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ABSTRACT

Motivation: When analysing gene expression time series data, an

often overlooked but crucial aspect of the model is that the regulatory

network structure may change over time. Although some approaches

have addressed this problem previously in the literature, many are not

well suited to the sequential nature of the data.

Results: Here, we present a method that allows us to infer regulatory

network structures that may vary between time points, using a set

of hidden states that describe the network structure at a given time

point. To model the distribution of the hidden states, we have applied

the Hierarchical Dirichlet Process Hidden Markov Model, a non-

parametric extension of the traditional Hidden Markov Model, which

does not require us to fix the number of hidden states in advance.

We apply our method to existing microarray expression data as well as

demonstrating is efficacy on simulated test data.
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1 INTRODUCTION

The analysis of gene expression data in the field of systems biol-

ogy is a challenging problem for a number of reasons, not least
because of the high dimensionality of the data and relative dearth

of data points. A number of approaches have been taken to
inferring regulatory interactions from such data, often using

graphical models or sparse regression techniques (Lèbre, 2009;
Opgen-Rhein and Strimmer, 2007; Schäfer and Strimmer, 2005).

These problems are further compounded by the nature of the
biological systems under consideration, owing to the influence of

unobserved actors that may alter the behaviour of the system.
Often experiments are performed for long periods during which

it is natural to expect the regulatory interactions atwork to change.

The time scales of regulatory responses to stimuli often differ from
those of signalling and metabolic responses, and so it may be that

responses to stimuli, aroundwhich experiments areoftendesigned,
take place in several phases each having different time scales.

Previous studies have attempted to address this problem by
introducing changepoints in the time series, allowing the inferred

network structure to differ between the resulting segments of the
time series. For example in Lèbre et al. (2010), a changepoint

model is applied in which Dynamic Bayesian Networks are
inferred for each segment of the time series. However, such

approaches may place strong prior assumptions on the number

of changepoints that can be observed, and do not adjust for the

complexity of the observed data automatically. Instead in

Grzegorczyk et al. (2008), an allocation sampler is used in com-

bination with Bayesian Networks to assign each observation to a

group, but unlike changepoint models, this method treats the

observations as being exchangeable, ignoring the fact that the

data are sequential. The similar methodology in Ickstadt (2011)

uses a more flexible non-parametric prior on group assignments,

applied to the modelling of molecular interactions using

Bayesian Networks, but suffers the same drawbacks in not

recognizing the sequential nature of the data. A solution to the

related, but different problem of inferring networks from mul-

tiple datasets that may vary in their underlying structure owing

to changes in conditions, is presented in Penfold et al. (2012).

By applying a hierarchical model, it is possible to model the

interactions that may be shared for a number of different experi-

mental conditions while also modelling the interactions specific

to certain cases. However, this method treats the whole time

series for a condition as a single static network, rather than

allowing the network structure to change within a time series.
Here, we present a methodology that allows us to infer net-

work structures that may change between observations in a non-

parametric framework while modelling the sequential nature of

the data. To that end, we have used the infinite hidden Markov

model of Beal et al. (2002), also known as the hierarchical

Dirichlet Process Hidden Markov Model (HDP-HMM) (Teh

and Jordan, 2010), in particular the ‘Sticky’ extension of Fox

et al. (2009), in conjunction with a Bayesian network model of

the gene regulatory network structure. The HDP-HMM allows

the number of different states of the network structure to adapt

as necessary to explain the observed data, including a potentially

infinite number of states, of course restricted in practice by the

finite number of experimental observations. In the previous work

of Rodriguez et al. (2010), it was demonstrated that the

HDP-HMM outperforms a Dirichlet Process mixture for

Gaussian graphical models on heterogeneous time series.
We apply our methodology to both simulated data and gene

expression data for Arabadopsis thaliana and Drosophila

melanogaster, demonstrating its effectiveness in detecting

changes in network structure from time series data, and compare

its performance and accuracy to existing methods. We also con-

sider the biological implications of our results and present

hypotheses as to their significance.

