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Introduction: The fundamental role of the cerebellum in higher cognitive processing

has recently been highlighted. However, inconsistent findings exist in schizophrenia with

respect to the exact nature of cerebellar structural abnormalities and their associations

with cognitive and clinical features.

Materials and Methods: We undertook a detailed investigation of cerebellar lobular

volumes in 40 patients with first-episode psychosis (FEP) and 40 healthy controls (HCs)

using the spatially unbiased atlas template of the cerebellum (SUIT). We examined the

functional significance of cerebellar structural abnormalities in relation to cognitive and

clinical outcomes in patients.

Results: We found that left cerebellar lobules VI and X volumes were lower in FEP

patients, compared to HCs. Smaller left lobules VI and X volumes were associated with

fewer number of categories completed on the Wisconsin Card Sorting Test (WCST) in

patients. In addition, smaller left lobule X volume was related to performance delay on

the Trail Making Test (TMT) Part B in patients.

Conclusion: Our results demonstrate that cerebellar structural abnormalities are present

at the early stage of schizophrenia. We suggest functional associations of cerebellar

structural changes with non-verbal executive dysfunctions in FEP.
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INTRODUCTION

Increasing evidence suggests that the cerebellum is associated with cerebral networks involved in
cognitive and emotional processes, as well as motor control (1–3). Neuropsychological studies
have shown that the cerebellum is associated with major neurocognitive domains such as
processing speed, working memory, verbal fluency, and executive function (4–7). Neuroimaging
studies have further shown that the lateral hemispheres of the posterior cerebellum (lobules
VI–IX) and flocculonodular lobe (lobule X) were associated with cognitive functions, while the
anterior lobe (lobules I-V) was primarily responsible for motor functions (2, 8–10). Although the
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aforementioned neurocognitive domains are known to be
impaired in schizophrenia (11), it is still not fully understood
how these neurocognitive domains are associated with specific
cerebellar volumetric abnormalities in schizophrenia.

To date, the majority of neuroimaging studies in
schizophrenia have reported some aspects of cerebellar
abnormalities, although they are mostly inconsistent. A smaller
whole cerebellar volume has been reported (12–14), but
not replicated (15–17). In fact, Wilke and colleagues have
even reported larger cerebellar volume in patients (18). Of
studies seeking specific cerebellar regional volume deficits in
schizophrenia, smaller volumes in the posterior superior lobe,
such as lobule VI and Crus I/II, have been reported (19–22).
Other studies have also reported smaller volume in the anterior
or posterior inferior lobe, including lobule X (20, 23–25). Yet
again, some studies found larger or no different volume in
such regions (26–29). Relatively few studies have investigated
relationships between cerebellar volumetric differences and
neurocognitive deficits in schizophrenia with varying cerebellar
foci (21, 30–32). Hence, it is yet to be determined whether
cerebellar structure-function relationships are present in
schizophrenia.

Potential reasons for this inconsistency in cerebellar
structural findings in schizophrenia include the use of different
methodological procedures to analyze cerebellar volumes. One
of three methodologies has been used to extract cerebellar
volumes: manual delineation, automated segmentation based
on image normalization to whole-brain template, or automated
segmentation using an isolated cerebellar image. In the absence
of automated segmentation methods, the manual delineation
method was used to measure cerebellar volumes (23, 25, 33).
Later, researchers segmented cerebellar tissues after registering
brain images into a whole-brain standard reference such as the
Montreal Neurological Institute (MNI) template (34). This was
widely adopted into the whole-brain voxel-based morphometry
(VBM) method (35) and FreeSurfer pipeline (36). However, it
had an innate issue of poor alignment of cerebellar structures
across individuals, which limited anatomical details of cerebellar
lobules (37). Thus, it was suggested to use isolated cerebellar
images and a cerebellum-specific template such as the spatially
unbiased atlas template of the cerebellum (SUIT) to improve
the overlap of cerebellar structures across participants (37–39).
Hence, the cerebellum-specific methods are expected to produce
more consistent findings for cerebellar structural abnormalities
in schizophrenia.

