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meta-analysis and human macrophage infection

Dylan Sheerin,1,5 Abhimanyu,2,5 Nashied Peton,1,2 William Vo,1 Cody Charles Allison,1 Xutao Wang,3

W. Evan Johnson,3 and Anna Kathleen Coussens1,2,4,6,*

SUMMARY

Current and previous tuberculosis (TB) increase the risk of COVID-19 mortality
and severe disease. To identify mechanisms of immunopathogenic interaction be-
tween COVID-19 and TB, we performed a systematic review and patient-level
meta-analysis of COVID-19 transcriptomic signatures, spanning disease severity,
from whole blood, PBMCs, and BALF. 35 eligible signatures were profiled on
1181 RNA-seq samples from 853 individuals across the spectrum of TB infection.
Thirteen COVID-19 gene-signatures had significantly higher ‘‘COVID-19 risk
scores’’ in active TB and latent TB progressors compared with non-progressors
and uninfected controls (p<0$005), in three independent cohorts. Integrative sin-
gle-cell-RNAseq analysis identified FCN1- and SPP1-expressing macrophages
enriched in severe COVID-19 BALF and active TB blood. Gene ontology and pro-
tein-protein interaction networks identified 12-gene disease-exacerbation hot
spots between COVID-19 and TB. Finally, we in vitro validated that SARS-
CoV-2 infection is increased in human macrophages cultured in the inflammatory
milieu of Mtb-infected macrophages, correlating with TMPRSS2, IFNA1, IFNB1,
IFNG, TNF, and IL1B induction.

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the first novel pandemic of the 21st

century, with a global case fatality rate of 2.2% by the end of 2020 (Hasan et al., 2021), and rates of severe

disease now dramatically reduced by vaccines and novel therapies. By comparison, tuberculosis (TB), simi-

larly a respiratory-acquired infection and humanity’s longest continuing pandemic, causes approximately

10 million annual cases, and has a mortality of 12–20%, the upper bound including those HIV-co-infected

(World Health Organization, 2021a). TB’s high mortality persists despite a vaccine that reduces infant mor-

tality and antibiotics which have reduced mortality from roughly 50% in the pre-antibiotic era, and which

still exists for drug-resistant TB. In 2020, TB and COVID-19 are estimated to have each killed roughly

two million people with the number of people dying from TB increasing for the first time since 2005 (World

Health Organization, 2021a; World Health Organization, 2021b).

With an estimated quarter of the world’s population infected with Mycobacterium tuberculosis (Mtb), TB

has remained a relatively silent killer during the COVID-19 pandemic; with the socioeconomic and health

systems impacts of COVID-19 lockdowns estimated to result in an additional 6.8 million TB cases and 1.4

million TB deaths between 2020 and 2025 (Stop TB Partnership, 2020b; Zumla et al., 2020). Of growing

concern to the global health community is case studies and population level data indicating TB patients,

and those with latent TB infection (LTBI) or previous TB are at increased risk of severe COVID-19 (Boulle

et al., 2021; Liu et al., 2020; Motta et al., 2020; Tadolini et al., 2020).

COVID-19 and TB share a symptomatic presentation of productive cough, fever, and shortness of breath,

and clinical parameters of raised C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), D-Dimer,

interleukin (IL)-6, leukopenia, and neutrophilia. The similarity in clinical parameters and aspects of under-

lying immunological reactions suggests co-infection will not only complicate diagnostic algorithms, it also

indicates a potentially fatal convergence in immunopathogenesis. To systematically evaluate the risk
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posed by existing or previous TB infection on COVID-19 outcomes and vice versa, the Global Tuberculosis

Network (GTN) coordinated a meta-analysis of clinical outcome of 767 TB-COVID-19 patients across 34

countries. They determined a high mortality rate of 12% in coinfected individuals and warn of a ‘‘cursed

duet’’ requiring immediate attention (The TB/COVID Global Study Group, 2021).

To develop contextually appropriate treatment and risk mitigation interventions in communities where the

syndemic potential for co-infection is high, we urgently need to understand whether the increased risk of

severe COVID-19 disease and mortality identified for current and previous TB is associated with an overlap

in mechanism of immunopathogenesis. The primary aim of this study was to determine whether individuals

with existing TB infection, defined as those with symptomatic active TB and those with asymptomatic latent

infection who were found to progress to symptomatic TB over 2 years, share a whole blood transcriptional

signature which distinguishes COVID-19 patients with severe compared with mild disease. The secondary

aims were to identify cellular populations and the functional pathways which contributed to the overlap-

ping signatures of immunopathogenesis, to inform potential therapeutic mitigation strategies, and vali-

date detrimental interactions via in vitro infection.

The impact of dual infection is best assessedby comparing the effect of one pathogen on the immune response

before and following a subsequent co-infection event. In the absence of data from longitudinal studies where

samples are available fromMtb-infected individuals before andduring SARS-CoV-2 infection, we first wanted to

test whether transcriptional signatures of increased risk of severe COVID-19 exist in Mtb-infected individuals,

before co-infection, which will inform data acquired from future prospective longitudinal cohorts of acquired

co-infection. We therefore conducted a systematic review of whole blood (WB), peripheral bloodmononuclear

cell (PBMC) and bronchoalveolar lavage fluid (BALF) signatures associated with COVID-19 clinical severity and

performedameta-analysis againstWBRNA-seqdata from individuals across thespectrumof asymptomatic and

symptomatic TB infection. This was complemented with an integrative single-cell (sc)RNA-seq comparison be-

tweenCOVID-19 andTBpatients and gene set enrichment analysis (GSEA) to identify cellular and systems level

convergence of immunopathogenesis. Our findings suggest that subclinical and active TB (ATB) may increase

the risk of severe COVID-19 disease because of increased abundance of circulating myeloid subpopulations

also found in the lungs of severe COVID-19 patients. Shared myeloid and platelet-associated oxidative stress

pathways of immunopathogenesis suggests that SARS-CoV-2 co-infection could also trigger progression of

subclinical to active TB andwe identify 12 gene exacerbation hotspots as potential therapeutic targets for treat-

ing co-infection. Finally, we demonstrate thatMtb infection induces ACE2 and TMPRSS2 expression in human

macrophages, that SARS-CoV-2 infection is increased in humanmacrophages co-incubated in the inflammatory

milieu fromMtb-infectedmacrophages, andthis correlateswith inducedexpressionofTMPRSS2, IFNA1, IFNB1,

IFNG, IL1B, and TNF.

RESULTS

COVID-19 signature meta-analysis in TB

The hypothesis that WB transcriptomic signatures present in those with existingMtb infection will increase

risk of severe COVID-19 and that immunopathogenic overlap during co-infection will increase the likeli-

hood of asymptomatic latent/subclinical TB progressing to active disease was evaluated using a combina-

tion of transcriptomic data from COVID-19 patients and WB RNA-seq data from studies of TB disease pro-

gression on which the COVID-19 signatures were evaluated. Following systematic review of the published

and preprint manuscripts, nine COVID-19 studies met inclusion criteria (Table 1, Figures S1 and S2) (Aru-

nachalam et al., 2020; Hadjadj et al., 2020; Huang et al., 2020; Liao et al., 2020; Silvin et al., 2020; Wei

et al., 2020; Wen et al., 2020; Wilk et al., 2020; Xiong et al., 2020) and were used to generate 35 tissue-level,

cell-level, or pathway-level signatures of varied severity risk for evaluation (Table S1). AWB influenza micro-

array dataset (Table 1)(Dunning et al., 2018) was used to generate a respiratory viral control signature by

contrasting healthy controls with H1N1 patients. Funnel plot analysis was used to assess any publication

bias in selected studies (Figures S3).

The curatedTBData package (Wang, 2020), which includes 48 publicly available TB RNA-seq datasets, was

used to identify eligible WB TB datasets, that included individuals who progressed to TB during the dura-

tion of study follow-up, with RNA-seq data at baseline and time of diagnosis, and patient-level meta-data

including time to TB progression. Three prospective TB cohort studies encompassing 853 individuals and

1181 samples, at various time points, were eligible for comparison (Figure S2 and Table 2) (Singhania et al.,

2018; Suliman et al., 2018; Zak et al., 2016).
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COVID-19 signatures were first evaluated in the TB combined observational and prospective cohort (TCC),

including 293 individuals from the UK (London and Leicester) and South Africa, and 414 time-point samples

(Singhania et al., 2018). Out of the 35 COVID-19 signatures profiled, 20 were significantly associated

(p<0$005) with higher COVID-19 risk scores in TB patients and recent TB contacts who progressed to TB

over 1-2 years (i.e., with subclinical TB), compared with UK latently infected individuals (Table S2). By com-

parison to another respiratory infection, the pneumonic influenza signature score centered on zero across

the TB spectrum (Figure 1).

