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Pyrrolidines and Piperidines by Ligand-Enabled Aza-Heck
Cyclizations and Cascades of N-(Pentafluorobenzoyloxy)carbamates
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Abstract: Ligand-enabled aza-Heck cyclizations and cascades
of N-(pentafluorobenzoyloxy)carbamates are described. These
studies encompass the first examples of efficient non-biased 6-
exo aza-Heck cyclizations. The methodology provides direct
and flexible access to carbamate protected pyrrolidines and
piperidines.

Pyrrolidines and piperidines are two of the most common
saturated heterocycles used in pharmaceutical development
(Scheme 1A).[1] Consequently, efficient and general methods
for their preparation are required. A conceptually appealing
approach lies in the intramolecular aza-Wacker process,
where oxidative cyclization of an NH nucleophile with an
alkene occurs under PdII-catalyzed conditions (Scheme 1B).[2]

This method has been developed extensively, but, in general,
still requires relatively acidic NH units, such as sulfonamides
(PG = SO2R), for efficient reactivity.[2–4] Aza-Wacker cycliza-
tions of less acidic carbamates (PG = CO2R) are much
slower[3e] and are limited to 5-ring cyclizations involving
more reactive classes of alkene (e.g., cyclic or sterically
undemanding variants).[3c,e,f,4] Because carbamate protecting
groups (e.g., Boc, Cbz) offer the greatest downstream
flexibility, methods that can circumvent these limitations
and provide direct access to protected pyrrolidines and
piperidines are likely to find broad use.

A solution to the aza-Wacker “carbamate problem”
potentially resides in the development of an aza-Heck process
where an activated N-hydroxycarbamate unit (2) is exploited
for N@O oxidative addition (to 3) prior to C@N bond forming
migratory insertion of the alkene (Scheme 1C).[5] The key to
this umpoled approach is that it relies on the electrophilicity
of the N-center rather than on its acidity (cf. Scheme 1B),
such that wide scope might be expected. Further potential
benefits include: (a) direct access to the substrates by
Mitsunobu alkylation of bifunctional amino reagents 1,[6] (b)

the avoidance of (hazardous) external oxidants,[7] which, in
turn, should allow highly tunable/stabilizing phosphine
ligands to be used, (c) a compatibility with organometallic
reagents in cascade processes,[8] and (d) predictable syn-
amino-palladation of the alkene.[4] To date, the range of
catalytically useful N@O oxidative addition processes devel-

oped with Pd0-systems is still very limited,[9, 11, 12] such that the
viability of the approach in Scheme 1C was deemed uncer-
tain. Nevertheless, as described below, the identification of
a privileged ligand set has allowed us to achieve both the
envisaged aza-Heck cyclizations, as well as related cascade
processes. The new method is efficient for both 5-exo and
non-biased 6-exo cyclizations; this latter aspect is particularly
significant as prior aza-Heck protocols cannot achieve
cyclizations of this type.[5, 10–12] The end result is a highly
flexible method that enables the two-step conversion of bis-
or trishomoallylic alcohols to carbamate protected pyrroli-
dines or piperidines.

At the outset of our studies, only three principal classes of
aza-Heck N@O donor were known: O-FBz ketoxime esters
reported by Narasaka et al. in 1999 (Class 1),[10] O-FBz
hydroxysulfonamides reported by our group in 2016 (Class
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Scheme 1. Introduction.
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2),[11] and O-phenyl hydroxamates reported by Watson and
co-workers in 2016 (Class 3).[12] Each system exhibits pre-
scriptive ligand requirements, although, in general, electron
poor P-based ligands are required for efficient reactivity.
Class 1 and Class 2 N@O donors cyclize via a cationic aza-PdII

intermediate, access to which is driven by facile protodecar-
boxylation of the pentafluorobenzoate leaving group.[10f]

