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Abstract: Arginine kinase (AK) plays a crucial role in the survival of Daphnia magna, a water flea and
a common planktonic invertebrate sensitive to water pollution, owing to the production of bioenergy.
AK from D. magna (DmAK) has four highly conserved histidine residues, namely, H90, H227, H284,
and H315 in the amino acid sequence. In contrast to DmAK WT (wild type), the enzyme activity of
the H227A mutant decreases by 18%. To identify the structure-function relationship of this H227A
mutant enzyme, the crystal 3D X-ray structure has been determined and an unfolding assay using
anilino-1-naphthalenesulfonic acid (ANS) fluorescence has been undertaken. The results revealed
that when compared to the DmAK WT, the hydrogen bonding between H227 and A135 was broken
in the H227A crystal structure. This suggests that H227 residue, closed to the arginine binding site,
plays an important role in maintaining the structural stability and maximizing the enzyme activity
through hydrogen bonding with the backbone oxygen of A135.

Keywords: arginine kinase; protein crystal; X-ray diffraction; circular dichroism spectroscopy;
structural stability

1. Introduction

Daphnia magna, a model organism of water fleas and a common planktonic inverte-
brate [1], is widely used as an experimental subject because it is highly sensitive to toxicants
and has a fast-breeding cycle [2]. Some studies on the relationship between cyanobacteria
and zooplankton have shown that cyanobacteria suppress zooplankton growth, reproduc-
tion, and survival by producing the toxin microcystin [3]. However, recent studies have
revealed that Daphnia clones are adapted to environments containing toxic cyanobacteria
and are resistant to algal abundance [4,5]. Based on these results, researchers suggested
that D. magna resists toxic cyanobacteria by energy coupling through the upregulation of
arginine kinase (AK) [6].

AK belongs to the phosphagen kinase family and acts as an energy modulator when
bioenergy is required in invertebrate cells, by reversibly converting phosphoarginine and
ADP to L-arginine and ATP [7].

Arginine phosphate + Mg·ADP− + H+ Arginine kinase↔ phosphate + Mg·ATP2− (1)

Arginine is an essential amino acid for all living organisms and acts as a substrate for
nitric oxide synthase in the citrulline-NO cycle and arginase in the urea cycle [8]. In addition,
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recent studies have been conducted on environmental stress in Callinectes sapidus [9], oxida-
tive stress in Trypanosoma cruzi [10], cadmium acclimation in Eriocheir sinensis [11], abiotic
stress, including heavy metals, temperature, pesticides, and herbicides in Apis cerana [12],
and pH stress in Patinopecten yessoensis [13]. These studies have provided evidence that AK
is an important indicator of stress response in various species.

In structural aspects, both AKapo and AKholo have been shown to consist of two
domains, an arginine interacting in the N-terminal domain and ATP in the C-terminal
domain (Figure 1) [14,15]. The conformational changes between open and closed forms
depended on substrate binding. Interestingly, AKs have highly conserved amino acid
residues around the active site, as reported in previous studies [16–20]. Their function
has been elucidated using a mutagenesis study, based on which it was suggested that
the conserved amino acids have a close relationship with enzyme activity and structural
stability [17,19–24]. Recently, four highly conserved histidine residues located far from
the active site have been identified by Rao et. al. [25]. The study uncovered that among
the highly conserved histidine residues (H90, H227, H284, and H315) located around the
active site of DmAK, H284 contributes to the activity through the formation of a hydrogen
bonding network independent of structural stability.

Figure 1. Substrate binding-dependent conformational changes in Limulus polyphemus AK. The struc-
ture of AK has been separated by two domains, N-domain (blue) and C-domain (green). Apoenzyme
has open form (PDB: 3M10, yellow) and holoenzyme has closed form (PDB: 5J99, black) [14,15].

In this study, we report for the first time the crystal structure and stability of the
D. magna arginine kinase (DmAK) H227A mutant, which is close to the L-arginine binding
site. In the enzyme kinetics and stability assay, the H227A mutant revealed a 18% lower
activity and an extremely lower structural stability than the WT. Furthermore, the results
revealed that the hydrogen bonding between H227 and A135 was broken in the DmAK
H227A crystal structure in contrast to the DmAK WT. The breakage of the hydrogen bond
plays a crucial role in structural stability and could help in understanding the bioenergetic
mechanism in D. magna.
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2. Results and Discussions
2.1. Assay of Enzyme Activity and Structural Stability