The mild/moderate and severe COVID-19WB signatures (Hadjadj et al., 2020) (Figure 1) showed significant

differences in COVID-19 risk scores between ATB and LTBI (p<0$00001 and p<0$005, respectively) while

the critical COVID-19 signature generated a comparatively lower risk score in the TB groups, but was

Table 1. Characteristics of COVID-19 studies used to derive signatures for COVID-19 risk profiling on tuberculosis datasets

Study Tissue

Sequencing

platform Cohort Severity

Eligible

signatures Signature type

Wilk et al.,

(2020)

PBMCs Seq-Well 7 patients hospitalized

with confirmed COVID-19

(all male, aged 20-80

+ yrs.), 6 healthy controls

3 COVID-19 patients

were on ventilation and

diagnosed with ARDS;

4 were less severely ill

patients. Samples collected

2-16 days following

symptom onset

4 Monocytes, NK cells,

‘‘activated granulocytes’’,

and interferon sensitivity genes

Huang et al.,

(2020)

PBMCs 10X

Chromium

8 active disease patients,

2 cured patients, 3 healthy

controls, and non-COVID-

19 patients

Active disease patients: 1

critical case, 1 severe case,

6 moderate cases. Non-

COVID-19 patients: 1 case

of influenza A, 1 case of

acute pharyngitis, and 1

case of cerebral infarction

1 Interferon

Wen et al.,

(2020)

PBMCs 10X

Chromium

10 recovering patients

(5 male, 5 female, aged

40-70 years), plus

healthy controls

5 early-recovery stage (ERS)

and 5 late-recovery stage

(LRS) patients, classified by

days between blood sampling

date and negative qPCR

5 Monocytes, NK cells,

CD4 T cells, CD8 T

cells, B cells

Liao et al.,

(2020)

BALF 10X

Chromium

6 COVID-19 patients (5

male, 1 female, median age:

49.5), 8 previously reported

healthy lung controls

3 severe, 3 mild 6 Macrophages (G1–G4),

CD8 T cells

Xiong et al.,

(2020)

BALF and

PBMCs

MGISEQ-

2000

3 COVID-19 patients

and 3 healthy controls

No severity

information provided

2 PBMC and cytokine

Hadjadj

et al., (2020)

Whole

blood

nanoString

nCounter

50 COVID-19 patients

with a spectrum of

disease severity

15 mild/moderate,

17 severe, and 18 critical

5 Interferon sensitivity genes,

whole blood, mild/moderate,

severe, critical

Wei et al.,

(2020)

PBMCs 10X

Chromium

4 COVID-19 patients Patients sampled before,

during, and after ICU care

4 Inactivated monocytes, classical

monocytes, T cells, B cells

Silvin et al.,

(2020)

Whole

blood

10X

Chromium

3 COVID-19 patients

and 3 healthy controls

1 mild, 2 severe patients

sampled at day 0 and day 10

3 Monocytes, neutrophils,

whole blood

Arunachalam

et al., (2020)

PBMCs 10X

Chromium

7 COVID-19 patients

and 5 healthy controls

No severity information

provided for scRNA-seq

samples

5 PBMC, moderate, severe,

intensive care unit, blood

transcriptional module

Dunning

et al., (2018)

Whole

blood

Illumina

GenomeStudio

131 influenza patients,

155 healthy controls

Not applicable 1 Whole blood

ARDS, acute respiratory distress syndrome. BALF, bronchoalveolar lavage fluid; ICU, intensive care unit. NK, natural killer. PBMC, peripheral blood mononuclear

cells. scRNA-seq, single cell RNA sequencing. See also Figures S1, S2, and S3 and Table S1.
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significantly higher in the Leicester ATB cases vs LTBI (p<0$0001). COVID-19 disease severity blood tran-

scriptional module (BTM) signatures (Silvin et al., 2020) included genes involved in interferon (IFN) re-

sponses and antigen processing and presentation and clearly separated ATB patients from all others

(P<0$0001).

Of the 20 scRNA-seq immune cell population signatures profiled, innate immune cell signatures gener-

ated the highest COVID-19 risk scores in active and progressive TB. The classical monocyte signature

(Wei et al., 2020) found to be drastically increased in ICU cases of COVID-19, yielded the most signifi-

cantly increased risk scores between latent and active TB (p<0$0001). The COVID-19 WB neutrophil

signature (Silvin et al., 2020) was most significantly increased in active vs latent TB (p<0$0001). The

lung macrophage subpopulations associated with severe disease in bronchoalveolar lavage fluid

(BALF) from COVID-19 patients (Liao et al., 2020) also showed high risk scores; in particular, the FCN1hi

(monocyte-derived macrophages (MDM), G1), FCNloSPP1hi (pre-fibrotic macrophages, G2), and interme-

diary G1/2 macrophages.

Conversely, the majority of adaptive immune cell signatures (CD4+ and CD8+ T cells) were higher in

LTBI and TB contacts who did not progress to TB (Figure 1). Of the ten COVID-19 signatures that

were not associated with a significantly higher COVID-19 risk score in ATB, seven originated from

T cells and B cells and were enriched in mild vs. severe COVID-19 in the original studies. In general,

T cell populations are depleted during severe COVID-19 infection (Liao et al., 2020; Wei et al., 2020;

Wen et al., 2020) and a lower COVID-19 risk score for these signatures in the active and progressive

TB patients could reflect a similar peripheral depletion of these populations in TB. In patients recov-

ering from COVID-19 (Wei et al., 2020), their monocyte signature was associated with the early recov-

ery stage during persistence of hyperinflammation, whereas the NK cell, T cell, and B cell signatures

were enriched in the late recovery stage, likely explaining the low COVID-19 risk scores associated

with these later signatures in ATB.

Assessing COVID-19 risk scores after further stratifying the Leicester TB contacts and ATB index cases by

the phenotype of index case TB (pulmonary [PTB] or extrapulmonary [EPTB]) revealed higher COVID-19 risk

Table 2. Characteristics of the TB datasets used to profile COVID-19 risk from COVID-19 immune cell and pathway signatures

Dataset Setting

Samples

included

Study

design Population Sampling

TB case

definition

Follow-up

duration

and method

TB contacts

cohort (TCC)

(Singhania

et al., 2018)

London, UK 54 (21 active

TB, 33 LTBI

non-progressors)

Cohort HIV-negative

adults (18–78

years) TB cases

and TB contacts

Baseline TB: Culture

confirmed or

clinically diagnosed

LTBI: QFT positive

1.9 years

(IQR, 1.7–2.2)

Cape Town,

South Africa

47 (16 active

TB, 31 LTB

non-progressors I)

Leicester, UK 313 (53 active TB,

23 progressors,

118 LTBI non-

progressors, 119

healthy non-progressors)

Cohort HIV-negative

individuals (16–84

years) TB cases

and TB contacts

Baseline plus

serial for a

sub-set

TB: Culture-confirmed

or GeneXpert MTB/RIF

positive LTBI:

QFT positive

13 months,

active

Adolescent

cohort study

(ACS) (Zak et

al., 2016)

Cape Town,

South Africa

355 (110 progressors,

245 matched non-

progressors)

Nested

case-control

HIV-negative

adolescents (12–18

years) with latent

TB infection

Serial (0, 6,

12, and

24 months)

TB: Intrathoracic

disease with 2

positive smears or

1 positive culture

LTBI: QFT positive

2 years,

active

Grand Challenges

6 (GC6) (Suliman

et al., 2018)

The Gambia

South Africa

Ethiopia

412 (98 progressors,

314 matched non-

progressors)

Nested

case-control

HIV-negative

individuals (8–60

years) household

pulmonary TB contacts

Serial (0, 6,

and 18

months)

TB: Culture confirmed

or clinically diagnosed

LTBI: QFT positive

2 years,

active

LTBI, latent TB infection; QFT, QuantiFERON-TB. See also Figure S2.
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scores in PTB vs EPTB patients and that TB progressors who were contacts of PTB, had higher COVID-19

BALF and WB signature scores closer to time of TB diagnosis (Figure 2 and Table S3).

Thirteen signatures having significantly higher COVID-19 risk score (adjusted p<0$005) in at least two ATB

groups, compared with LTBI, were selected for validation in two additional prospective TB progressor

RNA-seq datasets: the ACS (Zak et al., 2016) and GC6 (Suliman et al., 2018) cohorts, including 153 and

407 individuals, respectively (Table S4). Both datasets exhibited the same trend of increased COVID-19

risk score for all 13 signatures in individuals with LTBI who progressed to TB vs. those who did not (p%

0$01), whilst scoring a zero median for the influenza signature (Figure 3 and Table S4). The COVID-19

IFN signatures (Hadjadj et al., 2020; Huang et al., 2020; Wilk et al., 2020) were associated with the greatest

difference in COVID-19 risk score between LTBI and TB progressors (p<0$001) in both cohorts. Plotting by

days to TB diagnosis revealed an additional trend of higher risk score associated with proximity to ATB dis-

ease in the ACS cohort (Figure 3A) but not the GC6 cohort (Figure 3B).

Figure 1. Profiling immune cell signatures from COVID-19 patients highlights increasing risk of severe disease associated with progression to

active tuberculosis

COVID-19 immune cell signatures were derived from bulk and single-cell RNA-sequencing (RNA-seq) studies and used to generate putative ‘‘COVID-19 risk

scores’’ from a tuberculosis (TB) whole blood bulk RNA-seq dataset using the TBSignatureProfiler package. TB samples are grouped according to disease

state and COVID-19 signatures were categorized by immune cell or signature type. Scores for each signature were compared by contrasting each group with

the ‘London Latent’ group using a t-test with Bonferroni correction. All signatures were derived from peripheral blood mononuclear cells (PBMCs) unless

otherwise stated in the boxplot title. Each individual signature title is prefixed by the first author of the study fromwhich it was derived. Category colors relate

to cell type, disease, pathway or study first author. WB, whole blood. M, macrophage. BALF, bronchoalveolar lavage fluid. ISG, interferon (IFN)-stimulated

gene. NK, natural killer. ICU, intensive care unit. BTM, blood transcriptional module. Boxplots denote median and 25th to 75th percentiles (boxes) and 10th to

90th percentiles (whiskers). *, p<0$05; **, p<0$005; ***, p<0$0005; ****, p<0$00005. See also Tables 1, 2, S1, and S2.
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COVID-19 lung and TB blood enriched in inflammatory monocyte sub-lineages

Reported similarities between BALF and WB scRNA-seq expression profiles observed in COVID-19 pa-

tients led us to investigate whether the BALF macrophage sub-lineages (Liao et al., 2020) that associated

with COVID-19 risk in ATB patients (Figure 1) could be detected in circulation during TB infection. An in-

tegrated scRNA-seq analysis was performed using publicly available TB scRNA-seq PBMC data (Cai

et al., 2020), consisting of both active and LTBI samples, with BALF scRNA-seq data from COVID-19 pa-

tients of varying disease severity (Figure S4) (Liao et al., 2020). A high concordance was observed between

the immune cell populations present within ATB PBMC and severe COVID-19 BALF after t-distributed sto-

chastic neighbor embedding (tSNE) dimensionality reduction (Figure 4A). Canonical cell type marker

genes were identified for each cluster and assigned to the tSNE plot to identify shared and unique subpop-

ulations (Figure 4B). Three major macrophage sub-lineage markers identified in the original BALF scRNA-

seq analysis, FCN1, SPP1, and FABP4, were separately profiled on the macrophage clusters of the COVID-

