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Abstract: A complete temperature-dependent scheme of the Mn3+ on-site d-d transitions in mul-
tiferroic hexagonal HoMnO3 (h-HoMnO3) thin films was unveiled by energy-resolved ultrafast
spectroscopy. The results unambiguously revealed that the ultrafast responses of the e1g and e2g

states differed significantly in the hexagonal HoMnO3. We demonstrated that the short-range anti-
ferromagnetic and ferroelectric orderings are more relevant to the e2g state, whereas the long-range
antiferromagnetic ordering is intimately coupled to both the e2g and e1g states. Moreover, the primary
thermalization times of the e2g and e1g states were 0.34 ± 0.08 ps and 0.38 ± 0.08 ps, respectively.

Keywords: multiferroic manganites; antiferromagnetic ordering; ferroelectric ordering; ultrafast
spectroscopy

1. Introduction

The emergent physical properties resulting from the coupled ferroic orders in multi-
ferroic manganites and their potential applications have attracted considerable research
interest [1,2]. In rare-earth manganites, hexagonal RMnO3 structures with small R3+ ions
(In, Sc, Y, and the lanthanum atoms from Dy to Lu) exhibit coexisting coupled ferroelectric
(FE) and antiferromagnetic (AFM) orders [3,4]. In hexagonal HoMnO3 (h-HoMnO3), fer-
roelectricity occurs below the Curie temperature TC (870 K) because structural distortion
takes place during the transition from the P63/mmc to the P63cm symmetry, as well as the
polarization associated with the bonds of Ho and planar oxygen [5]. In P63cm hexagonal
manganites, each Mn3+ ion is surrounded by five O2− ions, forming triangular planar
sub-lattices in the basal plane (ab-plane). The magnetic order of Mn3+ is mainly dominated
by antiferromagnetic planar Mn−O−Mn superexchange interactions [6,7]. The AFM
spin ordering on the high-spin Mn3+ ions occur at the Néel temperature TN (76 K). The
symmetry of the short-range AFM order of the hexagonal HoMnO3 has been derived by
second harmonic generation (SHG). Below TN, the symmetry of the AFM phase is P63cm
and experiences a sudden rotation by an angle of 90◦ to P63cm at around 40 K [8].

Hexagonal HoMnO3 structures comprise layers of bipyramid MnO5 separated by
layers of Ho3+ ions along the c-axis. The Mn3+ ions are located near the center of the
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MnO5 bipyramids, forming triangular planar sublattices along the ab-plane. Because of
the crystal field of the bipyramid structure, the 3d-orbit state of the Mn3+ ions split into
lower-lying doublet states e1g (dyz/dzx) and e2g (dxy/dx2−y2) and an upper-lying singlet
state a1g (d3z2−r2) [9], as shown in the inset of Figure 1. Therefore, the four d electrons
of Mn3+ in the ground state occupy e1g and e2g and leave a1g vacant. Previous studies
have determined the band structure of the Mn3+ d orbits in RMnO3 (R = Gd, Tb, Dy, Ho,
Er, and Lu) by using optical absorption spectroscopy [9–13]. The absorption spectrum
exhibits two peaks around 1.7 and 2.2 eV corresponding to the transitions from e2g to
a1g and e1g to a1g, respectively, in the on-site Mn3+. In addition, the short-range AFM
ordering leads to a blue shift in the absorption peaks as the temperature decreases, which
further induces a marked change near TN. The indirect exchange interactions, including
double-exchange [14], superexchange [15], and super-superexchange [6], play a key role
in explaining the spin-ordering in manganite [16]. Specifically, the magnetic exchange
interaction between the Mn3+ ions induce the anomalous shift of Mn d levels, indicating a
strong correlation between the electronic structure and spin ordering [10,12]. Moreover,
in addition to hexagonal manganites exhibiting large atomic displacements at TN [17,18],
the optical phonon frequency also shows an unexpected shift because of the magnetic
ordering [19–21]. The large atomic displacements combined with phonon anomalies further
demonstrate the coupling between the magnetic order and electric dipole moments through
the lattice. Accordingly, multiferroic manganites exhibit an intimate coupling between the
charge, lattice, and spin degrees of freedom.
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Figure 1. Stationary absorption spectrum of a hexagonal HoMnO3 thin film and the laser spectrum
used in this study. The inset shows the electronic levels of the five-fold coordinated Mn3+ ion in the
MnO5 trigonal bipyramidal field of the five surrounding O2− ligands.