The values of Km and Kd were measured and calculated for each substrate. Enzyme
kinetics of DmAK WT and H227A were analyzed under optimal conditions as previously
reported by Rao et. al. [25]. The results showed that the activity of DmAK H227A was
slightly lower than DmAK WT in a concentration-dependent manner (Figure 2). Table 1
presents the determination of kinetic parameters, according to which, the Km and Kd
values for L-arginine and ATP had no significant difference between DmAK WT and
H227A. On the other hand, the catalytic efficiencies (Kcat/Km) of L-arginine were 17.27 and
16.42 (mM−1 s−1) and those of ATP were 5.43 and 3.85 (mM−1 s−1) for WT and H227A,
respectively. In DmAK H227A, the catalytic efficiencies were 95.1% and 70.9% for L-
arginine and ATP, respectively, relative to DmAK WT. Vmax and Kcat values for DmAK
H227A were lowered by 18.0% and 17.8%, respectively, relative to those of WT. It appeared
that the activity reduction was not affected by chemical bonding but by structural instability.
Therefore, to decipher the role of H227 accurately, the stability was tested by performing
the ANS assay.

Figure 2. Concentation-dependent enzyme kinetics. Kinetics comparison of DmAK WT (black) and
H227A (red) in terms of enzyme concentration. Data on enzymatic activity were relatively evaluated.

Table 1. Comparison of the kinetic parameters of DmAK WT and DmAK H227A.

Vmax
(µmolpimin−1 mg−1) Kcat (s−1) Km

Arg (mM) Km
ATP (mM) Kd

Arg (mM) Kd
ATP (mM)

DmAK WT 318.4 ± 7.38 3.80 ± 0.09 0.22 ± 0.04 0.70 ± 0.09 2.41 ± 0.34 0.80 ± 0.10
DmAK H227A 261.0 ± 8.61 3.12 ± 0.10 0.19 ± 0.06 0.81 ± 0.13 2.74 ± 0.54 0.68 ± 0.11

For the ANS assay of DmAK WT and H227A, the concentration of GdnHCl solution
was varied from 0 to 1 M and applied as a protein denaturant (Figure 3a). This result
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implied that the H227A mutant had a more hydrophobic region than WT. The fluorescence
intensities of both DmAK WT and H227A increased gradually in the presence of GdnHCl
in a concentration-dependent manner. Interestingly, DmAK H227A presented a greater
variation in the fluorescence intensity than DmAK WT. In addition, the greatest difference
in fluorescence intensity in both DmAK WT and H227A was 2.56-fold at 0.25 M GdnHCl
(Figure 3b). This observation signified that an enormous hydrophobic core exposure
occurred during protein denaturation in the H227A mutant. The protein stability of DmAK
and H227A mutant was investigated by the ANS assay using GdnHCl as a denaturant
agent by applying concentrations up to 1 M. The graphs reported in Figure 3a show the
progressive increment of the ANS fluorescence up to 0.5 M GdnHCl and a decrement at 1 M,
reaching values still higher than those recorded without the denaturing agent. The same
behavior is ascertained for DmAK WT. The determined curves are not unfolding curves
but show an increment of the fluorescence signal by exposing the proteins at the specific
concentrations of GdnHCl. A structural effect induced by GdnHCl was suggested, which
does not seem like denaturation; indeed the sign reduced at higher GdnHCl concentrations.
To better investigate the structural effect, we determine the effect of the mutation on protein
stability by CD spectroscopy.

In the far-UV region of the CD spectra, the secondary structure of DmAK WT and
H227A was monitored from 190 nm to 250 nm. Particularly, the α-helix structure shows
a strong positive maximum at 192 nm and two negative minimums at 208 and 222 nm.
Comparing the CD signals, DmAK H227A at 222 nm shows a steady reduction by serial
GdnHCl concentrations (0, 0.125, 0.25, and 0.5 M), in contrast, DmAK WT shows a decrease
in CD signal over 0.25 M after a momentary increase from 0 to 0.125 M (Figure 3c,d).
Additionally, the absorption intensity of DmAK WT was slightly lower than H227A,
approximately 2.79% of the CD signal at 222 nm, at the 0 M concentration of GdnHCl
(Figure S1, Supplementary Materials). It shows that the α-helix structure of WT is more
stable than H227A.

All DmAK have four histidine residues (H90, H227, H284, and H315; Figure 4) that
were also mutated and assayed by ANS (Figure S2). Four mutants of histidine residues,
except for H227A, did not show significant results. Of the four histidine residues, H227
and H284 were locationally close to the active site of DmAK. In contrary to previously
reported H284A mutant study, H227A mutant had an effect on structural stability but not
on activity [25].