2 APPROACH

Given gene expression time series data over m genes at n time

points, we denote the observations as the n�m matrix*To whom correspondence should be addressed.
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X ¼ ðx1, . . . , xnÞ
T, where x

j
¼ ðxj1, . . . , xjmÞ

T, the column vector
of expression levels for each of the m genes at time point j. We
formulate our model as a HDP-HMM, a stochastic process,

whereby a set of hidden states s1, . . . , sn governs the parameters
of some emission distribution F over a sequence of time points
1 . . . n.
Each observation xj is then generated from a corresponding

emission distribution Fð�kÞ, where sj ¼ k. For our emission dis-
tributions, F, we use a Bayesian Network model over the m
variables to represent the regulatory network structures corres-

ponding to each hidden state.

3 METHODS

In the following, we will consider the problem of network inference in a

Bayesian framework, aiming to draw samples from the distribution of the

model parameters �, given some observed data X, P(�jX), known as the

posterior distribution. By application of Bayes rule, it can be shown that

for a given model

Pð�jXÞ ¼
PðXj�ÞPð�Þ

PðXÞ
, ð1Þ

where the term P(X), commonly called the evidence, is constant with

respect to the parameters �, and so Pð�jXÞ / PðXj�ÞPð�Þ. The prior dis-

tribution P(�) over the parameters summarizes our knowledge of the

model parameters before we have observed the data, and so it should

be consistent with any data we could potentially observe.

3.1 The Dirichlet Process

Bayesian non-parametrics aims to ensure that the prior of a model re-

mains appropriate for a wide range of data, allowing the complexity of an

inferred model to adapt in light of the observed data. One particular

Bayesian non-parametric formulation, known as the Dirichlet Process

(an extension of the Dirichlet distribution as described below), has been

used extensively as a prior in clustering and mixture modelling, as it is

able to adapt the complexity of the model to best fit the number of

components in the data, without resorting to schemes such as reversible

jump Markov Chain Monte Carlo (MCMC) (Green, 1995), as used in

Lèbre et al. (2010).

The Dirichlet Process is a non-parametric extension of the Dirichlet

distribution (Gelman et al., 2004), which can be constructed in a number

of ways. Conventionally, the Dirichlet distribution is defined for M di-

mensional vectors x under the constraint that all xi40 and
P
M

xi ¼ 1, and

takes parameters �i, for i 2 1, . . . ,M:

pðxjaÞ ¼
YM
i¼1

x�i�1i : ð2Þ

As the xi sums to one, they can be interpreted as specifying a discrete

probability distribution over a set of outcomes 1, . . . , M. Using the

Dirichlet distribution as the prior for a set of multinomial observations,

�i can be interpreted as the number of a priori observations of outcome i

(Gelman et al., 2004). The Dirichlet Process can then be obtained as the

limit of a symmetrical Dirichlet distribution with dimension M and con-

centration parameters �
M as M!1.

One construction of the Dirichlet Process is the ‘stick breaking’ con-

struction of Sethuraman (1994), whereby an infinite sequence of discrete

probability atoms �� are drawn from the underlying distribution, known

as the base measure. These points are weighted by coefficients �i, that are

defined as

�i ¼ �
0
i

Yi�1
j¼1

ð1� �0jÞ, ð3Þ

with

�0j � Betað1, �Þ, ð4Þ

for some concentration parameter �. The �i can thus be seen as lengths

broken from a stick of unit length, �1 taking a length of �01, �2 taking a

fraction �02 of the remaining stick (which has length) 1� �01 and so on.

Larger values of � will result in smaller values of �0 and thus many atoms

��i with similar weights �i. The distribution of the �i dependent on � is

referred to as � � GEMð�Þ.