Given these considerations, we elected to evaluate the
cyclization of O-FBz carbamate 2a in the presence of Pd
systems modified by weak donor ligands. Gratifyingly, we
found that the target cyclization was feasible, and, for this
non-demanding system, a variety of triarylphosphine ligands
were reasonably effective using Pd2(dba)3 as the precatalyst
(see the Supporting Information). Ultimately, the optimal
system was PA-Ph (L-1, PA = 1,3,5,7-tetramethyl-2,4,8-trioxa-
6-phosphaadamantanyl) and, using this ligand, we were able
to access target 4a in 85% yield after optimization of other
reaction parameters. L-1 is a bulky and electron poor ligand,
with the latter facet resulting from its constrained C@P@C
bond angle and inductively withdrawing oxygen atoms.[13] The
bulky tert-butyl unit of 2 a is also beneficial, with less sterically
demanding systems 2b and 2c cyclizing in lower but accept-
able yields.

The efficacy of L-1 prompted us to undertake the one-step
synthesis of a variety of electronically tuned variants via
arylation of commercially available PA-H (see the SI). These
studies revealed that systems with electron withdrawing
groups at the para-position of the aryl unit were especially
effective, such that L-2 and L-3 emerged as complementary
ligands for subsequent studies. Using this ligand set, we
explored the scope of the catalyst system for 5-exo aza-Heck
cyclizations and found it to be highly effective across a wide
range of substrates (Table 1). Different carbamates are
tolerated (4 a–d), diastereoselective processes are readily
achieved (4 f–h), tetrasubstituted stereocenters can be con-
structed (4 i, 4k, and 4m) and electron poor alkenes
participate efficiently (2j to 4j). The method is especially
powerful for bicyclic ring construction; 5-exo cyclization onto
exocyclic (4k) or cyclic (4 l) alkenes provided complex
perhydroindole scaffolds, and spiro (4m) or transannular
(4n) C@N bond formations were also efficient. For demand-
ing systems (e.g., 4 i) L-2 or L-3 provide 10–15% higher yields
than L-1 (selected comparisons are given in the SI). The
results in Table 1 show that the aza-Heck method offers far
greater scope for 5-exo cyclizations than currently available
aza-Wacker protocols.

Prior classes of aza-Heck process cannot achieve efficient
6-exo cyclizations of non-biased systems, and a solution to this
issue represents a longstanding challenge of the area.[5a] We
were pleased to find that the present method addresses this, as
demonstrated by the cyclizations of 2o and 2p, which
occurred with good levels of efficiency to afford 4o and 4p,
respectively (Table 2). More highly substituted systems can
also be generated (e.g., 4s and 4t), with the method offering
particularly good scope for the construction of tetrahydroi-
soquinolines (4 r and 4u), as well as unusual aza-variants (4v
and 4w). The process is effective for cyclizations involving
both electron rich (4r) and electron poor (e.g. 4u) alkenes.
For these more demanding 6-exo cyclizations an N-Boc group

is required; cyclization to afford methyl carbamate system 4q
occurred in only 33 % yield under optimized conditions. The
use of PA-Ar ligand systems is also critical for the processes in
Table 2, with L-2 or L-3 being the preferred variants.
Triarylphosphines that were effective for 5-exo cyclization
generated 4 p in less than 10% yield (see the SI). The PA-Ar
ligand system even enabled 7-exo cyclization to afford 4x,
albeit in modest yield.

For the processes described here, our collective observa-
tions are supportive of an aza-Heck pathway akin to that
proposed for Class 1 and Class 2 N@O donors.[10f,11] Under
optimized conditions, cyclization of OFBz system 2k in the
presence of NH system 5 provided target 4k in 79% yield and
aza-Wacker product 4a was not observed (Scheme 2A). This
result confirms that the N@O bond acts as an internal oxidant
only. Accordingly, N@O oxidative addition to 3 should be
followed by syn-stereospecific amino-palladation of the
alkene.[14] Consistent with this, cyclization of trans-acrylate
2t delivered adduct 4t as a single geometric isomer, in which
the alkene substituents that were present in the starting
material are now in a cis-arrangement. The observed switch in
geometry is consistent with a sequence of syn-amino-palla-
dation and syn-b-hydride elimination (Scheme 2B); a similar
phenomenon is observed in the conventional Heck reac-
tion.[15] For the cyclization of 2 u and 2v, this geometry
inversion was not observed at full conversion, with 4 u and 4v
formed in> 25:1 Z :E ratios. However, when the cyclization of

Table 1: Carbamate protected pyrrolidines by aza-Heck cyclization.