19 and TB samples (Figure 4C). The FCN1-expressing pro-inflammatory monocyte-derived macrophage

population was the most abundant of the sub-lineages in severe COVID-19 patients (Liao et al., 2020),

and had highest expression in the TB PBMC, whereas FABP4, an alveolar macrophage subset marker,

was completely absent in TB PBMC. Zooming in on the FCN1-expressing and SPP1-expressing clusters,

Figure 2. Profiling immune cell signatures from COVID-19 patients highlights increasing risk of severe disease among contacts of pulmonary

tuberculosis patients

Scores for each signature were compared by contrasting each group with the contact (extrapulmonary) group using a t-test adjusted for multiple testing

using a Bonferroni correction. WB, whole blood. M, macrophage; BALF, bronchoalveolar lavage fluid. ISG, interferon (IFN)-stimulated gene. NK, natural

killer. ICU, intensive care unit. BTM, blood transcriptional module. Boxplots denote median and 25th to 75th percentiles (boxes) and 10th to 90th percentiles

(whiskers). *, p<0$05; **, p<0$005; ***, p<0$0005; ****, p<0$00005. See also Tables 1, 2, S1, and S3.
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the additional inflammatory markers that were identified for these populations in the original analysis

(CD68, S100A8, CCL2, CCL3, CD14, and CXCL10) were profiled. Both ATB and severe COVID-19 samples

had high expression of these markers (Figure 4D) indicating that pro-inflammatory monocyte sub-lineages

enriched in the lung of severe COVID-19 are abundant in the circulation of ATB patients.

Convergence of enriched pathways in COVID-19 and TB

To gain a greater understanding of synergistic pathogenic mechanisms to inform therapeutic targets for

treating co-infection, a meta-pathway enrichment analysis was performed, using the transcriptomic data

from the Leicester TB (Singhania et al., 2018), the COVID-19 WB scRNA-seq data (Silvin et al., 2020), and

the influenza viral control cohort (Dunning et al., 2018). Among the top 1000 differentially expressed genes

A

B

Figure 3. Risk of developing severe COVID-19 is significantly elevated in patients that progress from latent to

active tuberculosis disease

COVID-19 immune cell signatures that were associated with significant differences in COVID-19 risk score between

controls and progressor/active tuberculosis (TB) cases were validated on two additional whole blood (WB) RNA-

sequencing TB datasets - (A) the Adolescent Cohort Study (ACS) and (B) the Grand Challenges 6 (GC6) study. TB samples

were classified as latent or progressors and COVID-19 signatures were categorized by immune cell or signature type.

Samples from patients that progressed to active TB disease during the study follow-up period are colored and scaled

according to time to TB diagnosis, measured in days and plotted on a log2 scale. Scores for each signature were

compared by contrasting progressors with latent cases using a t-test with Bonferroni correction. All signatures were

derived from whole blood unless otherwise stated in the boxplot title. Boxplots denote median and 25th to 75th per-

centiles (boxes) and 10th to 90th percentiles (whiskers). *, p<0$05; **, p<0$005; ***, p<0$0005; ****, p<0$00005. See also

Tables 1, 2, S1, and S4.
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Figure 4. Macrophage subpopulations upregulated in the lungs of severe COVID-19 patients can also be found in

the circulation during active tuberculosis disease

Single-cell RNA-sequencing (scRNA-seq) data from bronchoalveolar lavage fluid (BALF) of severe COVID-19 patients (n =

6) and peripheral blood mononuclear cells (PBMCs) from patients with active tuberculosis (TB) disease (n = 3) were in-

tegrated.

(A) t-distributed stochastic neighbor embedding (tSNE) plot of integrated scRNA-seq data in the left panel, with cells

from severe COVID-19 patients in guava and those from active TB patients in cyan, with corresponding cell clusters an-

notated based on identified markers in the right panel.
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(DEGs) across all datasets, COVID-19, ATB, and TB progressors shared the greatest overlap, compared

with LTBI or influenza (Figure S5). Comparing the 20 most significant ontologies (Figure 5A and

Table S5), COVID-19 could be distinguished from influenza on the basis of the presence of IFN-g and

TNF response pathways; however, these were both highly enriched in ATB and TB progressors and to a

lesser extent in LTBI. Conversely, LTBI had no enrichment of cytokine production and regulation of innate

immune response, compared with the other disease states. Among the top 100 pathways there were four

major clusters of pathways: 14 pathways shared across all disease states, 39 shared by COVID-19, ATB, TB

progressors and influenza, but not LTBI, 20 shared exclusively with COVID-19, ATB and TB progressors, and

a further nine also shared with LTBI, but not influenza (Figure 5B and Table S6).

To identify key effector genes responsible for the activation of enriched pathways, significant protein-pro-

tein interaction (PPI) network clusters were generated (Figure 5C) using a meta-pathway analysis approach,

identifying enriched Molecular Complex Detection (MCODE) complexes which were then annotated by

gene ontology (GO) (Figure S6 and Table S7). Among the 85 DEGs which were represented in the eleven

identified MCODE networks (Table S8), only nine genes were differentially expressed in influenza of which

only three were shared with COVID-19. Conversely, 33 genes were shared in PPI networks between COVID-

19 and at least one TB state, with 12 of these genes (BCL6, CD74, JNB, LCP1, HLA-A, HLA-DPA1, NCF1,

PSME2, SLC2A3, SPI1, STAT3, and TLN1) enriched in COVID-19, ATB, and TB progressors (Figures 5C

and S7). Antigen processing and presentation (dominated by HLA genes) and epigenetic regulation (domi-

nated by genes encoding histone-related proteins, and epigenetic regulators [e.g., EP300, CREBBP, and

SLC2A3]) were the largest two MCODE networks shared between COVID-19 and active and progressive

TB. Other co-enriched networks in COVID-19 and TB included genes involved in reactive oxygen and nitro-

gen species production (e.g.,NCF1, NCF2, and CYBA), platelet activation (e.g., TLN1, RAC2), cytokine pro-

duction (e.g., STAT1, STAT3, and IL15RA), and transcriptional regulation (e.g., SPI1, BCL6, and JUNB).

Among the top 100 enriched pathways only one pathway, Hallmark of mTORC signaling, was unique to

COVID-19 and absent across the spectrum of TB and influenza (Figure 6A). To explore which of the top

100 enriched pathway DEGs were associated with severity of COVID-19, and assess enrichment in other

diseases, GSEA was used to determine enrichment of three distinct pathway clusters identified, excluding

a fourth pathway cluster that was shared between all diseases (Figure 6A), in a WB bulk RNA-seq dataset

containing samples from moderate, severe and ICU COVID-19 patients (Figures 6B and S8) (Arunachalam

et al., 2020). Pathway cluster one comprising IFN-g response, apoptotic signaling, and B cell activation,

common to COVID-19 and all TB states but absent from influenza, was found to be enriched in all three

COVID-19 disease severity categories with moderate effect size. Conversely, pathway clusters two and

three had larger effect sizes in the more severe COVID-19 disease states (Table S9). Cluster two comprising

complement activation, inflammatory response, apoptotic signaling, T cell receptor signaling, and IFN-g

production, was common across all disease groups, except LTBI. Cluster three comprising platelet degran-

ulation, autophagy, antigen processing and presentation, TNF signaling, IL-6/JAK/STAT3 signaling, and

metabolic response to infection, was shared between COVID-19, ATB, and TB progressors but absent

from LTBI and influenza. Signature profiling was performed on the three cluster-specific DEGs in the UK

and SA TB cohorts. For the three cluster-specific DEGs, groups ranging from TB progressors to ATB

showed significant COVID-19 risk scores compared with the LTBI groups, with cluster three, which contains

the most shared DEGs between COVID-19, ATB, and TB progressors, exhibiting the strongest graded in-

crease in COVID-19 risk scores (Figure 6C and Table S10).

Inflammatory milieu fromMtb-infected human macrophages increases SARS-CoV-2 infection

in vitro

To validate a detrimental inflammatory interaction between existing Mtb infection and subsequent

SARS-CoV-2 infection, the likely sequence of co-infection given a quarter of the world is estimated to

have been infected with Mtb (Houben and Dodd, 2016), we assessed the impact of an Mtb-induced

Figure 4. Continued

(B) Macrophage clusters from the severe COVID-19 patients (left column) and active TB patients (right column), with the

expression of major macrophage subpopulation markers identified in the original COVID-19 study - FCN1, high in G1, low

in G2; SPP1, G2, and G3; FABP4, G4 - highlighted in red.

(C) Violin plots depicting the expression levels of additional inflammatory marker genes associated with the macrophage

subpopulations also present in the TB PBMC data, for each macrophage cluster. Violin plots denote frequency

distribution curves of the 25th to 75th percentiles (shaded) and 10th to 90th percentiles (whiskers). See also Figure S4.
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inflammatory microenvironment on human MDM susceptibility to SARS-CoV-2 infection (Figure 7). Seven-

day GM-CSF-derived pro-inflammatory MDMwere chosen for in vitro infection, given our finding of FCN1hi

pro-inflammatory MDM as the most abundant immune population shared between severe COVID-19 BALF

and PBMC of TB patients in scRNA-seq analysis (Figure 4). MDM were first infected with an Mtb clinical

isolate (MOI 1) for 4 hrs, followed by removal of extracellular Mtb by washing, and cultured up to 48 hrs.

Gene expression of key inflammatory cytokines, ACE2 (SARS-CoV-2 receptor) and TMPRSS2 (key protease

required for spike cleavage and ACE2 engagement) assessed at 24, 36 and 48 hrs to determine the impact

of Mtb infection on MDM susceptibility to SARS-CoV-2 infection and associated inflammatory milieu.

TNF and IL1Bwere significantly increased at all three time points. IFNG had the largest induction of expres-

sion at 24 hrs, which decreased over 36–48 hrs, whereas IFNA1 was significantly increased after 48 hrs, with

a trend for increased expression at 24 and 36 hrs (Figure 7). TMPRSS2 expression was initially decreased by

Mtb after 24 hrs of infection but this steadily increased over time, becoming significantly increased

A B

C

Figure 5. Active TB disease and COVID-19 have similar perturbed pathways and gene networks

(A) Heatmap of the top 20 most significant enriched pathways (p<0.001) from the meta-analysis across the five groups.