Then for a Dirichlet Process with concentration parameter � and base

measure H, written DP(�,H), and G � DPð�,HÞ, we have

G ¼
X1
i¼1

�i��i , ð5Þ

with �i � H and � � GEMð�Þ.
As we will see with the application of the HDP to HMMs, the ability

of Bayesian non-parametric methods to adaptively explain the complexity

of the observed data makes them a valuable tool in the statistical analysis

of data when we wish to make few a priori assumptions.

The HDP is constructed simply by taking a Dirichlet Process as the

base measure of another Dirichlet Process. Then we have that

G0 � DPð�,HÞ, ð6Þ

G � DPð�,G0Þ, ð7Þ

and using the stick breaking construction,

� � GEMð�Þ, ð8Þ

G0 ¼
X1
i¼1

�i��i , ð9Þ

G ¼
X1
i¼1

�i��i , ð10Þ

where �i � H,� � GEMð�Þ and � � DPð�,�Þ. For a derivation of this

form of the HDP, we refer the reader to Teh et al. (2006).

3.2 HDP-HMMs

To model a hidden state sequence that evolves over time, we apply the

methodology first introduced in Beal et al. (2002), whereby a finite state

Hidden Markov Model (HMM), consisting of a set of hidden states

s1, . . . , sn over some alphabet 1 . . .K, is extended so that K !1. In a

classical HMM (Bishop, 2006), the number of states K is typically speci-

fied in advance, and states follow a Markov process, whereby transitions

are made between states with probability �kl ¼ pðsj ¼ ljsj�1 ¼ kÞ so that

the next state in the sequence depends only on the previous state.

The HDP-HMM (Beal et al., 2002; Teh et al., 2006; Teh and Jordan,

2010) instead applies a Dirichlet Process prior to the transition probabil-

ities pk� out of each of the states k, and uses a hierarchical structure to

couple the distributions between the individual states to ensure a shared

set of potential states into which transitions can be made across all of the

p. This allows for an unlimited number of potential states, of course

limited in practice by the number of observed data points.

More formally, each hidden state k possesses a Dirichlet Process dis-

tributed Gk, from which the next state is drawn, and a common (discrete)

base measure G0 is shared between these Dirichlet Processes so that

Gk � DPð�,G0Þ. As a result, transitions are made into a discrete set of

states shared across all of the Gk and drawn from G0. The base measure

G0 is in turn drawn from a Dirichlet Process, G0 � DPð�,HÞ,H being our

prior over parameters for the emission distributions Fk.

Then using the stick-breaking construction of Sethuraman (1994) for

G0 and drawing �l independently from H, we have that G0 ¼
P1

l �l��l ,
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with � � GEMð�Þ, and so Gk ¼
P1

l �kl��l with pk � DPð�, �Þ. The re-

sulting model is outlined in Figure 1. For a comprehensive introduction

to the construction of the HDP-HMM, we refer the reader to the excel-

lent and extensive description in Fox et al. (2009).

However, in a biological system, it ismore realistic to assume that only a

subset of the large variety of potential behaviours of the hidden state se-

quence is relevant, as behaviour such as rapid cycling between states at

adjacent time points would a priori seem to be unlikely to be observed in

most gene expression datasets. Thus, we choose to apply the Sticky

HDP-HMM (Fox et al., 2008, 2009), which introduces an extra parameter

� that biases the prior probability of transitions between states towards

remaining in the current state rather than transitioning to a differing one.

Adding such a prior assumption simply states that we expect the state of

the system to remain the same between successive time points; this is both

parsimonious and would seem to be justified in the case of gene expression

datasets, where we might only expect to observe a small number of tran-

sitions to differing states across the time series.