One of the other reasons for these inconsistent findings
includes the illness chronicity of patients (40–42). It is critical
to understand whether cerebellar abnormalities are present at
the early phase of this illness, or whether they are associated
with illness progression. However, most previous studies
used a chronic sample of schizophrenia patients, producing
confounding effects due to relatively varying degrees of illness
duration, age, and medication. Like studies of chronic patients,
studies of first-episode psychosis (FEP) patients have reported
that the overall cerebellar gray matter (GM) volume was smaller
compared to healthy controls (HCs) (14, 22). Furthermore,
longitudinal studies have shown a reduced GM volume in

the right cerebellum in high-risk individuals who subsequently
developed schizophrenia (43, 44). Although these studies support
the hypothesis that cerebellar abnormalities are not a result of the
adverse effects from chronic deteriorating course of the illness
or medications, relationships between neurocognitive functions
and cerebellar lobular abnormalities have not been investigated
in FEP.

In the present study, we conducted a detailed investigation
of cerebellar lobules in 40 FEP patients and 40 HCs using
SUIT that retained anatomical details within infra-tentorial
structures. We also wished to examine the functional significance
of cerebellar structural abnormalities in relation to cognitive
and clinical outcomes in patients compared to HCs. Using FEP
subjects, instead of chronic patients, minimizes the confounding
effects resulting from both illness chronicity and long-term
antipsychotic medications on cerebellar structural abnormalities.
We hypothesized that FEP patients would exhibit smaller
volumes in cerebellar lobules, especially in the posterior lobe. In
addition, these structural abnormalities would have correlations
with clinical and neurocognitive function measures in patients.

MATERIALS AND METHODS

Participants
Forty patients with FEP were recruited between April 2010
and June 2016 from a prospective cohort study in the
Seoul Youth Clinic (www.youthclinic.org), a center for early
detection and intervention of individuals at high-risk for
psychosis (45). The diagnosis of FEP was confirmed using the
Structured Clinical Interview for DSM-IV Axis I Disorders,
Patient Edition [SCID-I/P; (46)] by experienced psychiatrists.
All patients had a history of less than 1 year since their
first psychotic episode, which was defined as suffering from a
brief psychotic disorder (N = 1), schizophreniform disorder
(N = 11), schizoaffective disorder (N = 3), schizophrenia
(N = 24), or psychotic disorder, not otherwise specified (N = 1),
according to the DSM-IV-TR criteria. Twenty-nine patients were
treated with antipsychotic medications, while others were not
being medicated. We administered the Positive and Negative
Syndrome Scale (PANSS) (47) and the Global Assessment of
Functioning (GAF) (48) to assess symptom severity and overall
functioning of patients. Forty HCs were recruited through
internet advertisements (Table 1) and screened with SCID-I,
Non-Patient Version [SCID-I/NP; (49)]. Exclusion criteria for all
participants were brain injury or neurological disorders, major
psychiatric disorders other than psychotic disorders, substance
abuse, or Intelligence Quotient (IQ) below 70. After a complete
description of the study was provided to participants, written
informed consent was obtained. The Institutional Review Board
of Seoul National University Hospital approved this study.

Neurocognitive Function Tests
Estimated IQ was obtained using the short form of the Korean
version of the Wechsler Adult Intelligence Scale (WAIS) (50).
A battery of neurocognitive function tests was used to assess
the following neurocognitive domains in all participants: for
cognitive processing speed, the Trail Making Test (TMT) Part A
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TABLE 1 | Demographic and clinical results.