Cells are colored by their -log10(p-values), gray cells indicate no significant enrichment for that term/ontology in the

corresponding differentially expressed genes (DEGs) list (see Table S5).

(B) Upset intersection plot showing the number of pathways shared between COVID-19 and the other groups. Wherever

the genes are shared the specific-coloured dots appear below the column bar graph which shows the number of shared

pathways, which are connected by vertical lines, denoting shared categories. The horizontal bars represent the category

gene count and the numbers on the horizontal axes represent the common pathways between the represented category

and COVID-19 (see Table S6).

(C) All MCODE components from a protein-protein interaction (PPI) network analysis of the top 1000 DEG from all merged

gene lists are displayed for the top 10 networks, nodes are displayed as pie charts, color coded by disease group. Cluster

labels are derived from functional labels based on the top three enriched terms for that MCODE cluster (see Figure S6 and

Table S7). Cluster membership is derived from the available gene expression data from the top 1000 DEG in the analysis

(see Table S8 and Figure S7).
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following 48 hrs of infection. At this time,ACE2 expression was also significantly induced byMtb, whereas it

remained unchanged at earlier time points of infection. The delay in ACE2 induction is likely a secondary

signaling response following MDM exposure to the IFN milieu secreted by infected MDM. As such super-

natant was collected from 48hrs Mtb-infected and uninfected control MDM, double-filtered to remove

Mtb, and subsequently used as conditioned media to co-incubate uninfected MDM from the same donors

for a further 48 hrs, followed by 72 hrs SARS-CoV-2 infection.

Following SARS-CoV-2 infection, MDM co-incubated in the conditioned media from the Mtb-infected

MDM exhibited increased SARS-CoV-2 infection as measured by expression of the nucleocapsid gene

N1, in comparison toMDMnot incubated with conditionedmedia or those incubated in conditionedmedia

from uninfected MDM (p<0.034). Increased SARS-CoV-2 infection most significantly correlated with

A B

C

Figure 6. Shared COVID-19 and TB differentially expressed gene clusters correlate with disease severity

(A) Heatmap of the top 100 enriched pathways and three identified gene clusters; circle colors and letters correspond to

the groups that formed part of the cluster: C, COVID-19; A, active TB; P, TB progressors; L, latent TB; F, influenza.

(B) Bubble plot depicting the enrichment of identified cluster differentially expressed genes (DEGs) by COVID-19 disease

severity (see Table S9). The size and shade of the circle correspond to the -log10 q-value.

(C) Boxplots of the gene set variation analysis (GSVA) of COVID-19 scores based on the DEGs of each of the three

identified clusters. Membership of the groups in the cluster is indicated in the circle appearing in the title of each boxplot.

Scores for each signature were compared between each group to the ‘‘London Latent’’ control group using a t-test with

Bonferroni correction (see Table S10). Boxplots denote median and 25th to 75th percentiles (boxes) and 10th to 90th

percentiles (whiskers). *, p<0$05; **, p<0$005; ***, p<0$0005; ****, p<0$00005.
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increased expression of TMPRSS2, IFNA1, and IFNB1 (p<0.00001) as well as IFNG, TNF and IL1B expression

at 72 hrs post-SARS-CoV-2 infection (p%0.006) (Figures 7B and 7C). There was no correlation between

SARS-CoV-2N1 expression and ACE1, ACE2, or IL6 expression in MDM at the same time point (Figure 7C).

DISCUSSION

Substituting TB signatures within the TBSignatureProfiler package with COVID-19 signatures identified

from systematic literature review, we profiled 35 identified transcriptional signatures associated with a

range of disease severities on 1181 whole blood RNA-seq samples from 853 individuals across the TB dis-

ease spectrum. We found that overlapping innate immune cell phenotypes, particularly monocytes, mac-

rophages, and neutrophils, are associated with elevated COVID-19 risk scores in active TB patients and

asymptomatic individuals who progress to TB. COVID-19 risk scores were also more elevated in contacts

of pulmonary TB cases, compared with extrapulmonary TB contacts. We identified FCN1+/SPP1+ macro-

phage sub-lineages that are enriched in the lungs of severe COVID-19 patients in circulation during active

TB. This indicates that critical inflammatory phenotypes which exist in TB patients may exacerbate lung

immunopathology upon SARS-CoV-2 infection. Moreover, we observed a substantial overlap in gene

ontology enrichment and at a systems level, identifying 12 gene-node interaction networks between

COVID-19, active TB, and TB progressors that could serve as disease exacerbation hotspots. Finally, we

validate in vitro in human MDM that co-culturing in the inflammatory milieu from Mtb-infected MDM

A

B C

Figure 7. Mycobacterium tuberculosis infection increases inflammation and susceptibility to SARS-CoV-2

infection in human macrophages

(A) Expression of pro-inflammatory cytokine genes from monocyte-derived macrophages (MDM), infected with

Mycobacterium tuberculosis (Mtb) for up to 48 hrs, as measured by absolute quantitative RT-PCR, with gene copy number

normalized to the housekeeping gene, RPL13A; n = 6 donors, paired two-way ANOVA with Sidak’s multiple-comparison

test.

(B) Quantification of SARS-CoV-2 nucleocapsid protein (N1) and human serine protease (TMPRSS2) gene expression

levels fromMDM incubatedG conditioned media (CM) from uninfected orMtb infected MDM for 48 h, followed by 72 hrs

SARS-CoV-2 infection; n = 4 donors, fold change to no conditioned media treatment was calculated by 2�DDCt relative to

the RPL13A housekeeping gene, Kruskal-Wallis with Dunn’s multiple-comparison test.

(C) Pearson correlation matrix of conditioned media-induced expression fold changes in pro-inflammatory genes and

SARS-CoV-2 N1 from the four donors in B across the three experimental conditions. Data in bar plots are represented as

median G interquartile range; *, p<0$05; **, p<0$01; ***, p<0$001; ****, p<0$0001.
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increases SARS-CoV-2 infection, associated with increased TMPRSS2, type I and II interferon genes, and

TNF expression.

The enrichment of COVID-19 signatures in individuals with asymptomatic subclinical TB who progress to

symptomatic TB over 1–2 years has concerning implications for TB control if induction of immune cell phe-

notypes common to ATB during co-infection promotes subclinical TB progression. The transcriptional

overlap is also likely to decrease specificity of TB RNA-based diagnostic biomarkers, as identified with

other seasonal coronavirus co-infections in the recent CORTIS trial, which tested the efficacy of RNA

biomarker-guided TB preventive therapy (Scriba et al., 2021). SARS-CoV-2 may therefore pose the biggest

threat to ending the TB pandemic since HIV-1 and the modeling increase of 6.8 million extra TB cases in the

next five years predicted to be caused by COVID-19 lockdown measures (Stop TB Partnership, 2020a) may

underestimate the total increase in TB cases if co-infection leads to increased rates of TB progression.

The most compelling overlaps between COVID-19 signatures and the TB datasets reside in the circulating

innate immune cells. Classical monocyte and neutrophil signatures derived from severe COVID-19 patients

were associated with the highest COVID-19 risk scores when profiled across the TB spectrum. Circulating

monocyte activation status is a determining factor for COVID-19 prognosis, with specific phenotypes lead-

ing to poorer outcomes (Zhang et al., 2020). Similar monocyte phenotypes have been detected during TB

(Lastrucci et al., 2015). Conversely, adaptive immune cell populations enriched in milder COVID-19 cases

were associated with lower scores in ATB and progressors, suggesting coinfected individuals are less likely

to experience mild COVID-19.

SARS-CoV-2-infected macrophages are known to accumulate in lungs of patients who died fromCOVID-19

(Yao et al., 2020b). FCN1hi inflammatory-MDMs are abundant in the BALF of severe COVID-19 patients

(Liao et al., 2020), indicating their migration to the lungs from the blood, substantiated by an integrative

analysis between COVID-19 blood and BALF scRNA-seq samples (Silvin et al., 2020). Here, we show that

both the inflammatory FNC1hi and FCN1loSPP1+ sub-lineage signatures had significantly higher WB

RNA-seq risk scores in individuals with active and subclinical TB, compared with individuals with non-pro-

gressing LTBI. Moreover, our integrative analysis of TB PBMC and COVID-19 BALF scRNA-seq samples

showed the presence of these phenotypes in circulation during ATB. In vitro we demonstrate that pro-in-

flammatory humanMDM cultured in the inflammatory milieu fromMtb-infectedMDMaremore susceptible

to increased SARS-CoV-2 infection. We thus hypothesize that the presence of these sub-lineages in the

blood may predispose TB patients to more severe lung disease following SARS-CoV-2 infection.

In support of this hypothesis, scRNA-seq of lung tissue homogenates fromTB-HIV coinfected patients has iden-

tified upregulation of ACE2/TMPRSS2-expressing type II pneumocytes (Ziegler et al., 2020). Consistent with

ACE2 being a type I and II interferon-inducible gene, we identified ACE2 and TMPRSS2 upregulated in

MDM 48 hrs post-Mtb infection, following earlier IFNG and IFNA1 induction. Parallel expression of TNF by

Mtb-infected MDM provides an inflammatory environment of synergistic TNF/IFN-g signaling which has

been shown to potentiate PANoptosis and pathogenetic tissue damage in a COVID-19 mouse model, with

dual TNF/IFN-g antibody blocking treatment preventing SARS-CoV-2 mortality in treated mice (Karki et al.,

2021). We found that COVID-19 could be distinguished from influenza on the basis of the presence of IFN-g

and TNF response pathways, both of which were highly enriched in ATB and TB progressors. Consistent

with this, we also demonstrate upregulation of IFNA1, IFNB1, IFNG, and TNF which correlated with increased

TMPRSS2 expression and SARS-CoV-2 replication in MDM co-cultured in Mtb-induced conditioned media.