This modification to the HDP-HMM gives us a model generating

observed data points xj as (Fox et al., 2009)

�j� � GEMð�Þ, ð11Þ

pk�j�,�, � � DP �þ �,
��þ ��k
�þ �

� �
, ð12Þ

sjjsj�1,p � psj�1 �, ð13Þ

� � H, ð14Þ

xjjsj � Fð�sj Þ ð15Þ

3.3 Gibbs sampling for the Sticky HDP-HMM

To sample from the hidden state sequence, we have used a Gibbs sam-

pling procedure (Robert and Casella, 2005) based on the conditional

probabilities for the hidden state si, given the remaining hidden states

s�i as described in Fox et al. (2008), updating each hidden state individu-

ally in a sweep over the n states,

pðsj ¼ kjs�j, �,�, �Þ /

½N�jsj�1k
þ ��k þ ��sj�1 ðkÞ�

N�jksjþ1
þ ��sjþ1 þ ��sjþ1 ðkÞ þ �sj�1 ðkÞ�sjþ1 ðkÞ

�þN�jk� þ �þ �sj�1 ðkÞ

 !

pðXj�jXi� : si ¼ k, i 6¼ j,FkÞ, ð16Þ

where s�j denotes the state sequence s1, . . . , sn excluding sj, N
�j
kl indicates

the number of observed transitions from state k to state l within the

hidden state sequence s�j, and N�jk� the total number of transitions from

state k within s�j.

Briefly, to update the hidden state sequence s, iterating over each j,

pðsj ¼ kjs�j,�, �, �Þ is calculated for all k, and a weighted sample taken

from these to decide the updated value of sj. The full process is described

in Algorithm 1. We use standard vague prior parameters for � and �

(Dunson, 2010), and set � so as to prefer sequences of identical consecu-

tive states. It is possible in principle to further extend the method by

adding priors on the hyperparameters �, � and �, but in most cases,

the HDP-HMM already exhibits the required flexibility without this.

3.4 Bayesian Network emission distributions

To model the regulatory network structure corresponding to the hidden

states of the HDP-HMM, we have applied a Bayesian Network method-

ology to capture the relationships between the genes represented in our

data. Thus, each hidden state has a unique Bayesian Network describing

the interactions occurring between the genes at the time points corres-

ponding to a particular state. Bayesian Networks are probabilistic

models, whereby a directed graph defines the conditional independence

relationships between a set of random variables (Koski and Noble, 2009).

For the model to remain consistent, the graph structure G, with nodes

u 2 NG representing random variables and directed edges ðv, uÞ 2 EG rep-

resenting conditional probability relationships between them, must be

acyclic.

For a given Bayesian network structure, G, and model parameters, �,

the joint distribution pðXjG, �Þ factorizes as a product of local distribu-

tions for each node,

pðXjG, �Þ ¼
Y
u2N

pðx�ujpaGðuÞ, �uÞ, ð17Þ

where for each observation, the value xiu of a node u is dependent on the

values of its set of parent nodes paGðuÞ ¼ fv 2 Njðv, uÞ 2 Gg and some

parameters �u. Here, we have used a Gaussian Bayesian Network

(BGe) model (Geiger and Heckerman, 2002) that allows the variables

to take continuous values and defines the local distributions for each

observation i 2 1, . . . ,m of a gene u as

xiu � N 	u þ
X

v2paGðuÞ

buvðxiv � 	vÞ, 

2
u

0
@

1
A, ð18Þ

with parameters �u ¼ 	u, bu, 

2
u . With a Wishart distribution, the conju-

gate before the multivariate Normal distribution, this simplifies the form

of the resulting equations, and we can calculate the local marginal like-

lihoods p½xujpaGðuÞ� as described in Geiger and Heckerman (2002) and

from these derive the joint probability pðXjGÞ.