Variables FEP (N = 40) HCs (N = 40) Statistics

N X2 (df) p

Sex (male/female) 18/22 19/21 0.05 (1) 0.823

Handedness (right/left) 34/5 39/1 3.00 (1) 0.083

Mean (SD) T (df) p

Age (years) 22.9 (5.64) 23.13 (5.03) 0.19 (78) 0.851

IQ 98.33 (13.13) 115.68 (10.91) 6.39 (77) <0.001

TIV (L) 1.57 (0.18) 1.57 (0.16) −0.05 (78) 0.958

CPZ equivalent dose

(mg/day)

282.89 (272.49)

Duration of illness

(years)

0.53 (0.39)

GAF 45.95 (9.66)

GAF past year 70.13 (11.86)

PANSS

Positive 16.55 (4.86)

Negative 17.6 (5.47)

General 35.43 (7.23)

Total 69.58 (13.64)

*FEP, first-episode psychosis; HCs, healthy controls; TIV, total intracranial volume; CPZ,

chlorpromazine; GAF, global assessment of functioning; PANSS, positive and negative

syndrome scale.

was used (51); visuospatial memory was assessed using the Rey-
Osterrieth Complex Figure Test (RCFT), consisting of immediate
and delayed recall stages (52); verbal executive function was
assessed in letter and category fluency tasks using the Korean
version of the Controlled Oral Word Association (COWA) test
(53, 54); and the TMT Part B and the Wisconsin Card Sorting
Test (WCST) were administered to assess non-verbal executive
function (51, 55).

Image Acquisition and Processing
All participants were scanned with a 3T Trio magnetic resonance
imaging (MRI) scanner (Siemens Magnetom Trio, Erlangen,
Germany) using a 12-channel head coil at Seoul National
University Hospital. The T1-weighted anatomical image
was acquired using magnetization-prepared rapid gradient
echo (MPRAGE) imaging (echo time [TE]/repetition time
[TR] = 1.89/1670ms, field of view [FOV] = 250mm, flip
angle = 9◦, matrix = 256 × 256, voxel size = 1.0 × 1.0 × 1.0
mm3, 208 slices). The time required to acquire the T1 image was
234 s.

Structural T1 images were preprocessed using the SUIT
toolbox (37) implemented in the Statistical Parametric Mapping
toolbox version 12 (SPM12; http://www.fil.ion.ucl.ac.uk/spm/).
The images were segmented into GM, white matter (WM),
and cerebrospinal fluid (CSF) using the unified segmentation
algorithm (56). The cerebellum and brainstem were then isolated
and normalized into a study-specific template using the Dartel
algorithm that applied tissue segmentation maps (57, 58). Lastly,
the images were resliced into the SUIT space using flow field and
affine transformation matrix.

Based on the structural images registered into the SUIT space,
we calculated volumes of all 28 cerebellar lobules. In addition to
the SUIT processing, T1-weighted images were processed using
FreeSurfer v.5.3.0 to obtain cerebellar hemispheric GM/WM
volumes and total intracranial volume (TIV) (59).

Statistical Analyses
All statistical analyses were performed using SPSS, version
23 (IBM, Armonk, N.Y.). Demographics and neurocognitive
function scores were compared between FEP and HCs using two-
tailed independent samples t-test. To assess influence of IQ on
neurocognitive function, we additionally conducted ANCOVA
with IQ as a covariate for tests of neurocognitive differences.

One-way analysis of covariance (ANCOVA) with TIV as a
covariate was conducted between FEP and HCs on cerebellar
hemispheric and each of the 28 cerebellar lobular volumes.
As previous studies suggested a possibility of sex differences
in cerebellum abnormalities in schizophrenia (26, 60), we
also conducted subgroup analyses of cerebellar lobular volume
differences between FEP and HCs by sex. We addressed the
problem of false positives during multiple comparisons based
on the weighted multiple testing correction, which approximates
multivariate normal distribution using correlation matrix (61,
62). The method of multiple comparisons correction assumes (1)
that test statistics are asymptotically distributed as multivariate
normal with known correlation matrix and (2) that the statistical
power depends on the assigned weights and the extent of
correlation among endpoints (62).