IFN-induced transcriptional signatures were among the most significantly upregulated in severe disease in

the studies selected risk profiling (Arunachalam et al., 2020; Huang et al., 2020; Wei et al., 2020; Wilk et al.,

2020) and generated high COVID-19 risk scores among ATB cases. Dysregulation of IFN production

(Acharya et al., 2020; Hadjadj et al., 2020) and the nature of type I and III IFN responses (location, timing,

and duration) in COVID-19 (Broggi et al., 2020; Major et al., 2020) and TB (Cliff et al., 2015) guide disease

progression and outcomes. It is therefore plausible that dysregulation of type I IFN responses during SARS-

CoV-2 co-infection may also have an impact on subsequent TB disease progression.

At a systems level, shared biological pathways showed a graded enrichment of similar pathways between

COVID-19 and active and progressive TB. A PPI-based network analysis identified twelve shared gene-

node interaction networks between COVID-19, and active and progressive TB that could serve as disease
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exacerbation hotspots (Figures 5C and S7, and Table S10), highlighting shared molecular determinants

which could influence clinical outcome during co-infection. The constituent genes are known regulators

of pathways that characterize COVID-19 clinical presentation and thus represent potential targets for ther-

apeutic intervention. Consideration of the efficacy of repurposed drugs in treating co-infected patients in

low resource settings needs to be considered in future trials, with our meta-analysis providing insight into

potential gene therapeutic targets that would require future validation.

We identified enrichment of IL-6-JAK/STAT3 signaling and increased expression of STAT3, particularly in

COVID-19 patients admitted to the intensive care unit (ICU), and active and progressive TB. Conversely, we

found JAK3was not significantly differentially expressed inWB in COVID-19 but had very high expression in

active and progressive TB and very low expression in influenza. The STAT3 inhibitor ST3-H2A2 and JAK in-

hibitor tofacitinib, have both improved pulmonary bacterial clearance in chronic TB models (Maiga et al.,

2015; Upadhyay et al., 2018). Meta-analysis of JAK inhibitors in COVID-19 found recipients had reduced

odds of mortality and ICU admission and increased odds of hospital discharge (Walz et al., 2020). Our re-

sults suggest that STAT3 inhibitors may have better efficacy than JAK inhibitors.

STAT3 regulates the activities of nitric oxide synthase and NADPH oxidase (NOX). We found increased

expression of the NOX complex gene neutrophil cytosolic factor 1 (NCF1) in severe COVID-19 and

active/progressive TB. NCF1 activation of NAPDH and subsequent ROS production requires complexation

with PAD4, whereas inhibition of PAD4 using simvastatin or GSK484, prevents ROS-mediated neutrophil

extracellular trap (NET) formation (Sapey et al., 2019; Zhou et al., 2018). NETs are proposed to contribute

to COVID-19 acute respiratory distress syndrome (ARDS) and coagulopathy, with NET inhibitors proposed

as COVID-19 therapeutics (Schonrich et al., 2020; Sultana et al., 2020). An alternate NCF1 inhibitor, Apoc-

ynin, prevents oxidative stress in diabetic rats (Olukman et al., 2018). Interestingly, metformin, which is

commonly used to treat Diabetes Mellitus and proposed as a host-directed therapy for TB, increases

ROS gene and NCF1 expression (Lachmandas et al., 2019). Our results suggest metformin be avoided in

TB patients with COVID-19. CD74 (HLA-DR-Gamma), the receptor for macrophage inhibitory factor 1

(MIF), also increases pulmonary neutrophil infiltration (Takahashi et al., 2009), and ROS production in TB

(Das et al., 2013). CD74 can be blocked with either MIF antagonist (ISO-1), MIF inhibitors (vorinostat), or

anti-CD74 neutralizing antibodies (Cavalli et al., 2019; Takahashi et al., 2009).

SLC2A3, encoding the glucose uptake transporter GLUT3 and LCP1 (L-Plastin) are induced during hypoxia

by STAT-3-HIF1a signaling and regulate macrophage infiltration (Gerri et al., 2017; Yao et al., 2020a).

Glycolytic reprogramming by GLUT3 is also associated with type 2 macrophage polarization and a

SLCA23-STAT3 feedback loop promotes STAT3 phosphorylation (Yao et al., 2020a). Anticancer agents

vanillin and chaetocin inhibit HIF1a transactivation (Kung et al., 2004; Park et al., 2017), chaetocin also

inhibits STAT3 expression (Yang et al., 2020), and p-STAT3 inhibitor APSTAT3-9R inhibits SLAC2A3 expres-

sion (Yao et al., 2020a), suggesting they have a synergistic benefit in amelioration of STAT3-HIF-1a oxida-

tive stress.

Platelet activation increases glycolysis, mitochondrial depolarization, and ROS production leading to

platelet apoptosis and thrombosis (Garcia-Souza and Oliveira, 2014). Maintaining platelet homeostasis

by balancing mitochondrial oxidative stress is critical to limit coagulopathy (Sapey et al., 2019; Zhou

et al., 2018). BCL-6 which inhibits antiapoptotic proteins BCL-XL and BCL-2 was also upregulated in

COVID-19 and TB disease states, suggesting cancer therapies targeting BLC-6 (such as RI-BPI)(Cardenas

et al., 2017) may possess therapeutic potential. Integrin coactivator Talin-1 (TLN1) was also highly ex-

pressed in COVID-19, active TB, and TB progressors. Talin-1 plays a critical role in activating thrombosis

and neutrophil infiltration via integrin-mediated endothelial transmigration (Garcia-Souza and Oliveira,

2014). Methylation of talin-1 at Lys2454 is required for talin-1 mediated neutrophil infiltration during

LPS-induced endotoxemia, which can be blocked with the methyltransferase EZH2 inhibitor GSK126 (Pet-

rich et al., 2007).

In summary, we show for the first time through large scale meta-analysis of available transcriptomic data

that COVID-19 and TB disease states overlap at the gene, cell, and systems levels. Genes commonly en-

riched in COVID-19 and TB illustrate similarities in immunopathogenesis that may exacerbate disease

severity during co-infection trigger TB progression and decrease biomarker specificity. Selecting thera-

peutic targets shared by COVID-19 and TB may have significant utility in treating co-infected patients to
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not only reduce COVID-19 disease severity but also prevent potential TB progression. With the emergence

of SARS-CoV-2 variants in TB endemic countries showing greater vaccine escape (Fontanet et al., 2021),

new therapeutics with efficacy in treating co-infection are critical.

Limitations of the study

Although several of the preprint manuscripts identified at the beginning of our study have since been pub-

lished in high-impact journals, our COVID-19 signature search was complicated by the limited availability of

supplementary data detailing cell cluster markers or DEG lists. Furthermore, the COVID-19 studies per-

formed to date are confined to small numbers of patients in each group that exhibit interindividual vari-

ability in immune cell phenotypes. We counteracted this limitation by including signatures from multiple

studies for each immune cell population. Although COVID-19 studies originated from France, the US,

and China have been included, the ethnic background of all participants is not described and thus may

not represent the diversity of immunological responses from all populations with high TB prevalence.

We also note that TB exposure has not been described by any of the COVID-19 studies included in the anal-

ysis, so concurrent TB infection cannot be excluded.
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Bondet, V., Chenevier-Gobeaux, C., et al. (2020).
Impaired type I interferon activity and
inflammatory responses in severe COVID-19 pa-
tients. Science 369, 718–724. https://doi.org/10.
1126/science.abc6027.

Hänzelmann, S., Castelo, R., and Guinney, J.
(2013). GSVA: gene set variation analysis for
microarray and RNA-Seq data. BMC Bioinf. 14, 7.
https://doi.org/10.1186/1471-2105-14-7.

Hasan, M.N., Haider, N., Stigler, F.L., Khan, R.A.,
McCoy, D., Zumla, A., Kock, R.A., and Uddin, M.J.
(2021). The global case-fatality rate of COVID-19
has been declining since may 2020. Am. J. Trop.

ll
OPEN ACCESS

16 iScience 25, 104464, June 17, 2022

iScience
Article

https://doi.org/10.1038/s41577-020-0346-x
https://doi.org/10.1126/science.abc6261
https://doi.org/10.1126/science.abc6261
https://doi.org/10.1186/1471-2105-4-2
https://doi.org/10.1186/1471-2105-4-2
http://refhub.elsevier.com/S2589-0042(22)00735-0/sref4
http://refhub.elsevier.com/S2589-0042(22)00735-0/sref4
http://refhub.elsevier.com/S2589-0042(22)00735-0/sref4
http://refhub.elsevier.com/S2589-0042(22)00735-0/sref4
http://refhub.elsevier.com/S2589-0042(22)00735-0/sref4
http://refhub.elsevier.com/S2589-0042(22)00735-0/sref4
http://refhub.elsevier.com/S2589-0042(22)00735-0/sref4
https://doi.org/10.1126/science.abc3545
https://doi.org/10.1126/science.abc3545
https://doi.org/10.1016/j.ebiom.2020.102686
https://doi.org/10.1016/j.ebiom.2020.102686
https://doi.org/10.1158/1078-0432.ccr-16-2071
https://doi.org/10.1158/1078-0432.ccr-16-2071
https://doi.org/10.3390/brainsci9100284
https://doi.org/10.1111/imr.12269
https://doi.org/10.1073/pnas.1301128110
https://doi.org/10.1073/pnas.1301128110
https://doi.org/10.1038/s41590-018-0111-5
https://doi.org/10.1016/s0140-6736(21)00370-6
https://doi.org/10.1016/s0140-6736(21)00370-6
https://doi.org/10.1016/j.biocel.2014.02.015
https://doi.org/10.1016/j.biocel.2014.02.015
https://doi.org/10.1038/ncomms15492
https://doi.org/10.1038/ncomms15492
https://doi.org/10.1126/science.abc6027
https://doi.org/10.1126/science.abc6027
https://doi.org/10.1186/1471-2105-14-7


Med. Hyg. 104, 2176–2184. https://doi.org/10.
4269/ajtmh.20-1496.