Time-resolved optical pump-probe spectroscopy is effective for demonstrating and
quantifying the interaction strength among quasiparticles and various degrees of free-
dom [22–26]. This technique has been extensively employed to identify the underlying
physical mechanisms of hexagonal manganites [27–31]. However, most previous studies
on transient spectroscopy have focused only on the dynamics of the e2g state, and the other
unobservable Mn3+ d orbits remain unclear. In the present study, we adopted an advanced
ultrafast spectroscopy technique that involved using a broadband and ultrashort pulse
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laser to comprehensively examine the complete temperature-dependent scheme of the
Mn3+ on-site d-d transitions in rare-earth multiferroic hexagonal manganite HoMnO3.

2. Materials and Methods

The samples used in this study were hexagonal c-axis HoMnO3 thin films with a
thickness of 180 nm. The films were deposited on double-sided polished yttria-stabilized
zirconia (111) substrates through pulsed-laser (KrF excimer laser) deposition [28]. The thin
films were employed to measure both the stationary and transient spectra in a transmis-
sivity configuration to obtain high-quality data. Figure 1 shows the stationary absorption
spectrum of the hexagonal HoMnO3 thin film measured at room temperature. The absorp-
tion spectrum clearly shows the Mn3+ d-d transition around 1.7 eV (e2g to a1g, Edd2) and
2.2 eV (e1g to a1g, Edd1). The transition peak centered at about 1.7 eV is consistent with
previous optical absorption spectra in hexagonal-phase RMnO3 (R = Gd, Tb, Dy, Ho, Er,
and Lu) [9–13]. The other hidden d-d transition around 2.2 eV, which is embedded in the
substantially more intense absorption peak, was verified using second-harmonic genera-
tion [8,13,32]. To simultaneously reveal the strongly AFM- and temperature-dependent
Mn3+ d-d transitions (i.e., Edd1 and Edd2), a light source with a broad spectrum in the visible
range is required [33]. The time-resolved spectroscopic measurements in this study were
based on 10 fs visible pulses generated by a noncollinear optical parametric amplifier
(NOPA) [34,35]. A generative amplifier (800 nm, 5 kHz, 1.8 W, Legend-USP-HE; Coherent,
Santa Clara, CA, USA) seeded with a Ti:sapphire laser oscillator (Micra 10; Coherent) was
used as the pump source of the NOPA. Figure 1 shows that the laser spectrum (1.7–2.3 eV)
covered the targeted whole Mn3+ d-d transition bands. For the pump-probe measurements,
a beam splitter splits the visible pulses into pump and probe beams with the same spectrum.
The fluences of pump and probe were 0.85 and 0.07 mJ/cm2, respectively, and focused on
the samples. The normalized transient transmittance changes ∆T/T (∆T: the transmittance
changes induced by the pump pulses; T: the transmittance of the probe pulses) spectra
were captured using a wavelength-resolved multichannel lock-in amplifier as a function of
delay time between pump and probe pulses [36].