In each of the groups, we conducted partial correlation
analyses between cerebellar volumes and neurocognitive
functions, using TIV as a covariate. In the patient group, the
partial correlations between cerebellar volumes and clinical
outcomes were also analyzed with TIV as a covariate. We further
conducted linear regression analyses with each neurocognitive
function as a dependent variable, with group, cerebellar volume,
TIV, and group-by-volume interaction term as predictors.
The results of the analyses were not adjusted for multiple
comparisons.

RESULTS

Demographic and Clinical Characteristics
Demographic and clinical variables are shown in Table 1. There
were no significant differences between patients and HCs for sex,
age, or handedness. However, FEP patients had lower estimated
IQ than HCs [t(77) = 6.39, p < 0.001]. The two groups did not
differ significantly in TIV.

Neurocognitive Functions
As shown in Table 2, FEP patients showed delayed reaction
time (RT) in the TMT Part A [t(64) = −4.54, p < 0.001]
and Part B [t(47) = −4.10, p < 0.001]. The accuracy of both
immediate [t(72) = 2.69, p< 0.01] and delayed recall [t(69) = 3.44,
p < 0.01] of the RCFT were lower in FEP patients. Both letter
[t(72) = 4.81, p < 0.001] and category [t(72) = 6.02, p < 0.001]
verbal fluency scores of the COWA were significantly lower in
FEP patients. In addition, patients also had more perseverative
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TABLE 2 | Comparisons of neurocognitive functions between FEP patients and

HCs.

Variables FEP HCs Statistics

Mean (SD) T (df) p Cohen’s d

TMT

Part A RT 29.62 (9.94) 21.05 (6.16) −4.54 (64) <0.001 1.04

Part B RT 84.23 (45.25) 52.73 (15.64) −4.10 (47) <0.001 0.93

RCFT

Immediate recall 11.49 (3.80) 13.63 (2.93) 2.69 (72) <0.01 0.63

Delayed recall 11.26 (3.73) 13.86 (2.75) 3.44 (69) <0.01 0.79

COWA

Letter 32.72 (11.10) 44.6 (10.04) 4.81 (72) <0.001 1.12

Category 31.46 (7.75) 42.91 (8.63) 6.02 (72) <0.001 1.40

WCST

Perseverative errors 13.15 (10.12) 8.83 (3.99) −2.49 (49) <0.05 0.56

Categories completed 5.44 (1.21) 5.9 (0.63) 2.13 (57) <0.05 0.48

*FEP, first-episode psychosis; HCs, healthy controls; TMT, Trail Making Test; RCFT, Rey-

Osterrieth Complex Figure Test; COWA, Controlled Oral Word Association Test; WCST,

Wisconsin Card Sorting Test.

errors [t(49) = −2.49, p < 0.05] and less categories completed
[t(57) = 2.13, p < 0.05] on the WCST compared to HCs. All
the neurocognitive functions, other than category fluency of the
COWA [F(1,71) = 10.49, p =.002], were no longer significantly
different when we adjusted IQ as a covariate.

Cerebellar Hemispheric and Lobular
Volumetric Comparisons
We found no group differences in left and right cerebellar
hemispheric GM/WM volumes. As can be seen in Figure 1, we
observed significantly smaller GM volumes in FEP patients in
left lobule VI [F(1,77) = 6.66, corrected p < 0.05] and left lobule
X [F(1,77) = 6.77, corrected p < 0.05], when controlling for
TIV. Full details on between-group differences including trend
level findings are presented in Table 3. There was a significantly
smaller volume in vermis lobule VI [F(1,34) = 6.90, corrected
p < 0.05] when comparing male subjects between patients and
HCs, while none of the cerebellar lobules were different in female
subjects.