Haynes, W. (2013). Benjamini–hochberg method.
In Encyclopedia of Systems Biology, W. Dubitzky,
O. Wolkenhauer, K.-H. Cho, and H. Yokota, eds.
(New York, NY: Springer New York), p. 78. https://
doi.org/10.1007/978-1-4419-9863-7_1215.

Houben, R.M.G.J., and Dodd, P.J. (2016). The
global burden of latent tuberculosis infection: a
Re-estimation using mathematical modelling.
PLoS Med. 13, e1002152. https://doi.org/10.
1371/journal.pmed.1002152.

Huang, L., Shi, Y., Gong, B., Jiang, L., Liu, X.,
Yang, J., Tang, J., You, C., Jiang, Q., Long, B.,
et al. (2020). Blood single cell immune profiling
reveals the interferon-MAPK pathway mediated
adaptive immune response for COVID-19.
Preprint at medRxiv. https://doi.org/10.1101/
2020.03.15.20033472.

Jenkins, D., Zhao, Y., Johnson, W.E., Odom, A.,
and Love, C. (2020). TBSignatureProfiler: Profile
RA-Seq Data Using TB Pathway Signatures.
https://github.com/compbiomed/
TBSignatureProfiler.

Karki, R., Sharma, B.R., Tuladhar, S., Williams,
E.P., Zalduondo, L., Samir, P., Zheng, M.,
Sundaram, B., Banoth, B., Malireddi, R.S., et al.
(2021). Synergism of TNF-alpha and IFN-gamma
triggers inflammatory cell death, tissue damage,
and mortality in SARS-CoV-2 infection and
cytokine shock syndromes. Cell 184, 149–168.e17.
https://doi.org/10.1016/j.cell.2020.11.025.

Kung, A.L., Zabludoff, S.D., France, D.S.,
Freedman, S.J., Tanner, E.A., Vieira, A., Cornell-
Kennon, S., Lee, J., Wang, B., Wang, J., et al.
(2004). Small molecule blockade of transcriptional
coactivation of the hypoxia-inducible factor
pathway. Cancer Cell 6, 33–43. https://doi.org/
10.1016/j.ccr.2004.06.009.

Lachmandas, E., Eckold, C., Bohme, J., Koeken,
V.A.C.M., Marzuki, M.B., Blok, B., Arts, R.J.W.,
Chen, J., Teng, K.W.W., Ratter, J., et al. (2019).
Metformin alters human host responses to
Mycobacterium tuberculosis in healthy subjects.
J. Infect. Dis. 220, 139–150. https://doi.org/10.
1093/infdis/jiz064.

Lastrucci, C., Bénard, A., Balboa, L., Pingris, K.,
Souriant, S., Poincloux, R., Al Saati, T., Rasolofo,
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

SARS-CoV-2 Peter Doherty Institute VIC001

Mycobacterium tuberculosis

lineage 2 clinical isolate

Wellcome Centre for Infectious

Disease Research in Africa

MRC57

Biological samples

Human adult blood Australian Red Cross Lifeblood WEHI HREC #18_09LR;

ARCL HREC #18-11VIC-06, #21-01VIC-02

Chemicals, peptides, and recombinant proteins

DifcoTM Middlebrook 7H9 broth Becton Dickinson Cat#271310

Middlebrook ADC enrichment Becton Dickinson Cat#211887

Tween 80 Sigma-Aldrich Cat#P1754

Dulbecco’s phosphate-buffered saline ThermoFisher Cat#14190144

Glycerol ThermoFisher Cat#17904

DifcoTM Middlebrook 7H10 agar Becton Dickinson Cat#262710

Dulbecco’s Modified Eagle Medium ThermoFisher Cat#12491015

Lymphoprep� StemCell Technologies Cat#07851

RPMI 1640 media ThermoFisher Cat#11875093

L-glutamine Gibco Cat#25030081

Sodium pyruvate Gibco Cat#11360070

Human AB serum Sigma-Aldrich Cat#H6914

Human GM-CSF Miltenyi Biotec Cat#130-093-864

Accutase Sigma-Aldrich Cat#A6964

TRIzol reagent Life Technologies Cat#15596026

Trypsin, TPCK Treated ThermoFisher Cat#20233

Chloroform – isoamyl alcohol mixture Sigma-Aldrich Cat#25666

2-Propanol Sigma-Aldrich Cat#I9516

Sodium acetate Sigma-Aldrich Cat#S2889

Linear Acrylamide Life Technologies Cat#AM9520

Ethanol Sigma-Aldrich Cat#E7023

Critical commercial assays

High Capacity cDNA synthesis kit Applied Biosystems Cat#4368814

Fast SYBR� Green Master Mix Applied Biosystems Cat#4385610

2019-nCoV RUO kit Integrated DNA Technologies Cat#1006713

iTaq Universal Probes One-Step kit Bio-Rad Cat#1725140

CD14 MicroBeads, human Miltenyi Biotec Cat#130-050-201

QuadroMACS� Starting Kit (LS) Miltenyi Biotec Cat#130-091-051

Deposited data

WB influenza microarray dataset (Dunning et al., 2018) GEO: GSE111368

COVID-19 BALF scRNA-seq dataset (Liao et al., 2020) GEO: GSE145926

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

TB PBMC scRNA-seq dataset (Cai et al., 2020) SRA: SRR11038989, SRR11038990, SRR11038991,

SRR11038992, SRR11038993, SRR11038994,

SRR11038995

Leicester TB WB RNA-seq dataset (Singhania et al., 2018) GEO: GSE107994

Adolescent cohort study WB RNA-seq dataset (Zak et al., 2016) GEO: GSE79362

Grand Challenges 6 WB RNA-seq dataset (Suliman et al., 2018) GEO: GSE94438

COVID-19, bulk RNA-seq PBMCs dataset (Arunachalam et al., 2020) GEO: GSE152418

Experimental models: Cell lines

Vero (CCL-81) ATCC ATCC CCL81

Oligonucleotides

Primer: ACE1 forward: GACCTGGTGACTGATGAGGCTG This paper N/A

Primer: ACE1 reverse: CTTGCTGGTCTCTGTGGTGATG This paper N/A

Primer: ACE2 forward: CAAAATGGGTCTTCAGTGCTCTC This paper N/A

Primer: ACE2 reverse: CAAGTAATAAGC

ATTCTTGTGGATTATC

This paper N/A

Primer: IFNA1 forward: AATGGCACAAATGGGAAGAATC This paper N/A

Primer: IFNA1 reverse: CTGAAGAGATTG

AAGGTCTGCTG

This paper N/A

Primer: IFNB1 forward: ACAACAGGTAGTAGGCGACAC This paper N/A

Primer: IFNB1 reverse: GTGGAGAAGCA

CAACAGGAGAG

This paper N/A

Primer: IFNG forward: TGTGGAGACCATCAAGGAAGAC This paper N/A

Primer: IFNG reverse: GACATTCAAGTCAG

TTACCGAATAATTAG

This paper N/A

Primer: IL1B forward: CTGATGGCCCTA

AAACAGATGAAG

This paper N/A

Primer: IL1B reverse: AACAACTGACGCGGCCTG This paper N/A

Primer: IL6 forward: AGACAGCCACTCACCTCTTCAG This paper N/A

Primer: IL6 reverse: AGCATCCATCTTTTTCAGCCATC This paper N/A

Primer: RPL13A forward: CCGGTAGTGGATCTTGGCT This paper N/A

Primer: RPL13A forward: GAAAAAGCGGATGGTGGTTC This paper N/A

Primer: TMPRSS2 forward: GAGAAAGGG

AAGACCTCAGAAGT

This paper N/A

Primer: TMPRSS2 reverse: ACCCTGGCAAGAATCGAC This paper N/A

Primer: TNF forward: CAGGCAGTCAGATCATCTTCTCG This paper N/A

Primer: TNF reverse: CTCTCAGCTCCACGCCATTG This paper N/A

Software and algorithms

Original code This paper, GitHub https://github.com/sheerind-

wehi/CRM_COVID-TB

RStudio (v4.0.2) RStudio Inc. https://www.rstudio.com/

TBSignatureProfiler (v1.6.0) (Jenkins et al., 2020) https://bioconductor.org/packages/release/

bioc/html/TBSignatureProfiler.html

metafor (v3.0.2) (Viechtbauer, 2010) https://metafor-project.org/doku.php

curatedTBData (v1.0.0) (Wang, 2020) https://bioconductor.org/packages/release/

data/experiment/html/curatedTBData.html

CellRanger (v4.0.0) 10x Genomics https://support.10xgenomics.com/single-

cell-gene-expression/software/pipelines/

latest/installation

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead con-

tact, A/Prof Anna Coussens (coussens.a@wehi.edu.au).

Materials availability

This study did not generate unique reagents.

Data and code availability

d RNA-seq data and associated patient metadata are publicly available as of the date of publication.

Accession numbers are listed in the key resources table.

d All original code has been deposited at GitHub and is publicly available as of the date of publication.

DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human blood samples

Acquisition of human blood samples and the experiments that were performed with them were approved

by the Human Research Ethics Committee at the Walter and Eliza Hall Institute (WEHI HREC #18_09LR).

Buffy coats were obtained from anonymous blood donors through the Australian Red Cross Blood Service

(HREC #18-11VIC-06, #21-01VIC-02).

Mycobacterium tuberculosis single cell stock generation

T25 flasks (Sigma Aldrich) containing 10 mL 7H9 (DifcoTM Middlebrook 7H9 broth, Becton Dickinson)/ADC

(Becton Dickinson) media containing 0.05% Tween-80 (Sigma-Aldrich) were inoculated with 500 mL frozen

aliquots of a lineage 2 clinical isolate of Mtb from South Africa. Flasks were incubated at 37�C for 10 days.