3. Results and Discussion

Figure 2a,b display the two-dimensional (2D) plots of the relative transient transmit-
tance change (∆T/T) spectra as functions of the probe photon energy and delay time at
temperatures above (T = 100 K) and below (T = 35 K) TN. In the 2D plots, the black lines
represent the borders of the positive and negative components of the ∆T/T(υ, t) signals.
The temperature dependence of the positive ∆T/T signal in the range of approximately
1.7–2.3 eV was attributed to photobleaching resulting from the depletion of the initial
state and the population of the excited state, indicating the d-d transitions of Edd1 and
Edd2. As a result, the energy dependence of the positive ∆T/T signals (in Figure 2c) is
similar to that of the stationary absorption spectrum shown in Figure 1. By contrast, the
induced absorption to the higher excited states resulted in a negative ∆T/T signal in the
blocked-photon energy range, which did not correspond to the on-site Mn3+ d-d transition
bands. Therefore, the zero-amplitude position distinctly indicated the boundary of the d-d
transitions Edd1 and Edd2 as the solid black lines in Figure 2a,b. The transition band edges
Edd1 and Edd2 were extracted to further investigate the transient dynamics of the Mn3+ d
bands at various temperatures, as shown in Figure 3, and both transition bands Edd1 and
Edd2 clearly exhibited blue shift when the temperature decreased. Furthermore, in addition
to the monotonic blue shift, the transient curves revealed the significant characteristics
within the short period at temperatures below TN.
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Figure 2. (a,b) Two-dimensional plots of the transient difference transmittance ∆T/T at temperatures
below (35 K) and above (100 K) TN. (c) Time-resolved ∆T/T spectra at different delay time between
the pump and probe pulses at 35 K (blue) and 100 K (red). The horizontal gray lines show where
∆T/T = 0. The solid and hollow dots represent the boundary of d-d transitions, and the solid and
hollow dots respectively indicate the time-resolved Edd2 (e2g → a1g) and Edd1 (e1g → a1g) transitions.
The dashed lines are guides for eyes to represent the time evolution of these transitions.

The time-resolved traces of Edd1(t) and Edd2(t) at each photon energy level can be
phenomenologically expressed as

E(t) = E1e−
t

τ1 + E2e−
t

τ2 + Econst, (1)

where Ei is the amplitude of the exponential function, and τi represents the relaxation
time for the corresponding component. Figure 4 shows the fitting results (for the detailed
fitting results, please see Table S1 in Supplementary Materials). The constant term Econst
in Figure 4c,f indicates the transition energy level after thermal equilibrium was reached.
In consistence with the temperature-dependent stationary absorption spectra in previous
studies [10,12], the transition energies shifted and exhibited an anomaly at TN. In Edd2 (see
Figure 4d,e), both the amplitudes (E1 and E2) and time constants (τ1 = 0.38 ± 0.08 ps and
0.95 ± 0.50 ps; τ2 = 2.40 ± 0.40 ps and 5.90 ± 0.70 ps; below and above TN, respectively)
exhibited noticeable changes across TN. On the other hand, the time-dependent Edd1 (see
Figure 4a,b) differed markedly at temperatures above and below TN. The fast component τ1
(0.34 ± 0.08 fs) was observed only at temperatures below TN, whereas the slow component
τ2 (2.00 ± 0.60 ps) was preserved at all of the measured temperatures.
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The assignment of the relaxation components in multiferroic materials has been a
challenging subject for decades because of the complicated correlations among the electron,
lattice, charge polarization, and AFM spin ordering. A previous study [37] attributed a
relaxation time of approximately 0.4 ps to phonon thermalization. On the same time scale,
Satoh et al. [38] assigned a relaxation time of approximately 0.9 ps to the demagnetization
of AFM compounds. Additionally, previous studies have attributed the few-ps component
to electron-lattice relaxation [39,40] or spin-lattice relaxation [28]. In this paper, we propose
a model based on our results as well as those from previous studies. The few-ps component
τ2 occurred in both Edd1 and Edd2 at all of the measured temperatures. Thus, the few-ps
component τ2 could be attributed to the relaxation of the excited carriers in a1g, which is the
final state of both Edd1 and Edd2 transitions from the initial states e1g and e2g, respectively.
The excited electrons relaxed to the bottom of a1g and banded through the electron–phonon
coupling with a few-ps relaxation time, and the transition band exhibited a blue shift
induced by the disappearance of the renormalization of the bandgap [41]. This has also
been observed in other manganites [27,42]. The significant changes in the amplitudes and
relaxation time across TN indicate an intimate correlation among the electron, lattice, and
spin, which corresponds to the sudden shift in the positions of relevant atoms [17,18] and
the anomaly in the Raman spectra [19,20] at the spin-ordering temperature.
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In contrast, the sub-ps component τ1 cannot be assigned to population relaxation in
the common final state because it exists only in Edd2 at high temperatures, as shown in
Figure 4b,e. Therefore, the sub-ps component in Edd1 and Edd2 are ascribed to the relaxation
in e1g and e2g, respectively. The e2g state comprises the dxy and dx2−y2 orbits, which lie on
the basal plane. These orbits are strongly hybridized with the planar oxygen of the bipyra-
mid structure, indicating a close correlation with the charge-ordering characteristic of the
geometric ferroelectricity. Below the FE transition temperature (TC = 870 K in HoMnO3), the
FE moment is along the c-axis between the rare-earth ion (Ho3+ in this case) and the planar
oxygen on the distorted trigonal bipyramid MnO5 [5]. Accordingly, the sub-ps lifetime τ1
is considered to correlate with the destruction of the FE state. Besides, the superexchange
in the planar Mn-O-Mn chain combined with the magnetoelastic coupling [17,18] modi-
fies the e2g state and induces a significant difference in both the amplitude and lifetime
(including τ1 and τ2 in Figure 4d,e) of the pump-probe spectra across TN, particularly for
the sub-ps component τ1 exhibiting the magnetoelectric coupling. Moreover, this sub-ps
(0.38 ± 0.08 ps and 0.95 ± 0.50 ps below and above TN, respectively) component, which is
associated with spin ordering, can be observed at temperatures far above TN, indicating
that the e2g state essentially couples with the short-range AFM spin ordering, which cannot
be reliably obtained from standard magnetization measurements. This is in consistence
with the previous results of stationary absorption spectra [9–12] and our time-resolve
spectroscopies [29,31], which have demonstrated that the e2g state is highly sensitive to
short- and long-range AFM spin ordering.