[a] Dioxane (0.3 M) was used as solvent. Alkene geometry of substrates:
2a, E ; 2b, E ; 2c, E ; 2d, E ; 2e, 6:1 E :Z; 2 f, E ; 2g, E ; 2h, E ; 2 i, Z ; 2 j, E ; 2k,
E.
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2u was run to partial conversion (3 h), 4 u was generated in
a 14:1 E :Z ratio, such that isomerization of the initially
formed product likely accounts for the geometry of isolated
material (see the SI for details).[16] As with Class 1 and 2 aza-
Heck processes, protodecarboxylation of the pentafluoroben-
zoate leaving group likely plays a key role in the processes
described here. 19F and 1H NMR studies revealed that this
process is intimately linked to turnover; in the cyclization of
CF3-2 i, C6F5H was formed at the same rate as cyclization
product CF3-4 i (Scheme 2C). Accordingly, we suggest that
a cationic aza-PdII intermediate is required for cyclization and
access to this is driven by triethylammonium mediated
protodecarboxylation of pentafluorobenzoate, a process that
we have shown to be facile.[10f] The efficiency of the PA-Ar
ligand system is consistent with studies by Hanley and
Hartwig where electron poor and bulky P-based ligands
were found to accelerate alkene aza-palladation in other
contexts.[17] For the current processes, the synergy of a bulky
ligand system and a bulky N-protecting group may be
especially beneficial, and this might account for the higher
efficiencies observed for N-Boc protected systems. The
conformational control that this unit provides is also likely
a key factor.

The aza-Heck process can also be adapted to cascade
sequences where the alkyl-PdII intermediate formed upon
alkene amino-palladation is diverted to a subsequent C@C
bond forming event. For example, aza-Heck–Heck cyclization
of bis-alkenyl system 2y delivered spirocycle 4 y in 68 % yield
(Scheme 3A). We have also assessed the feasibility of
partially intermolecular cascade processes as a means of
providing a modular and flexible approach to alkene 1,2-
carboamination (Scheme 3B).[10f, 18,19] Cyclization of 6a in the

presence of N-methylindole-2-boronic acid pinacol ester
(200 mol%) provided 1,2-amino-arylation product 7aa in
73% yield. Other electron rich heteroaryl boronic esters were
also able to trap the alkyl-PdII intermediate efficiently to give
1,2-amino-arylation products 7ab–7 ad.

In summary, we outline highly efficient aza-Heck cycliza-
tions of activated N-hydroxycarbamates. The chemistry is
reliant on PA-Ar ligand systems, and, importantly, these
allow, for the first time, efficient non-biased 6-exo cycliza-
tions. Further generalization of the approach, including the
development of asymmetric variants[20] and other classes of
cascade reaction, will be reported in due course. In broader
terms, the studies described here have uncovered a new entry
to aza-PdII intermediates via N@O oxidative addition. Given

Scheme 2. Key mechanistic observations.

Table 2: Carbamate protected heterocycles by 6- and 7-exo aza-Heck
cyclization.

[a] Et3N (300 mol%) was used. Alkene geometry of substrates: 2o, Z ; 2p,
Z ; 2q, Z ; 2r, 3:1 Z :E ; 2s, E; 2 t, E ; 2u, E ; 2v, E ; 2w, E ; 2x, E.
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the now broad utility of oxime ester derived imino-PdII

intermediates,[10, 21] application of this unusual initiation
mode[9] in the design of other redox neutral C@N bond
formations can be anticipated.
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