Unfortunately, owing to the restriction of the network structure to that

of a directed acyclic graph (DAG), it is difficult to explore the space of

possible network structures. Several MCMC schemes have been pro-

posed, including those of Grzegorczyk and Husmeier (2008) and

Madigan et al. (1995), but performing random walks over DAG network

structures faces the problem that proposing moves that maintain the

DAG structure can be complex and time consuming, and mixing of the

Markov chain can be slow. However, as noted in Friedman and Koller

(2003), a DAG structure G corresponds to a partial ordering on the nodes

and so induces a (non-unique) total ordering, and allows us to perform a

random walk over total orderings of the nodes. This Markov chain

H θk

γ β

α πk·

s0 s1 s2 sn

x1 x2 xn

∞

∞

Fig. 1. The HDP-HMM represented as a graphical model
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efficiently explores the space of possible graph structures, improving the

mixing properties of the chain.

Although this introduces a bias in the prior distribution over graph

structures (Grzegorczyk and Husmeier, 2008), it greatly simplifies the

computational complexity of the MCMC procedure, and such a bias

may be justified by arguments of parsimony, as graphs consistent with

more orderings are more likely to be sampled. Furthermore, the uniform

prior on DAG structures is not uniform over Markov equivalent graphs,

and so also introduces a different kind of bias in the results. Finally, a

trivial modification of the algorithm of Friedman and Koller (2003)

allows for a correction of the bias (Ellis and Wong, 2008). Thus, in our

methodology, we apply the MCMC sampler of Friedman and Koller

(2003) to infer Bayesian Network structures for each hidden state of

the HDP-HMM by sampling over total orderings of the nodes �,

given the data points corresponding to the state in question. It is easy

to calculate the likelihood of an ordering � using the formula given in

Friedman and Koller (2003)

pðXj �Þ ¼
Y
u2NG

X
k2pa�

G
ðuÞ

pðx�u, kÞ, ð19Þ

where pa�G denotes the set of possible parent sets over the nodes of

G consistent with the ordering �. Then we can use a Metropolis

Hastings sampler to sample from the posterior of orderings

pð� jXÞ ¼ pðXj �Þpð�Þ (Ellis and Wong, 2008), by beginning with an

initial ordering and proposing and accepting new orderings �0, distribu-

ted as qð�0 j �Þ with probability according to the Metropolis Hastings

acceptance probability

pacc ¼ min 1,
pðXj �0Þpð�0Þqð� j �0Þ

pðXj �Þpð�Þqð�0 j �Þ

� �
, ð20Þ

over a number of iterations. We choose to propose changes by

swapping nodes in the ordering rather than more complex schemes

such as ‘deck cutting’, as these were found to have little impact on per-

formance in previous studies (Ellis and Wong, 2008; Friedman and

Koller, 2003). Proposals �0� qð�j �Þ are thus drawn by selecting two

nodes within the ordering uniformly at random and exchanging their

positions to produce a new ordering. In the absence of a compelling

alternative, we take the prior over orderings pð�Þ as the uniform

distribution.

Then for our emission distribution for a given state k, we apply a

Bayesian Network ordering �k generating observed data points Xk dis-

tributed as pðXkj �kÞ where by Xk we denote the subset of Xij, including

only rows i corresponding to states si¼ k.

The full method is outlined in Algorithm 1 and combines Gibbs up-

dates of the hidden state sequence with Metropolis Hastings updates of

the node orderings of the Bayesian Networks for each state at every

iteration. To sample hidden state sequences and orderings from the pos-

terior distribution, the algorithm is first run for a number of burn-in

iterations, after which samples are collected. As a single iteration of our

algorithm combines a full Gibbs update sweep along with an update of

the Bayesian Network orderings over a number of Metropolis Hastings

steps, in practice a comparatively small number of iterations of the algo-

rithm are required to reach the posterior. To reduce the computational

complexity of the Bayesian Network inference, we restrict the number of

potential parents of a gene to be �2. Even in such a case, we still face a

large number of possible parent sets, of size
Pm�1
i¼2

i
2

� �
þ
Pm�1
i¼1

i
1

� �
, and so

in the analyses presented below, we restrict our dataset to a subset of

genes of special interest, as is commonly the case in gene expression data

analysis.