Correlation and Regression Analyses
Symptom severity was not associated with left lobe VI or X
volume in patients. Smaller left lobule VI volume was associated
with lower categories completed scores on the WCST in patients
(r = 0.38, p < 0.05). Smaller left lobule X volume showed
associations with delayed RT on the TMT Part B (r = −0.51,
p < 0.01) and less categories completed on the WCST (r = 0.39,
p < 0.05) within FEP patients. All the correlations observed
in FEP patients were not found in HCs. Nonetheless, smaller
left lobule VI volume was associated with delayed RT on
the TMT Part A in HCs (r = −0.40, p < 0.05). Additional
results of correlations between volumes of cerebellar regions
(that produced non-significant between-group differences) and
neurocognitive functions are presented in Tables S1, S2.

The results of regression analyses with HCs serving as a
reference group are as follow. We found effects of group

(Beta = −6.26, p < 0.01) and group-by-volume interaction of
left lobule VI (Beta = 6.02, p < 0.05) on categories completed
scores on theWCST, in which the interaction result indicated that
FEP patients with larger left lobule VI volume had less impaired
function in the WCST categories completed. The categories
completed scores were also significantly predicted by group
(Beta = −2.05, p < 0.05) and group-by-volume interaction of
left lobule X (Beta = 1.84, p < 0.05) effects. In addition, group
(Beta= 3.01, p < 0.001) and group-by-volume interaction of left
lobule X (Beta = −2.61, p < 0.001) effects were variables that
significantly predicted TMT Part B RT. The results of interaction
terms of left lobule X indicated that FEP patients with larger
volume of the region had less impaired functions in the WCST
categories completed and TMT Part B. Full results of group-by-
volume interaction effects of cerebellar regions (that produced
non-significant between-group differences) on neurocognitive
functions are presented in Table S3.

Within the patient group, volumes of left lobule VI and Xwere
not significantly correlated with medication (chlorpromazine
equivalent dose) (ρ = −0.28, p = 0.086; ρ = 0.03, p = 0.852),
duration of illness (r = 0.04, p = 0.835; r = −0.22, p = 0.19), or
IQ (r=−0.21, p= 0.214; r= 0.26, p= 0.115). However, age and
duration of antipsychotic treatment had a significant negative
correlation with left lobule VI (r = −0.36, p < 0.05; r = −0.34,
p < 0.05), but not with left lobule X (r = −0.03, p = 0.876;
r =−0.27, p= 0.103) volume.

DISCUSSION

The present study examined the volume of each cerebellar
lobule using SUIT in FEP patients and HCs. Our findings
confirmed cerebellar volumetric abnormalities in FEP patients.
FEP patients had specific volume deficits in the left lobule
VI of the posterior superior lobe and left lobule X of the
flocculonodular lobe. Furthermore, we observed that smaller
volumes in these cerebellar regions were significantly associated
with non-verbal executive functions, measured by both the
TMT and WCST. Thus, this study provides evidence for altered
cerebellar morphology and its associations with neurocognitive
deficits in the early phase of schizophrenia.

We found smaller cerebellar GM volume in left lobule VI of
patients, which was consistent with previous findings in both
FEP patients (20) and chronic schizophrenia (3). Our finding of
smaller left lobule VI volume together with executive dysfunction
in FEP is important because it is line with previous functional
neuroimaging studies showing an association between left lobule
VI and executive function (63). Furthermore, recent functional
connectivity studies have indicated that lobule VI is part of the
ventral attention network (VAN) implicated in stimulus-driven
attentional control (1, 64, 65). The association between smaller
left lobule VI volume and neurological soft signs (NSS), which
are subtle neurological abnormalities associated with cognitive
impairments (66), in schizophrenia also supports the role of left
lobule VI in neurocognitive deficits in the patients (22, 67, 68).
We suggest that smaller left lobule VI volume could lead to
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FIGURE 1 | Volumetric differences of cerebellar lobules between FEP patients and HCs. (A) Regions of interest (ROIs) were selected from 28 cerebellar lobules using

the SUIT cerebellum atlas, and ROIs of left lobules VI and X that significantly differed between groups are shown in the figure. (B) Cerebellar volumes of left lobules VI

and X are smaller in FEP patients compared to HCs.

executive dysfunction due to a disruption of VAN and contribute
to the generation of NSS in schizophrenia.