Cultures were transferred to 50 mL Falcon tubes (Fisher Scientific) using a serological pipette on day 10

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Seurat (v4.0.0) (Stuart et al., 2019) https://satijalab.org/seurat/

scCatch (v3.0.0) (Shao et al., 2020) https://github.com/ZJUFanLab/scCATCH

limma (v3.50.3) (Ritchie et al., 2015) https://bioconductor.org/packages/

release/bioc/html/limma.html

Metascape (v3.5.0) (Zhou et al., 2019) https://metascape.org/gp/index.

html#/main/step1

MCODE (v2.0.0) (Bader and Hogue, 2003) ftp://ftp.mshri.on.ca/pub/BIND/

Tools/MCODE

Cytoscape (v3.9.1) (Shannon et al., 2003) https://cytoscape.org/index.html

Other

Corning� T25 flasks Sigma-Aldrich Cat#CLS430639

Falcon 50 mL conical centrifuge tubes Fischer Scientific Cat#14-432-22

Glass beads 2 mm Sigma-Aldrich Cat#Z273627

Nunc� MicroWell� 96-Well, Nunclon

Delta-Treated, Flat-Bottom Microplate

ThermoFisher Cat#161093

Nunc� CryoTubes� Sigma-Aldrich Cat#Z763659

96 Well Round (U) Bottom Plate ThermoFisher Cat#143761

Corning� 96-well plate 0.2 PVDF filter membrane Sigma-Aldrich Cat#CLS3508

Phasemaker� Tubes Life Technologies Cat#A33248
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during exponential growth phase. One millilitre of culture was transferred to a 500 mL flask containing

100 mL 7H9/ADC media without Tween-80 and incubated at 37�C for a further 10 days, swirling intermit-

tently after day four. On day 10, 50 mL aliquots were centrifuged at 3000 x g for 5 minutes at room temper-

ature. Supernatants were removed and�10 glass beads (2-3 mm, Sigma-Aldrich) were added to the pellets

and shaken vigorously for 1 minute. Six mL Dulbecco’s phosphate-buffered saline (DPBS, ThermoFisher)

was added to each tube and mixed by inversion before allowing clumps to decant for 10 minutes. The up-

per 5 mL was decanted into a separate tube and centrifuged at 260 x g for 10 minutes at room temperature.

The upper 4.5 mL of supernatant was transferred into a new tube containing 0.5 mL 50% glycerol

(ThermoFisher) and aliquots stored at �80�C. One frozen aliquot was serially diluted in quadruplicate

for plating on three-sector 7H10 (DifcoTM Middlebrook 7H10 agar, Becton Dickinson)/ADC plates for col-

ony forming unit (CFU) determination, incubated at 37�C and counted after 10, 14 and 21 days.

SARS-CoV-2 stock preparation

Vero (CCL-81, ATCC) cells were cultured in T-150 flasks in Dulbecco’s Modified Eagle Medium (DMEM+ 1 g/L

D-glucose, L-glutamine and 110 mg/L sodium pyruvate, ThermoFisher) + 10% heat-inactivated foetal bovine

serum (FBS, Sigma-Aldrich) until confluent. Media was removed and adherent cells were washed twice with

DPBS before replacing with serum-free DMEM. A single 1 mL vial of VIC001 (24/03/21) SARS-CoV-2 stock

(13 106 tissue culture infectious dose 50 [TCID50]/mL, obtained from The Peter Doherty Institute for Infection

and Immunity, Melbourne, Australia) was thawed. Infection media was made up by adding VIC001 stock to

serum-free DMEM to achieve an MOI of 0.01 (1 3 105 TCID50 for �1 3 107 cells) and adding TPCK-treated

trypsin (ThermoFisher) to a final concentration of 1 mg/mL. 2.5 mL of infection media was added to the Vero

cells in the flask after removing the serum-free media and incubated at 37�C with 5% CO2 for 30 minutes.

Twenty millilitres of serum-free DMEM + TPCK trypsin was added to the flask and incubated at 37�C with

5% CO2 for 48 hours or until sufficient cytopathic effect was observed under the microscope.

Vero cells were seeded in flat-bottomed 96-well plates (ThermoFisher) at a density of 13 104 cells/well and

incubated at 37�C with 5% CO2 overnight to achieve confluency. Media was removed from wells and cells

were washed twice with DPBS before replacing with 125 mL of DMEM + TPCK trypsin. Infection media was

removed from the T-125 flask, transferred to a 50 mL Falcon tube and centrifuged at 2000 x g for 5 mins to

pellet the debris. Supernatant was transferred to a separate 50 mL Falcon tube, taking care to avoid the

pellet, and then aliquoted into 1 mL Nunc� CryoTubes� to be stored at �80�C. One aliquot was used

to measure TCID50 of the stock by diluting in 1:7 serial dilutions five times with six replicates in serum-

free DMEM + TPCK trypsin in a round-bottom 96-well plate (ThermoFisher). Twenty-five microlitres of

each dilution was transferred to the appropriate well of the 96-well Vero plate and incubated for four

days at 37�C with 5% CO2. TCID50 values were calculated by scoring wells (positive or negative) for cyto-

pathic effect (CPE) on day four, using the Spearman and Kärber method (Ramakrishnan, 2016).

Monocyte culture

Peripheral blood mononuclear cells (PBMCs) were isolated from buffy coats by density gradient centrifu-

gation with Lymphoprep (StemCell Technologies). Monocytes were isolated from PBMCs using CD14

MicroBeads (human, Mintenyi Biotec) andmagnetic column separation (LS columns, QuadroMacsTM Sepa-

rator, Miltenyi Biotec). Monocytes were differentiated into GM-CSF-polarised monocyte derived macro-

phages (MDMs) by incubation for seven days in RPMI 1640 media (ThermoFisher) + L-glutamine (1 mM,

Gibco) + sodium pyruvate (2 mM, Gibco) + 10% human AB serum (Sigma-Aldrich), in the presence of

5 ng/mL GM-CSF (Miltenyi Biotec) at 37�C with 5% CO2.

Macrophage culture

On day 7, MDMs were harvested using Accutase (Sigma-Aldrich) and seeded in flat-bottomed 96-well

plates at a density of 13 105 MDMs per well in 200 mL RPMI 1640 media + L-glutamine + sodium pyruvate +

5% human AB serum.

METHOD DETAILS

Search strategy, selection criteria and data extraction

A literature search of published and pre-print COVID-19 manuscripts was conducted on the NIH PubMed

and bioRxiv, medRxiv, and SSRN servers uploaded/published between 01/02/20 and 20/09/20 (Figure S1).

We conducted our search of published manuscripts on NIH PubMed using the terms ((COVID-19[Title]))
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AND (single-cell[Title/Abstract]) and pre-print manuscripts on the bioRxiv, medRxiv, and SSRN servers us-

ing the terms (ABSTRACT:"single-cell" OR ABSTRACT:"transcriptome sequencing" OR ABSTRACT:"w-

hole-blood transcriptomic" OR ABSTRACT:"immunophenotyping") AND (TITLE:"COVID-1900) AND

(FIRST_PDATE:[2020-02-01 TO 2020-09-20]) AND (SRC:PPR). We did not apply a lower date restriction

but concluded our search on the 20/09/20. A total of 50 and 65 studies met the published and pre-print

manuscript search criteria, respectively. These studies were further restricted to those conducted in hu-

mans, with sequencing performed onWB, PBMCs, or BALF, and fromwhich DEGs could be obtained either

directly from the text, figures, supplementary data or from publicly available sequence data. Studies which

only included data from patients receiving experimental treatment were excluded. Nine COVID-19 data-

sets (Arunachalam et al., 2020; Hadjadj et al., 2020; Huang et al., 2020; Liao et al., 2020; Silvin et al.,

2020; Wei et al., 2020; Wen et al., 2020; Wilk et al., 2020; Xiong et al., 2020) (Table 1, Figures S1 and S2)

met the inclusion criteria and were used to generate tissue-, cell-, or pathway-level signatures of varied

severity risk (Table S1). An additional WB influenza microarray dataset (Dunning et al., 2018) was down-

loaded from GEO (GSE111368) and was used to generate an influenza virus control signature by contrast-

ing healthy controls with H1N1 patients, serving as a respiratory viral control set.

Inherent publication bias was mitigated as far as possible by selecting all available genes signatures,

arising from all tissue and cell sources, identified in all published manuscripts, including preprints. Due

to the rapid emergence of COVID-19, all results were deemed of scientific interest during the early phase,

reducing the likelihood of positive correlation bias through lack of reporting of negative results. Publication

bias of the identified COVID-19 and influenza signatures were quantitatively assessed by generating funnel

plots that graph the area under the receiver operating characteristic curve (AUC) against the standard error

of the AUC (Figure S3) (van Enst et al., 2014). AUC values were calculated by comparing the performance of

each of the COVID-19/influenza signatures, assessed using the TBSingatureProfiler R package, for each of

seven TB dataset groups compared to the London latent control group (see Table 2, TB contacts cohort).

The Egger’s test was performed as a quantitative measure of asymmetry in the funnel plot, using the The R

packagemetafor (Viechtbauer, 2010). The AUCmetric and corresponding standard error for each group on

each signature were calculated using the R package pROC. Severe asymmetry either side of the overall ef-

fect line in the centre and an Egger’s test p-value <0.05 indicates the possibility of publication bias (Fig-

ure S3). However, as many of these COVID-19 signatures were derived from specific cell populations

they would be expected to show bias towards datasets that arise from disease states that are dispropor-

tionally enriched for those cells. As such the most common signatures with publication bias, representing

disproportionate enrichment of the signatures across the tested TB datasets where MN, BALF and WB

derived, which we identified to be enriched in active and progressive TB disease datasets (Figure 1).

The curatedTBData package (Wang, 2020), which includes 48 publicly available TB RNA-seq datasets, was

used to identify and download eligible TB datasets, that included RNA-seq conducted on WB samples ob-

tained from adolescents or adults, who had LTBI, active TB, and those with LTBI who progressed to TB dur-

ing the duration of study follow-up, with RNA-seq data at baseline and time of diagnosis, and patient-level

meta-data including time to TB progression. Of the ten datasets that were generated using Illumina RNA-

seq from WB (excluded PBMC only, GSE112104), from HIV-negative (excluded HIV-positive, GSE107104)

participants across the spectrum of latent, progressor, and active TB disease (excluded GSE89403 and

GSE107105), five datasets from three studies (Singhania et al., 2018; Suliman et al., 2018; Zak et al., 2016)

remained for signature profiling. These datasets and information on their constituent cohorts are listed

in Table 2.