2.2. The Overall Structure of DmAK H227A

The DmAK H227A structure belongs to the C121 space group with unit cell parameters
of a = 78.146 Å, b = 58.209 Å, c = 75.412 Å, and β = 100.48◦. Following the Matthews’s
coefficient calculation, the solvent content and crystal volume per protein weight are 40.47%
and 2.06 Å3 of VM Da−1, respectively. In the final refinement at 1.75 Å, Rwork and Rfree
values of DmAK H227A were 0.181 and 0.224, respectively (Table 2).
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Figure 3. Unfolding assay with ANS fluorescence. The maximum fluorescence intensity depending on
GdnHCl concentration. The greatest difference in fluorescence intensity was observed at a GdnHCl
concentration of 0.25 M (a). The unfolding of DmAK WT and H227A was analyzed based on a
GdnHCl concentration of 0.25 M. Each wavelength of the maximum intensity was 480 nm for H227A
and 485 nm for DmAK WT (b). CD spectra of DmAK WT (c) and DmAK H227A (d) were measured
from 190 nm to 260 nm with serial GdnHCl concentrations, 0 M (black), red (0.125 M), blue (0.25 M)
and green (0.5 M), respectively.
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Figure 4. Sequence alignment of four highly conserved histidine residues and the overall structure of
DmAK WT and H227A. Superimposed model of DmAK (PDB ID: 6KY2, cyan color) and DmAK H227A
(PDB ID: 7VCJ, orange color) are shown. The histidine residues are shown as spheres. Sequence logos
for DmAK were generated using the WebLogo3 tool [26].

The overall structure of DmAK H227A had 360 amino acids, 320 water molecules,
and 1 ion each of PO4

3− and NO3
−. Although cocrystallization with ADP and L-arginine

substrates was conducted, their presence was not detected in the DmAK H227A structure.
In the DmAK H227A structure, the N-terminal domain (1–90) was found to consist of
a series of α-helices, and the C-terminal domain (119–356) was observed to contain an
eight-stranded antiparallel β-sheets connected to seven α-helices. In contrast to the DmAK
WTapo structure (PDB ID: 6KY2) [25], eight amino acid residues (A312-E319) in DmAK
H227A, known as a specific loop, linked the 7th and 8th β-sheets, were not modeled [25,27].
However, the overall topology of the DmAK H227A structure showed no significant
difference (Figure 4). The root-mean-square deviation was estimated as 0.326 Å for Cα

atoms in the superposition of DmAK WT and H227A.

2.3. Structural Features of DmAK H227A

The H227 residue was well conserved in other AKs and located in the loop connecting
the 5th and the 4th β-sheets. The NE2 atom of this residue formed a hydrogen bond with
the backbone carbonyl oxygen of A135, as previously reported for the DmAK structure
(Figure 5a) [25]. This hydrogen bond is commonly found in many AK structures, such
as A131-H224 in Apostichopus japonicus [28] and P135-H227 in Scylla paramamosain [29],
P135-H227 in Polybetes pythagoricus [30], P135-H227 in Penaeus vannamei [31] and P135-H227
in Limulus Polyphemus [14], in both the basal and transition states. In the case of the DmAK
H227A structure, the hydrogen bond destruction between A135 and H227, resulted in the
replacement of one water molecule (WAT684) at the imidazole group of histidine position
(Figure 5b). Moreover, the disruption of the hydrogen bond decreased the stability of the
secondary structure of DmAK H227A. Conversely, the hydrogen bonding between H227
and A135 in DmAK WT strongly induced the formation of the secondary structure (short
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helix) of the adjacent amino acids (136FNPCL140, Figure 5a,b), which were highly conserved
in the previously reported AK structures with a high resolution (Figure S3) [23,25,31]. This
short helix slightly increased the distance between the O atom of F136 and the N atom
of L140 from 3.2 Å to 3.5 Å (Figure S4), suggesting that the hydrogen bond connecting
F136 and L140 had weakened. Even though the Cα spiral structure in 136FNPCL140 site
is the same in structure, the H-bond becomes weaker when the distance is far away. It
indicates that the Cα spiral structure in 136FNPCL140 site contains weak α-helical structure
(Figure S4). This reduction in the structural stability of DmAK H227A was consisted with
the results of CD spectroscopy study (Figure 3c,d). Therefore, the stability of the secondary
structure of the FNPCL loop might be dependent on the hydrogen bond.