We observed smaller left lobule X volume, which was
consistent with previous cerebellar structural studies with FEP
(20) as well as with chronic schizophrenia patients (3). Lobule X
(i.e., flocculonodular lobe) is phylogenetically the oldest portion

of the cerebellum and coordinates balance and movement
via the vestibular system (69–71). Contrary to the traditional
concept of the vestibular system, recent studies have shown
evidence that vestibular dysfunction is related to impairments
in executive functions, such as attentional set-shifting and
cognitive inhibition (72–74). For example, Bigelow et al. showed
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TABLE 3 | Differences in cerebellar lobular volumes between FEP and HCs.

Lobules FEP HCs Statistics

Mean (SD) F p Corrected p η
2

LEFT HEMISPHERE (cm3)

I-IV 3.04 (0.22) 3.10 (0.20) 2.02 0.159 1.000 0.03

V 4.61 (0.27) 4.70 (0.24) 2.47 0.120 0.993 0.03

VI 10.38 (0.46) 10.67 (0.53) 6.66 0.012 0.049 0.08

Crus-I 13.34 (0.72) 13.52 (0.65) 1.45 0.232 1.000 0.02

Crus-II 9.60 (0.57) 9.63 (0.34) 0.09 0.772 1.000 0.00

Vllb 5.07 (0.30) 5.17 (0.18) 3.25 0.075 0.895 0.04

Vllla 5.26 (0.29) 5.37 (0.21) 3.6 0.062 0.829 0.05

Vlllb 3.96 (0.36) 3.98 (0.22) 0.18 0.675 1.000 0.00

IX 2.86 (0.49) 3.02 (0.34) 2.77 0.100 0.969 0.04

X 0.52 (0.07) 0.57 (0.07) 6.77 0.011 0.046 0.07

RIGHT HEMISPHERE (cm3)

I-IV 3.45 (0.19) 3.51 (0.21) 1.54 0.218 1.000 0.02

V 4.50 (0.21) 4.52 (0.23) 0.05 0.825 1.000 0.00

VI 9.18 (0.38) 9.34 (0.55) 2.4 0.125 0.996 0.03

Crus-I 13.56 (0.79) 13.94 (0.74) 4.93 0.029 0.535 0.06

Crus-II 9.35 (0.61) 9.53 (0.39) 2.37 0.128 0.998 0.03

Vllb 5.36 (0.34) 5.49 (0.19) 4.16 0.045 0.705 0.05

Vllla 4.96 (0.33) 4.99 (0.21) 0.26 0.613 1.000 0.00

Vlllb 3.92 (0.33) 3.91 (0.21) 0.06 0.813 1.000 0.00

IX 3.30 (0.42) 3.42 (0.37) 1.79 0.184 1.000 0.02

X 0.42 (0.08) 0.46 (0.06) 5.49 0.022 0.440 0.07

VERMIS (cm3)

VI 1.78 (0.12) 1.84 (0.12) 5.05 0.028 0.522 0.06

Crus-I 0.01 (0.00) 0.01 (0.00) 0.27 0.608 1.000 0.00

Crus-II 0.42 (0.04) 0.42 (0.04) 0.03 0.872 1.000 0.00

Vllb 0.22 (0.02) 0.22 (0.02) 0.19 0.665 1.000 0.00

Vllla 1.25 (0.11) 1.26 (0.09) 0.03 0.856 1.000 0.00

Vlllb 0.60 (0.05) 0.61 (0.06) 0.56 0.457 1.000 0.00

IX 0.79 (0.07) 0.82 (0.07) 4.94 0.029 0.535 0.06

X 0.25 (0.02) 0.26 (0.02) 0.33 0.567 1.000 0.00

*FEP, first-episode psychosis; HCs, healthy controls.