However, the sub-ps component τ1 can be observed only in the presence of long-range
spin ordering in the e1g state (Figure 4b). The e1g state comprises dyz and dzx, which are
not as sensitive to the planar oxygen as the e2g state. The time-dependent Edd1 shows
significant larger fluctuations at temperatures above TN in Figure 3a. According to a previ-
ous study [43] on PL, the electronic transfer from a1g to e1g was strongly blocked by spin
fluctuations at temperatures above TN, indicating that the Edd1 is dominated by long-range
AFM spin ordering. Therefore, the spin-e1g orbit interaction was attributed as the main
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contributor to the sub-ps component in the e1g state [44]. Furthermore, the temperature
dependence of the Raman-active phonons, inducing anharmonicity in the A1 phonon
mode (which is the oxygen vibrate along the c-axis) below TN, indicates that the spin-orbit
interaction is strongly influenced by the anisotropic superexchange between the Mn3+ and
Ho3+ ions and the super-superexchange of Mn-O-O-Mn along the c-axis [19,45,46]. This
component τ1 (0.34 ± 0.08 ps) can be ascribed to the thermalization of the spin subsystem
in the e1g state.

4. Conclusions

In summary, we have demonstrated that the Mn3+ d orbit electronic states are strongly
affected by the electric–magnetic coupling in multiferroic h-HoMnO3 thin films. The 2D
energy- and time-resolved spectroscopy measurements carried out at various temperatures
have unambiguously disclosed the characteristics of Mn3+ d orbits. Short-range AFM spin
ordering and FE ordering are related to the e2g state. By contrast, long-range AFM spin
ordering is strongly coupled to both the e2g and e1g states. The slow electron–phonon
relaxation time in the a1g state is 2.70 ± 1.50 ps. Moreover, the depolarization time in the
e2g state above TN is 0.95 ± 0.50 ps, and an anomaly is observed at the AFM spin-ordering
temperature, further shortening of the fast relaxation time to 0.38 ± 0.08 ps. In addition,
the fast spin-thermalization time caused by the spin-orbit (dyz and dzx orbits) interaction
in the e1g state is 0.34 ± 0.08 ps. Therefore, this study has demonstrated that magnetic
ordering in HoMnO3 intimately coupled with the electronic structure of both the e1g and
e2g states, respectively, can be investigated using the proposed energy-resolved ultrafast
spectroscopy technique.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15155188/s1, Table S1: Fitting results of the Edd2 and Edd1
spectra in Figure 3 obtained by using Equation (1).
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