Given that the parent set for a given group of genes will be of size

Oðm3Þ, the computational complexity of performing Gibbs sampling over

each of the data points will beOðKnm3Þ, where K is the number of hidden

states.

Finally, once we have inferred the hidden state sequence and generated

a posterior sample of orderings corresponding to each state, we can then

easily sample DAG structures from the posterior by first sampling an

order from the posterior of a given state, and then sampling from the

graphs consistent with this ordering, weighting the choice of parents by

the local scores, and optionally attempting to account for the bias in the

prior as described in Ellis and Wong (2008).

4 RESULTS

4.1 Example—simulated data

To evaluate the efficacy of our method, we generated simulated

data from three different Bayesian network structures and inter-

leaved the data points into a single time series. Applying our

methodology to this data, we then attempted to recover the

hidden state sequence.
Three different Bayesian Networks of 10 nodes each having

random structures and parameters were used, with the restriction

that each node had at most two parents. Such a restriction is

realistic for real world biological networks and reduces the com-

putational complexity of the Bayesian network inference, as the

number of potential sets of parents of each node is greatly

reduced by constraining the search. A total of 100 data points

were used, consisting of a sequence of 25 generated by the first

network, 25 by a second network structure, another 25 from a

third network structure and finally a further 25 data points gen-

erated by the second network structure.
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The Gibbs sampling MCMC scheme outlined in Algorithm 1

was applied over 500 iterations after a 1000 iteration burn in,

with 100 MCMC iterations of the Bayesian network order sam-

pler run on each network structure between each Gibbs sweep.

We performed a comparison of the true hidden state sequence

with the state sequences for the 500 samples from the Gibbs

sampler, and found that our method perfectly recreates the ori-

ginal hidden state sequence, correctly identifying that the net-

work structure is the same between two separate segments of

the time series.
To assess the accuracy of our method, we compared its per-

formance to the Auto Regressive TIme VArying (ARTIVA)

method of Lèbre et al. (2010). Although ARTIVA was able to

infer change points at the appropriate time points for one of the

genes, all of the remaining genes had no predicted changepoints,

despite the fact that their interactions change during the time

series.

4.2 Drosophila melanogaster midgut development gene

expression data

Applying our method to real world gene expression data, we

took the publicly available gene expression dataset of Li and

White (2003), as stored in the Gene Expression Omnibus data-

base (Edgar et al., 2002). This dataset gives tissue specific expres-

sion levels for genes in D. melanogaster midgut at time points

before and after puparium formation, taken at 11 time points. A

subset of genes to analyse was chosen by selecting genes having

the highest variance across the time series, using the genefilter R

package in Bioconductor www.bioconductor.org (Gentleman

et al., 2007; R Development Core Team, 2011). This resulted

in a dataset of 23 genes at 11 time points. This allows us to

apply our approach without having to consider the additional

issues arising from the ‘large- p-small- n’ problem.
The results shown in Figure 2 identify two regions of the time

series having different network structures, with a change occur-

ring after the 0 hour time point at which puparium formation

occurs. This suggests that a different structure of regulatory

interactions is at work during the midgut development after

the puparium formation begins. The networks inferred for each

of the different states are also shown in Figure 2, illustrating a

clear change between differing network structures. A main ob-

jective of this type of approach is to distill new mechanistic

hypotheses from such data, and the temporally resolved and

varying network structures do, indeed, deliver candidates for

further analysis.