an association between vestibular function and performance
on TMT Part B, which assesses attentional set-shifting (73).
Performance on the Stroop Task, measuring cognitive flexibility
and cognitive inhibition (75), was also associated with vestibular
dysfunction (74). Furthermore, at the whole-brain level, lobule X
is part of the default mode network (DMN) involved in attention
and cognitive shifting (1, 3, 64, 76, 77). Consistent with this,
Kansal and colleagues reported an involvement of lobule X in
attention and cognitive shifting, in cerebellar disorders (10). Our
results of the associations between smaller lobule X volume and
non-verbal executive dysfunctions in FEP patients are consistent
with the studies mentioned above.

As reviewed in the introduction, and by others (78),
inconsistent results have been reported in terms of cerebellar
regional alterations in schizophrenia. Nonetheless, when
considering only studies that employed cerebellar specific
methods, smaller volume in the posterior superior lobe (VI -

VIIB) and/or flocculonodular lobe (X) have consistently emerged
(19–22). Obviously, clinical heterogeneity could remain a major
factor in determining cerebellar structural abnormalities in
schizophrenia (25). Nonetheless, we emphasize the importance
of avoiding poor alignment of cerebellar structures by employing
a cerebellar specific atlas such as SUIT (37), to minimize variance
associated with methodology.

Cerebellar structural alterations have been reported mainly
from chronic schizophrenia patients (3). However, we suggest
that these cerebellar abnormalities are not a result of the
adverse effects from a chronic deteriorating course of the
illness or antipsychotic medications in patients. Instead, these
abnormalities might be present at the early phase of the illness.
In the present study, we showed that FEP patients also had
cerebellar structural abnormalities, and that these cerebellar
changes were not associated with antipsychotic medication
effects or illness duration. This was consistent with previous
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studies that examined FEP and individuals at high risk for
psychosis (43, 44). Therefore, we suggest that cerebellar structural
alterations are more directly associated with the illness process
itself rather than illness chronicity or antipsychotic medication
effects in schizophrenia. A longitudinal study should be followed
to investigate whether the cerebellar abnormalities are present
from very young age in individuals who have a genetic or clinical
risk for psychosis.

Our study has some limitations. First, it would be preferable to
employ drug-naïve patients to study cerebellar volumes because
the cerebellum could be affected by antipsychotic medication
(79, 80). Nonetheless, the effect of antipsychotic medication
might not be pronounced in our study, because our significant
findings remained the same after controlling for medication
effects. Second, in each of our participant group, approximately
half were males. It is well known that cerebellar structural
abnormalities are more pronounced in male than female patients
with schizophrenia (26, 60). Hence, it is possible that cerebellar
volume deficits in FEP in our study could have been diluted
by inclusion of female participants. Further studies with a large
sample could investigate cerebellar structural alterations in males
and females separately. Finally, we did not strictly control for
alcohol consumption in our study. Nonetheless, participants who
had a diagnosis of alcohol use disorder were not included in our
sample. Given that alcohol abuse is associated with cerebellar
atrophy (81), future studies might want to investigate the effect
of alcohol on cerebellar volumes even at sub-clinical level.

In conclusion, we provide evidence for smaller volumes
in left cerebellar hemispheric lobules VI and X and their
association with executive dysfunction in FEP patients. As these

regional alterations were also reported in chronic schizophrenia
patients using a cerebellar specific template, we conclude
that these cerebellar structural abnormalities are related to
illness itself, and not to illness progression and/or medication
effects in schizophrenia. Whether these cerebellar alterations are
associated with a phenotypic marker for emergence of symptoms
(e.g., attenuated psychotic symptoms in high-risk individuals)
or they are associated with a genetic predisposition to psychosis
would need to be determined in future studies.
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