Profiling for COVID-19 risk

Eligible COVID-19 and influenza control signatures (Table S1) were evaluated independently against the

patient-level TB RNA-seq data, generating individual-sample putative ‘‘COVID-19 risk score’’. To do

this, the 36 COVID-19/influenza signatures were aggregated into an object of class list in RStudio (R version

4$0$2) (R Core Team, 2020). Each signature was used separately to generate the putative ‘‘COVID-19 risk

score’’ by applying a gene set variation analysis (GSVA) (Hänzelmann et al., 2013) with the

TBSignatureProfiler package (Jenkins et al., 2020). GSVA uses enrichment scoring which compares the

rankings of the genes in a particular signature compared to all the other genes in that sample. Briefly,

the composite gene list was mapped onto the gene expression statistics for each condition in the input

TB dataset to generate a single enrichment summary statistic for each sample corresponding to an

increased or decreased risk of COVID-19, depending on how the signatures were defined in the original
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datasets. COVID-19 risk scores were correlated with TB outcomes and a two-sided t-test was used to deter-

mine the significance of these differences, with Bonferroni correction to adjust for multiple testing. A full list

of significance values for each comparison can be found in (Tables S2, S3, S4, and S10).

Single-cell integrative analysis

Single cell RNA-seq integrative comparison was conducted using the identified COVID-19 BALF dataset

(Liao et al., 2020) downloaded from the NIH GEO database (GSE145926) and a TB PBMC dataset (Cai

et al., 2020) downloaded from NCBI Short Read Archive (SRA, SRR11038989-SRR11038995). Datasets

were converted to fastq format using the fastq-dump function from the SRA toolkit and aligned to the

GRCh38 human reference genome and sorted by barcode and the unique molecular identifier (UMI) using

the CellRanger (version 4.0) count pipeline. filtered_feature_bc_matrix.h5 files were read into RStudio us-

ing the Seurat Read10X_h5 function (v3.0) (Stuart et al., 2019). Both datasets were independently normal-

ised before the Seurat FindIntegrationAnchors function was applied to generate a corrected data matrix to

facilitate a joint analysis. A principal component analysis (PCA) was applied to this matrix to scale the data

for tSNE dimensionality reduction (Satija et al., 2015) using the first 20 principal components. Identified

clusters were annotated using a combination of scCatch (Shao et al., 2020) to find marker genes associated

with blood and lung tissues and the cluster markers identified in the original analysis of the BALF dataset

(Liao et al., 2020). The following immune cell markers were derived from this manuscript: CD68, macro-

phages; FCGR3B, neutrophils; CD1C and CLEC9A, myeloid dendritic cells (mDCs); LILRA4, plasmacytoid

dendritic cells (pDCs); KLRD1, NK cells, CD3D, T cells; MS4A1, B cells; IGHG4, plasma cells; TPPP3 and

KRT18, epithelial cells. Three genes - FCN1, SPP1 and FABP4 - were also used to identify the macrophage

subpopulations discovered in the original analysis.

Functional enrichment analysis

The Leicester cohort of the TB combined cohort and the influenza H1N1 data (GSE107994 and GSE111368,

respectively) were chosen to compile TB and influenza DGE lists for use in functional enrichment analyses

on the basis that they consisted of the full spectrum of TB disease states and adequate control samples to

generate disease-specific signatures. Differential gene expression (DGE) analysis was performed using

limma (Ritchie et al., 2015) and a false-discovery rate-adjusted p-value (Haynes, 2013) threshold of <0$05

with an absolute log2 fold-change (LFC) >0$58 was used as a threshold for defining significant genes. A

combined gene list from the WB COVID-19 study (Silvin et al., 2020) was derived from all populations iden-

tified by scRNA-seq and combined into an ‘‘all cell population DEGs’’ table by the authors and provided

with corresponding log2 fold change (LFC) values as a supplementary table. To determine the enrichment

of genes according to disease severity in COVID-19, bulk RNA-seq data from PBMCs grouped according to

COVID-19 severity (Arunachalam et al., 2020) (GSE152418) were obtained and re-analysed for DEGs. To

avoid superficial terms, the top 1000 DEGs (based on q-value cut-off 0$01) from the datasets were used

and the enrichment calculated using the Metascape online pathway analysis portal (https://metascape.

org/gp/index.html#/main/step1) (Zhou et al., 2019). Briefly, upon submission of a multiple gene list, the

lists are merged to a common list, keeping the original membership disease/condition intact. To find sta-

tistically enriched ontology terms the following ontology sources were selected: KEGG, Gene Ontology

Biological Processes, Reactome, Hallmark Gene Sets from MSigDB, Canonical Pathways, CORUM. For

each ontology term a hypergeometric test with Benjamini-Hochberg correction (Haynes, 2013) was per-

formed with a significant threshold corrected p-value <0$01. Accumulative hypergeometric corrected

p-values and enrichment factors (>1$5) were calculated and used for filtering. Remaining significant terms

were then hierarchically clustered into a tree based on Kappa-statistical similarities among their gene

memberships (kappa 0$3 applied as a threshold). A full list of pathways and associated genes can be found

in Table S11.

Protein-protein interaction and gene set enrichment analysis

Input gene lists from the functional enrichment analysis derived from the top 1000 DEGs across disease

states were used to generate a PPI network from the following databases: BioGrid8 (Oughtred et al.,

2019), InWeb_IM (Li et al., 2017), and OmniPath (Türei et al., 2016). Molecular Complex Detection

(MCODE) algorithm (Bader and Hogue, 2003) was used to identify enriched clusters from the merged

network. A GO enrichment analysis was applied to the original PPI network and its MCODE network com-

ponents to assign biological ‘‘meanings’’, where the top three p-value terms were retained. The ten

MCODE networks either with significant DEG or with annotations within the top 100 enriched pathways

for COVID-19 were plotted as gene clusters as defined by MCODE. The shared gene cluster network
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analysis was implemented in Gephi and visualized using Cytoscape (Shannon et al., 2003). Ranked GSEA

was performed using GSEA (version 4$01) (Subramanian et al., 2005) . Genes from the cluster analysis

were used as the gene set input (.gmt file) and LFC-ranked DEGs from the PBMC bulk RNA-seq dataset

(Arunachalam et al., 2020) were profiled for enrichment.

Macrophage infection

MDMs were infected withMtb at an MOI of 1 (13 105 CFU) for 4 hours at 37�C, or left uninfected as control.

Media was removed from all wells after 4 hours and replaced with fresh RPMI complete media for a further

48 hours.Mtb-infected and uninfected MDMs were lysed with TRIzol reagent (Life Technologies) to extract

RNA for gene expression analysis after 24, 36 and 48 hrs. Supernatants from 48 hr Mtb infections (condi-

tioned media) were double filtered (96-well plate 0.2 PVDF filter membrane, Corning) to remove bacteria

and added to uninfected MDMs at a 1:10 dilution. Conditioned media-treated MDMs were incubated for

48 hours at 37�C to induce a ‘‘bystander effect’’. These MDMs were then infected with SARS-CoV-2 at an

MOI of 1 (1 3 105 viral particles) in the presence of TPCK trypsin (ThermoFisher) for 72 hours, after which

MDMs were lysed with TRIzol reagent as above.

RT-PCR

RNA was separated from TRIzol samples using Phasemaker tubes (Life Technologies) with addition of

chloroform:isoamyl alcohol (49:1 v/v, Sigma-Aldrich) and precipitated with isopropanol (Sigma-Aldrich),

sodium acetate (Sigma-Aldrich) and linear polyacrylamide (Life Technologies) at �20�C overnight. Precip-

itated RNA was washed twice with 80% ethanol (Sigma-Aldrich) before final resuspension in distilled H2O

(dH2O). 100-200 ng RNA from MDM was reverse transcribed using High Capacity cDNA synthesis kit

(Applied Biosystems) and real-time RT-PCR was performed with Fast SYBR Green chemistry (Applied Bio-

systems), using 10% cDNA on Viia7 system (Applied Biosystems), with 60�C annealing temperature and 40

cycles. Melt curve analysis was performed to confirm amplicon specificity. Absolute quantification was

carried out for ACE1, ACE2, IL1B, IL6, IFNA1, IFNB1, IFNG, TMPRSS2, TNF using synthesised primers

(Integrated DNA Technologies, IDT) and standard curves generated by serial dilution of target ampli-

con-containing plasmids (pGEM-T easy, Promega), to cover up to 6 logs of amplicon copy number per

microliter and absolute copy number normalized to RPL13A.

SARS-CoV-2 RNA was quantified using a primer-probe qPCR assay for SARS-CoV-2 Nucleocapsid-1 (N1)

(IDT) and an iTaq Universal Probes One-Step Kit (Bio-Rad), according to manufacturers’ instructions. Sam-

ples were run on the Viia7 system using FAM dye set as the reporter and ROX as the passive reference. N1

mRNA Ct values were normalised to housekeeping gene RPL13A and fold change to no conditional media

controls calculated using 2�DDCt.

QUANTIFICATION AND STATISTICAL ANALYSIS

R software was used to perform data and statistical analyses. Statistical details are provided in the respec-

tive figure legends andMethod details sections. The Egger’s test was performed as a quantitative measure

of asymmetry of funnel plots. Two-sided t-test was used to determine the significance of differences be-

tween COVID-19 risk scores, with Bonferroni correction to adjust for multiple testing. TCID50 values

were calculated using the Spearman and Kärber method (Ramakrishnan, 2016). PCR Ct values were normal-

ised to the relevant control values using 2�DDCt. A false-discovery rate-adjusted p-value (Haynes, 2013)

threshold of <0$05 with an absolute LFC >0$58 was used as a threshold for defining significant genes in

DGE analyses. Hypergeometric tests with Benjamini-Hochberg correction (Haynes, 2013) were performed

with a significant threshold corrected p-value <0$01 to determine gene ontology enrichment; accumulative

hypergeometric corrected p-values and enrichment factors (>1$5) were calculated and used for filtering.
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