag-KRAS4b in

complete serum conditions (10% FBS), serum starved (0.1% FBS 18 hr), and after 15 or 60 min of rescue with 10% FBS serum.

Figure supplement 1. Western blot analysis of KRAS4b signaling under serum starvation and recovery with serum complete media.
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Western blotting
MEF cells were seeded in a 6-well TC plate in 2 mL of DMEM (Gibco) media supplemented with

10% FBS (GE Healthcare Life Sciences) and 2 mM L-glutamine (Life Technologies). Cells were

allowed to proliferate in a 37˚C 5% CO2 incubator for 24 hr until 80% confluent, and then lysed. In

signal-rescue experiments, HaloTag-KRAS4b MEFs were washed twice with dPBS and then sub-

jected to an additional 18 hr of serum starvation in 2 mL per well of 2 mM L-glutamine DMEM media

with 0.1% FBS. Signaling was rescued by media aspiration, a single dPBS wash, and addition of 2 mL

DMEM with 10% FBS for either 15 or 60 min. Cells were then washed once with ice cold DPBS and

lysed with a cell scraper in a mixture of 20 mM Tris HCl, 150 mM NaCl, 1 mM EDTA + EGTA, 1% Tri-

ton, and Halt protease and phosphatase inhibitor cocktail (Thermo Scientific). Lysates were then cen-

trifuged at 16,000xg for 15 min at 4˚C, and the supernatant collected in a separate 1.5 mL

microcentrifuge tube. Protein concentrations were analyzed using a BCA kit (Thermo Scientific), and

equal amounts of protein were combined with Bolt LDS buffer (Invitrogen), Bolt Sample Reducing

buffer (Invitrogen), and deionized water. Sample mixtures were heated to 100˚C and mixed at 500

rpm for 5 min. 25 mg protein was loaded per well onto a Bolt 4–12% 10-well Bis-Tris gel (Invitrogen)

and run at 125V in Bolt MES SDS running buffer (Invitrogen). Proteins were transferred onto a nitro-

cellulose membrane using Thermo Fisher Scientific’s iBlot 2 Dry Blotting System and transfer stacks

at 20V for 1 min, 23V for 4 min, and then 25V for 2 min. Membranes were blocked in Odyssey Block-

ing buffer (LI-COR) for one hour at room temperature, and then incubated at 4˚C overnight in Odys-

sey Blocking buffer containing 0.1% Tween 20 and the following antibodies: ERK 1/2 (mouse

monoclonal, Cell Signaling Technology no. 4696), pERK 1/2 (rabbit monoclonal, Cell Signaling Tech-

nology no. 4370), MEK 1/2 (mouse monoclonal, Cell Signaling Technology no. 4694), pMEK 1/2 (rab-

bit monoclonal, Cell Signaling Technology no. 9154), pan AKT (mouse monoclonal, Cell Signaling

no. 2920), pAKT (Ser473) (rabbit monoclonal, Cell Signaling no. 4060), vinculin (mouse monoclonal,

Sigma-Aldrich no. V9131), HaloTag (mouse monoclonal, Promega no. G9211), and pan RAS (mouse

monoclonal, Thermo Scientific kit 16117). Membranes were washed three times in 0.05% Tween TBS

for 5 min each and incubated in IRDye secondary antibodies (Goat anti-Mouse 680RD, LI-COR; Goat

anti-Rabbit 800CW, LI-COR) diluted at 1:10,000 in 0.1% Tween Odyssey Blocking buffer for one

hour at room temperature. Membranes were washed as described before, and images were cap-

tured using the LI-COR Odyssey CLx Imaging System.

Single molecule microscopy
Single molecule imaging was carried out on the Nikon N-Storm microscope equipped with an APO

x100 TIRF objective of 1.49NA (Nikon, Japan). A Tokai hit stage incubator (Tokai Hit Co, Ltd, Japan)

was used to provide 5% CO2 while maintain the temperature at 37˚C for live cells. Labeled molecules

(with JF646/JF549 dyes) associated with membrane were illuminated under TIRF mode. The JF549

dye was excited with the 561 nm laser which is one of the four laser lines from the Agilent laser mod-

ule of the Nikon N-STORM system (Sergé et al., 2008), the JF646 dye was excited with the 647 nm

laser line. The output laser beam was coupled into the Nikon TIRF box through a single mode fiber

and focused into the back focal plane of the objective to form a parallel beam for wide field opera-

tion. The TIRF illumination was achieved by changing the illumination angle through the Nikon TIRF

box controlled by the Nikon software (NIS- Elements AR 4.4). Fluorescent signals from each mole-

cule were recorded with a thermoelectric-cooled EMCCD camera with 16 mm pixel size, (iXon Ultra

DU-897, Andor Technologies, USA). Single molecule tracking was implemented by time-lapse imag-

ing of the molecules under continuous illumination at 10 ms exposure for a total of up to 3000

frames with zero delay time between frames. At this frame rate, membrane-bound molecules appear

as transient, diffraction-limited fluorescence spots. An area of 16 � 16 mm2 of the plasma membrane

in the cytoplasmic region of each cell was imaged.