Table 2. Data collection and refinement.

Data Collection
X-ray source (Detector) PAL 11C µ-MX (Pilatus3 6M)

Wavelength (Å) 0.979490
Space group C121

Unit cell dimensions a, b, c (Å) 78.15, 58.21, 75.41
α, β, γ (◦) 90.00, 100.48, 90.00

Resolution range (Å) 46.40–1.75 (1.78–1.75)
Unique reflections 37,443 (5325)
Completeness (%) 98.4 (98.0)

Multiplicity 3.4 (3.3)
<I/σ(I)> 12.1 (3.3)

Rmeas 0.068 (0.345)
Overall B factor from Wilson plot (Å 2) 13.0

Refinement
Resolution range (Å) 46.4–1.75

Highest resolution shell (Å) 1.75
Completeness (%) 97.9

No. reflections 33,099 (1621)
Rwork/Rfree (%) 18.1/22.4

No. of atoms / residues 3123/360
Protein 2794
Others 329

PO4 5
NO3 4

Water 320
R.m.s. deviations
Bonds length(Å) 0.008
Bond Angles (◦) 1.038

Ramachandran plot
Most favored (%) 97.7

Allowed (%) 2.0
Disallowed (%) 0.3
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Figure 5. Structural comparison around the H227 residue between DmAK WT (a) and DmAK H227A
(b). Compared to DmAK WT, the hydrogen bonding was disrupted in DmAK H227A. DmAK WT
and DmAK H227A are shown in cyan and orange, respectively. The residues (A135, H227, and A227)
and a water molecule are represented as stick and star model, respectively. 2Fo—Fc electron density
maps of A135, A227, and WAT684 of DmAK H227A are represented as blue-colored meshes, each at a
1.0 σ contour.

3. Materials and Methods
3.1. Cloning, Expression, and Purification of DmAK WT and Histidine Mutants

DmAK (GenBank accession No. AID69955.1) was chemically synthesized and ampli-
fied for single-site mutation by the standard PCR (Polymerase chain reaction) method and
modified by the overlap PCR method with the primers (Table 3). On the preferential step
of PCR, the chemically synthesized DmAK gene was partially amplified by the pairs of
primers. DmAK-H90A-F and DmAK-H227A-F were made by pairs of DmAK-NotI-R. And
DmAK-H284-R and DmAK-H315A-R were made by pairs of DmAK-NdeI-F, respectively.
These PCR products, containing mutated gene, was extracted by QIAquick Gel Extraction
Kit (Hilden, Germany, QIAGEN) and utilized to second PCR step as primer with primer
DmAK-NdeI-F (Forward) and DmAK-NotI-R, which didn’t use at first PCR. The mutated
genes, after second PCR, were inserted into the pET30a expression vector (Ipswich, MA,
USA, New England Biolabs) using a restriction enzyme of NdeI and NotI (Kusatsu, Japan,
Takara). The recombinant plasmids of DmAK histidine mutants (H90A, H227A, H284A and
H315A) were induced to express in BL21(DE3) Escherichia coli (E. coli) system with 0.5 mM
isopropyl β-D-1-thiogalactopyranoside (IPTG) (Haarlem, Netherlands, Duchefa Biochemie)
for overnight at 20 ◦C and 170 rpm. The expression and purification of recombinant DmAK
WT and DmAK histidine mutants were performed as previously reported [25]. All ex-
pressed DmAK were successfully purified using HisTrap FF and HiTrap Q FF columns.
The purified fractions were analyzed on 12% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) and gathered for concentration using 10-kDa Centrifugal Fil-
ters (Darmstadt, Germany, Merck) until achieving 10 mg/mL concentration (Figure S5a).
Separated DmAK WT and H227A were transferred to a polyvinylidene fluoride (PVDF)
membrane (Chicago, IL, USA, GE Healthcare). Monoclonal anti-his (Seoul, Korea, BIOMAX)
and Goat anti-mouse IgG F(ab’)2 (horseradish peroxidase-conjugated) (Farmingdale, IL,
USA, ENZO) antibodies were used as primary and secondary antibodies, respectively.
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Signal detection was performed using the enhanced chemiluminescence (ECL) western
detection kit (Chicago, IL, USA, GE Healthcare) (Figure S5b).

Table 3. Primer list for mutation of histidine residues.