Looking at the inferred network structures, e.g. we see a

number of genes whose interaction patterns change over the

course of the time series. Perhaps most interesting amongst

these are the genes Jonah 65Aiv (Jon65Aiv) and Jonah 99Ciii

(Jon99Ciii), which are known to be expressed in the D. melano-

gaster midgut during development (Akam and Carlson, 1985),

but whose function is not fully understood. It appears that Jonah

99Ciii is involved in development before puparium formation,

whereas Jonah 65Aiv develops several interactions after pupar-

ium formation. The gene alphaTry seems to be involved in de-

velopment before and after puparium formation, whereas

nimrod C4 (nimC4) seems to interact only before puparium for-

mation. In addition to this, a number of relatively unknown

genes appear to have differing regulatory interactions between

the time points. Given only gene expression data, it is not feas-

ible, however, to identify potential mechanisms of the changes

taking place, as many different factors may affect the presence or

absence of regulatory interactions. The inferred network struc-

ture before puparium formation is based on a small number of

time points, and so may not be entirely robust. However, such

cases are bound to arise when considering time varying net-

works without a priori knowledge of the time varying structure,

and should be treated as indications that further experimental

work is needed if closer investigation of the network structure is

required.

4.3 Transcriptome of starch metabolism during

A. thaliana diurnal cycle

We have also analysed the gene expression dataset of Smith

et al. (2004), as included in the GeneNet (Schafer and

Opgen-Rhein, 2006) R package (R Development Core Team,

Fig. 2. (Left) Inferred network structure corresponding to the first hidden state. (Middle) Inferred network structure corresponding to the second hidden

state. (Right) Posterior distribution of states at each time point inferred by our method applied to the D. melanogaster midgut development expression

data (Li andWhite, 2003). States are represented by colours, and frequencies of their appearance for each time point in the posterior samples are plotted.

The first state is coloured blue, the second red
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2011). The dataset consists of expression levels for 800 genes

encoding enzymes involved in starch synthesis and in conver-

sion of starch to maltose and Glc, at 11 time points for 12h,

transitioning from dark to light. The first 5 time points were

collected during a dark period after which a switch to a light

period was made, with time points spaced so that expression is

measured at 0, 1, 2, 4 and 8h after the switch to the dark

period, and the same intervals after the switch to the light

period (Smith et al., 2004), as well as a final 24-h time point

at the switch back to the dark period. A reduced subset of the

800 genes in the dataset was selected using the genefilter R

package, as described previously, giving a subset of 40 genes

that were analysed using our method.
In Figure 3, we show the results generated by our method,

clearly indicating two distinct phases within the time series. It

appears that one phase is detected from 1 to 12h, with a second

phase inferred between 13 and 24h that is also represented at

the initial time point. This is consistent with the design of the

experiment, as a change in expression would perhaps not be

expected to be observed immediately at the point at which the

switch between light and dark takes place, but rather later at a

subsequent time point, as is observed here. As the 24-h time

point was taken under the same conditions as the initial time

point, one would expect these two time points to be grouped

together using our method. The networks inferred for the two

different phases, shown in Figure 3, again demonstrate a clear

change in the network structure, with the two networks having

distinct topologies.
Several of the genes, e.g. COL2 and CCA1, appear to interact

both during the light and dark phases, and both are known to be

involved in circadian regulation (Alabadı́ et al., 2001; Ledger

et al., 2001). A gene showing a clear differentiation in its inter-

actions between the dark and light phases is LHY1, with no

interaction inferred during the dark phase, followed by a prolif-

eration of interactions in the light phase. It is known that LHY1

is expressed at peak levels at dawn (Schaffer et al., 1998) and

involved in flowering, and mutants cause late flowering

(Coupland et al., 1998). AFR appears to be regulated by

LHY1 during the light phase, and AFR is known to be involved

in far-red light signalling (The Arabidopsis Information

Resource (TAIR), www.arabidopsis.org).

5 DISCUSSION

From our simulated data, it appears that the HDP-HMM

Bayesian Network sampler we have constructed accurately

infers the hidden state sequences governing Bayesian Networks

that capture how the regulatory organization of a biological

system, here observed at the level of mRNA data, changes

with time. By delivering time-resolved predictions of regulatory

interactions, our method generates biological hypotheses that

can be tested more robustly through the use of e.g. conditional

knock-downs and RNAi. Further to this, network structures that

are adopted for a small number of samples can identify segments

of the time series, focussing on which would improve the model-

ling of the system, thus suggesting experiments that will deliver

increased understanding of the biological system being examined.