Single molecule tracking data processing
The ImageJ-based single molecule tracking plugin, TrackMate (Tinevez et al., 2017) or Localizer

(Dedecker et al., 2012) was used to create tracks from the time-lapse movies. Single molecules

were identified as spots from each frame of the time-lapse movies with the eight-way adjacency par-

ticle detection algorithm with 30 GLRT (Sergé et al., 2008) sensitivity and a PSF of 1.3 pixels. Sub-

resolution spot accuracy was achieved using a 2D Gaussian fit function for estimating the position of
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the PSF for each frame. These spots were linked into tracks given certain criteria and cut off. The sin-

gle molecule spot detection and tracking parameters were kept consistent across all experiments.

These tracks were organized and exported for HMM and MSD analysis using a semi-automated

workflow, developed in Matlab (Mathwork, Natick, MA), on a multi-core Mac Pro or a high-perfor-

mance batch cluster (ABCC, FNLCR) (Figure 1—figure supplement 1). Tracking data was obtained

in multiple replicates for each and every condition (~8000 tracks and 16 cells). Mean and standard

error of mean (S.E.M) were estimated from the results obtained from HMM and MSD analysis.

HMM analysis with vbSPT software
Tracks from multiple cells were combined as input to the vbSPT (Persson et al., 2013) for HMM

analysis. This analysis extracts discrete diffusive states in the single molecule trajectories and transi-

tion rates between states during heterogenous intracellular diffusion. Typically, the number of itera-

tions and bootstrapping were set to 250. Diffusion coefficients and occupancies obtained from the

analysis were compared between days to get statistical significance.

MSD analysis
The Matlab based TrackArt (Matysik and Kraut, 2014) software was used to do MSD analysis.

Tracking data of the same type of molecules from multiple cells were combined before input into

the TrackArt. MSD analysis was based on all tracks input and the result was the average of many

samples, which reflected the collective behavior of the type of molecules. The MSD vs. time plot can

explicitly show molecules which are confined in motion and to what extent they are confined.

Molecular modeling and simulations
For modeling and simulation, the wild type 19-residue HVR peptide was cut from a KRAS4b/GDP

crystal structure (PDB #5TAR), and the farnesylated Cys185 was methylated for lipid insertion. The

wild-type full-length KRAS4b model was built by attaching the 19-residue HVR to the KRAS4b/

GMPPNP crystal structure with the GMPPNP modified into GTP. Each mutant was built by mutating

the corresponding amino acid residues using MOE suite of programs (Chemical Computing Group

Inc, 2013). Standard amino acids in HVR, full-length KRAS4b and their mutants are modeled using

CHARMM36 Force Field (FF) (Best et al., 2012; Klauda et al., 2010), and the C-terminus farnesyl

moiety was modeled using parameters derived by Neale and Garcia (Neale and Garcı́a, 2018). Gua-

nine nucleotide parameters are based on guanosine monophosphate and pyrophosphate parame-

ters developed for use with CHARMM36 nucleic acids (Denning et al., 2011), while explicit solvents

were modeled using TIP3P water model with CHARMM modification (Jorgensen et al., 1983;

MacKerell et al., 1998). GROMACS was used for all HVR and mutant simulations (Abraham et al.,

2014), while GPU accelerated PMEMD from AMBER16 was employed for all full-length KRAS and

mutants simulations (Case et al., 2016).

For HVR mutant simulations, each of eight peptides were inserted into a pre-equilibrated and sol-

vated POPC (80%) – POPS (20%) bilayer composed of 200 lipids by placing the farnesyl moiety

inside the bilayer. Counterions were subsequently added to each system, resulting in a model con-

sisting of the HVR (mutant), 160 POPC lipids, 40 POPS lipids, ~13,000 water molecules, 98 K+ ions

and 68 Cl- ions (for wild type). Each system was minimized to remove close contacts, followed by a

1.5 ms NTP ensemble MD simulation at 310 K and 1 bar.

For the full-length KRAS4b mutant simulations, each of eight proteins, with GTP and Mg2+

bound, were inserted into a pre-equilibrated and solvated POPC (80%) – POPS (20%) bilayer com-

posed of 440 lipids by placing the farnesyl moiety inside the bilayer. Counterions were subsequently

added to each system, resulting in a model consisting the KRAS4b (mutant), 352 POPC lipids, 88

POPS lipids,~42,000 water molecules, 405 K+ ions and 317 Cl- ions (for wild type). Each system was

minimized to remove close contacts, followed by a 1.0 ms NTP ensemble MD simulations at 310 K

and 1 bar.

For the POPS concentration simulations, nine lipid composition, 100% POPC, 95% POPC – 5%

POPS, 90% POPC – 10% POPS, 85% POPC – 15% POPS, 80% POPC – 20% POPS, 75% POPC –

25% POPS, 70% POPS – 30% POPS, 65% POPC – 35% POPS and 60% POPC – 40% POPS, were pre-

pared, pre-equilibrated and solvated. Next, the 19-residue wild type HVR was inserted into each

lipid by placing the farnesyl moiety into the lipid. Each system consists of the wild type HVR, a total

Goswami et al. eLife 2020;9:e47654. DOI: https://doi.org/10.7554/eLife.47654 20 of 24

Research article Cancer Biology Physics of Living Systems

https://doi.org/10.7554/eLife.47654


of 200 lipids, ~13,000 water molecules and 0.15M counterions (K+ and Cl-). Each system was subse-

quently minimized followed by a 1.5 ms NTP ensemble MD simulations at 310 K and 1 bar.
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