Primer Name Sequence

DmAK-NdeI-F 5′-GCACTCCATATGCATCACCATCATCATCATGTGGAC-3′

DmAK-H90A-F 5′-GTGATTACGCCACCGGCTTCAAG-3′

DmAK-H227A-F 5′-ATGAGGAAGATGCCCTGAGAATTATC-3′

DmAK-H284-R 5′-GCAGTGCAATGGCCACTGAGGCCC-3′

DmAK-H315A-R 5′-CTGCTTCCGTGGCCTCACCAGCGGTTC-3′

DmAK-NotI-R 5′-GCACTCGCGGCCGCTTATGCGGCTTC-3′

3.2. AK Activity Test

The optimal conditions of enzyme activity, pH, and temperature were applied as
suggested by previous reports [17,25]. For comparison of the enzyme concentration-
dependent activities, DmAK WT and DmAK H227A were prepared under optimized
reaction conditions. The reaction mixture was composed of 10 mM L-arginine, 3 mM ATP,
and 3 mM magnesium acetate in 100 mM Tris-HCl buffer (pH 8.5) (St. Louis, MO, USA,
Sigma-Aldrich). The concentrated DmAK WT and H227A were added into the 270 µL of the
reaction mixture, and the final concentration of the enzyme was 0, 0.1, 0.2, 0.4, 0.8, 1.6, and
3.2 µM. After allowing to react for 1 min, the reaction was stopped with 2.5% trichloroacetic
acid (TCA) (Seoul, Korea, SAMCHUN CHEMICALS). The mixture was treated on a 100 ◦C
water bath for 1 min, cooled down in ice water for 1 min, and then incubated at room
temperature for 5 min. For the detection of the inorganic phosphate levels, the mixture
was treated with a PDR (phosphate determination reagent) solution [32]. After 1 min of
reaction, sufficient color development was noted, which was then assayed at 660 nm and
room temperature using a UV-Vis spectrophotometer (Männedorf, Switzerland, Tecan). All
measurements were conducted more than thrice with purified DmAK WT and H227A.

3.3. Spectroscopic Measurements

For the protein unfolding assay, 10 µM of DmAK WT and H227A were to the standard
buffer (pH 8.1) depending on the serial guanidine hydrochloride (GdnHCl) (Daejeon,
Korea, LPS Solution) concentrations (0 M, 0.125 M, 0.25 M, 0.5 M and 1 M). After 400 µM
anilino-1-naphthalenesulfonic acid (ANS) (St. Louis, MO, USA, Sigma-Aldrich) was treated,
the mixture was incubated for two hours at 20 ◦C and incubated for another 30 min.
The unfolding data were subsequently analyzed by fluorescence spectra (Männedorf,
Switzerland, Tecan). The excitation was measured at 380 nm, while the emission range
was 400–600 nm. At 0.25 M of Guanidine hydrochloride (GdnHCl), DmAK WT and DmAK
histidine mutants of 10 µM concentration were added to the standard buffer (pH 8.1). The
unfolding assay of DmAK histidine mutants were performed in the same way as DmAK
WT and H227A.

CD (Circular Dichroism) spectra of DmAK WT and H227A were monitored using
JASCO J-1500 spectropolarimeter (Japan, Tokyo, JASCO) from 190 nm to 260 nm with
0.1 nm of data pitch. GdnHCl was added to the final concentration of 10 µM DmAK WT
and H227A, respectively. For measurement, each scan with serial concentrations (0 M,
0.125 M, 0.25 M and 0.5 M) of GdnHCl was conducted by three times of accumulations.
The quartz cell was 1 nm path cell, and scanning speed was 100 nm/min. The optical
system was corrected by blank with buffer of 10 mM Tris, pH 7.0 at room temperature.

3.4. Crystallization and Structural Determination of DmAK H227A

The first trial for the crystallization of DmAK H227A was conducted by hanging drop
vapor-diffusion method with the Grid Screen Ammonium Sulfate kit and Quik Screen
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kit (Aliso Viejo, CA, USA, HAMPTON RESEARCH) at 20 ◦C. Prior to setting up the
crystallization, the protein was prepared in 10–15 mg/mL with 10 mM MgCl2, 0.5 mM
L-arginine, 2.5 mM NaNO3, and 2 mM ADP. The protein sample was mixed with the
reservoir solution in a 1:1 ratio. The initial crystal was obtained from the Grid Screen
Ammonium Sulfate kit of C6 (2.4 M ammonium sulfate, 0.1 M BICINE, pH 9.0) and Quik
Screen of D6 (1.8 M sodium/potassium phosphate, pH 8.2). The best concentration was
deemed to be 1.8 M sodium/potassium phosphate (pH 8.2).