The accuracy of our method on test data lends hope that it will

perform well on real world datasets, and the existence of more

sophisticated and demonstrably more efficient samplers indicates

that there is room for even further improvement and computa-

tional efficiency. For example, the beam sampler of Van Gael

et al. (2008) and the Hierarchical Chinese Restaurant Process

formalism of Makino et al. (2011) show improved mixing and

perform better than standard Gibbs samplers, especially on time

series, such as those we examine here where neighbouring states

are likely to be correlated.

We would like to emphasize that it is essential to consider the

fluid nature of regulatory network structures when inferring net-

works from datasets where such change is likely. Performing an

analysis on data using a model with a fixed network structure,

when it is known or believed that the network structure will

change (this possibility should really never be discarded), is in-

herently incorrect, and thus will introduce unnecessary bias into

the results. Although it may be possible to infer correct results

from an incorrect model, it would not seem wise to rely on such

approaches when alternatives exist.
Our methodology crucially accounts for the sequential nature

of the data, something that has previously been ignored

(Ickstadt, 2011; Grzegorczyk et al., 2008), but we feel is crucial

to the modelling of gene expression time series datasets.

Furthermore, our methodology has an advantage over change-

point models that data may be shared between distinct segments

Fig. 3. (Left) Inferred network structure corresponding to the first hidden state. (Middle) Inferred network structure corresponding to the second hidden

state. (Right) Posterior distribution of states at each time point inferred by our method applied to the A. thaliana diurnal cycle expression data (Smith

et al., 2004). States are represented by colours, and frequencies of their appearance for each time point in the posterior samples are plotted. The first state

is coloured blue, the second red
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of the time series sharing the same hidden state when inferring

the network structure—something that is explicitly represented in

our model, but generally omitted in changepoint models such as

ARTIVA. This is especially important in gene expression data

analysis where time points are a scarce and valuable resource.
Although our method is computationally expensive, this

comes purely as a result of the Bayesian Network inference

rather than the HDP prior. The HDP-HMM requires computa-

tion of the likelihood of each state for each timepoint, given the

remaining data, but this requirement is common to all similar

methods. Thus, our method is comparable in cost with other

Bayesian non-parametric methods operating on Bayesian

Networks (Ickstadt, 2011; Grzegorczyk et al., 2008) and scales

similarly. In many circumstances, the performance will be more

robust if the question is sufficiently well formed, as

whole-genome level analyses tend to be plagued by a number

of statistical problems (Lèbre, 2009; Opgen-Rhein and

Strimmer, 2007; Schäfer and Strimmer, 2005) that can be circum-

vented by more focussed analyses. In principle, however, whole-

genome analysis is possible in the HDP-HMM framework.

The versatility of the HDP-HMM means that our method-

ology is applicable not only to time series data where the under-

lying process is divided into distinct contiguous segments, as

would be expected in gene regulatory networks, but also to pro-

cesses describable by a Markov process, e.g. rapidly changing

between a sequence of hidden states with some underlying tran-

sition mechanism. Thus, it may be of use for other problems of

network inference in systems biology outside of the area of se-

quential gene expression time series data, or in other fields where

networks that change with time are encountered. Moreover,

proteomic and other data can be included in the inferential

framework (whence some of the hidden states, for example,

now become part of the observed data too).
Finally, although other methods may require manual specifi-

cation of an appropriate prior distribution on the number of

possible states, taking a non-parametric approach allows our

prior distribution to naturally expand to explain the observed

data as the size and complexity of the data grows. Bayesian

non-parametric methods demonstrably outperform regular

priors in a variety of applications, and we have shown here

their potential in modelling hidden variables in theoretical sys-

tems biology.
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