In the hanging drop method, monochronic crystals were grown and sustained for
7 days (Figure S5c). For data collection, the single crystal was frozen in 5% and 10% sucrose
solution as a cryoprotectant in liquid nitrogen sequentially. The crystal was placed under a
cold nitrogen gas stream at 100 K and detected by X-ray analysis. The data were collected at
a wavelength of 0.979490 Å on the Pilatus3 6M detector from Beamline 11C µ-MX at Pohang
Accelerator Laboratory, Pohang, Korea. To avoid excessive overflow during the detection
by X-ray, 90% attenuation was allowed to obtain the diffraction data. The diffraction data
set was gathered by using the XDS package software [33]. The single crystal was diffracted
to 1.75 Å (Figure S5d).

The model of DmAK H227A was obtained by PHASER-MR in ccp4i with DmAK
WT (PDB ID: 6KY2) as a template [25,34]. The DmAK H227A was refined by refmac5 in
ccp4i [35] and fitted by WinCoot. Final refinement was performed by phenix.refine in
PHENIX software [36,37]. The values of Rfree and Rwork were 22.4% and 18.1%, respectively
(Table 2). The structure was validated with the PROCHECK program in ccp4i [38] and
wwPDB OneDep system [39]. The coordinate and structural factors of DmAK H227A were
deposited in the wwPDB with the accession code 7VCJ.

4. Conclusions

To date, many site-directed mutagenesis of AKs in invertebrate have been performed
in highly conserved amino acids (G66, C271 and T273) located in bi-substrates binding
site [17,21,40,41]. The results revealed that the mutants lost both activity and structural
stability. It indicates that role of mutant is determined by closed relationship between
activity and structural stability. Unfortunately, their results did not explain directly the
loss of activity and structural stability at molecular level. Our study of the DmAK H227A
mutant suggests that the reason for the loss of structural stability in the molecular aspect,
which has not been shown in the results of previous AK mutant studies.

In the crystal structure of DmAK H227A, the hydrogen bond disruption between
H227 and A135 resulted in the lowered structural stability of DmAK H227A due to the
weakness of α-helix formation of the FNPCL residues as also shown by CD signal data.
These structural feature of DmAK H227A is also difference with DmAK H284 structure
reported previously (PDB ID: 6KY3). The H284 residue might play the rearrangement of
specific loop when ATP binds to DmAK. The highly conserved H227 residue adjacent to
the arginine binding site affected the structural stability of DmAK, and the turnover (Kcat)
value of H227A decreased by about 17.9% compared to the wild type as shown by the
enzyme kinetic results. We suggest the proposed modalities of structural stability in DmAK
H227A (Figure S6); (i) the mutation of H227A breaks the hydrogen bond between A135
and H227A, (ii) it might induce the weakness of secondary structure in 136FNPCL140 loop
because of the increasing distance of F136 and L140, (iii) the water molecule occupied the
space in which imidazole group of H227 was located. Taken together, the role of the H227
residue could contribute to the regulation of the homeostasis of cellular energy required for
the survival of D. Magna. Therefore, our results provide a clue for the elucidation of the
bioenergetic mechanism of AKs.

Supplementary Materials: The following are available online, Figure S1: CD spectra of DmAK WT
and H227A. Figure S2: Protein unfolding assay of DmAK WT and histidine mutants (H90A, H227A,
H284A, H315A) in 0.25 M of Guanidine hydrochloride (GdnHCl) condition. Figure S3: The highly
conserved FNPCL residues. The FNPCL residues in other AKs are represented by cartoon and sticks
model. Figure S4: The comparison and electron density map of FNPCL between DmAK WT and
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DmAK H227A. Figure S5: The purification, crystallization and data collection of DmAK H227A.
Figure S6: Proposed modalities of structural stability in DmAK H227A.
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Abbrevations

ANS Anilino-1-naphthalenesulfonic acid
ATP Adenosine triphosphate
CD Circular Dichroism
DmAK Daphnia magna Arginine kinase
ECL Enhanced chemiluminescence
E. coli Escherichia coli
F Forward
GdnHCl Guanidine hydrochloride
IPTG Isopropyl β-D-1-thiogalactopyranoside
SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
TCA trichloroacetic acid
PAL Pohang accelerator laboratory
PCR Polymerase chain reaction
PDR phosphate determination reagent
PVDF polyvinylidene fluoride
R Reverse
WT Wild type
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