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Abstract: Lung adenocarcinoma (LUAD) is the most common and aggressive subtype of

lung cancer with the greatest heterogeneity and aggression. Inspite of recent years’ achieve-

ments in understanding the pathogenesis of this disease, as well as the development of new

therapeutic approaches, our knowledge on crucial early molecular events during its develop-

ment is still rudimentary. Recent classification and grading of LUAD has postulated that

LUAD does not arise spontaneously, but through a stepwise process from lung adenomatous

premalignancy atypical adenomatous hyperplasia to adenocarcinoma in situ, minimally inva-

sive adenocarcinoma, and eventually frankly invasive predominant adenocarcinoma. In this

review, we discuss the molecular processes that drive the evolutionary process that results in

the formation of LUAD. We also describe how to handle lung premalignancy in clinical

settings based on the most recent advances in genomic biology and our own understanding

of lung cancer prevention.
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Introduction
Lung cancer is the predominant cause of cancer deaths worldwide.1,2 Most patients with

lung cancer present with advanced-stage disease when diagnosed, and even in patients

with early-stage resectable or locally advanced disease receiving definitive chemo- or

radiation therapy, up to 90% of will still inevitably have disease recurrence, with a 5-year

survival rate <60%.2,3Non-small-cell lung cancer (NSCLC) represents 80%–85%of lung

cancers, and can be subdivided into adenocarcinoma, squamous-cell carcinoma, and

large-cell carcinoma.4 Among all NSCLC subtypes, lung adenocarcinoma (LUAD) is

the most heterogeneous and aggressive and has a very high tumor-mutation burden

associated with EGFR, KRAS, BRAF, ERBB2, TP53, ALK, STK11, and TTE1

mutations.5–8 Despite advances in chemotherapy, radiation therapy, and targeted therapy

in the last decade, prevention and early detection and treatment of lung cancer is still

challenging, due to limited awareness of molecular mechanisms mediating early lung

carcinogenesis and also the very late diagnosis of the majority of them.9

The intriguing development of next-generation sequencing in recent years has defined

a large number of driver mutations of cancer, leading to malignancy-therapy advances.10

The establishment of the Pre-Cancer Genome Atlas, a project for characterization of

molecular evolutions from premalignant lesions to invasive carcinoma, as well as corre-

sponding changes in the tumor microenvironment (TME) in 2016, has also helped to
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provide us the insight to consider another direction for cancer

treatment, ie, cancer prevention.11 A complex and stepwise

process from the only known type of preneoplasia, atypical

adenomatous hyperplasia (AAH), to a more pronounced cel-

lular atypia adenocarcinoma in situ (AIS) to microinvasive

lesion minimally invasive adenocarcinoma (MIA), and finally

to LUAD involving several genetic and epigenetic alterations

has been postulated based on a variety of pathological, mole-

cular, and clinical studies.6,12–14 In this review, we set out an

organizing framework for understanding molecular biology in

LUAD premalignancy, in order to set out a theoretical back-

ground for cancer prevention–drug development. In addition,

we highlight possible intervention approaches that might pre-

vent progression of premalignant lesion to LUAD.

Pathological and Molecular
Alterations During Lung
Carcinogenesis
Our lungs are continuously exposed to the outside environ-

ment, and thus harbor a complex network protecting the host

from tissue damage and infection.15,16 The multistage step-

wise fashion of tumor development has been demonstrated in

various anatomical organs.17,18 Therefore, a paradigm referred

to as “field cancerization” has been created for areas of histo-

logically normal-appearing tissue that exhibit molecular

abnormalities during early tumorigenesis.17,19 Besides cigar-

ette smoking, environmental exposure, such as air pollu-

tion and workplace exposure to asbestos, diesel exhaust, or

certain chemicals, also creates a field of injury in airway

epithelial cells: dysregulated repair by progenitor cells form-

ing a clonal group of indefinitely self-renewing daughter cells

in the initial phase, and proliferation and expansion of pre-

malignant cells resulting from genetic and epigenetic altera-

tions gradually displacing the normal epithelium.20–24

AAH and AIS: Field Cancerization
Lung preneoplastic-lesion AAH and preinvasive-lesion

AIS present cellular atypia characteristic of field

cancerization.17,20,25,26 As the only known type of preneo-

plastic lesion, AAH represents the initial step in LUAD

pathogenesis.13,14,27–29 It is a small, atypical proliferation

(usually 0.5 cm or less) of type II pneumocytes along

preexisting alveolar walls most commonly discovered as

an incidental histological finding in 5%–20% of lung can-

cer specimens after resection.12,27,30,31 Telomere attrition

has been demonstrated to occur as an initiating event in

AAH progression to LUAD.32 An intriguing finding is that

shared mutations of two classical genes, KRAS and EGFR,

of AAH and LUAD in the same individual have also been

detected,33–37 though Sakamoto et al38 showed that harbor-

ing a KRAS gene mutation might not ensure AAH’s further

progress to LUAD. Other molecular aberrations identified

in AAH include FGFR3,39 BRAF,40 TP53,29,41 STK11,42

and ERBB2 (HER2) mutations,43 upregulation of cyclin

D1,44 survivin,45 paxillin,46 and Ki67,47 suppression of

TBX2,48 and loss of heterozygosity in chromosomes 3p,

9p, 9q, 16p, 17p and 17q.29,49–52 Epigenetic modifications

including DNA methylation of CDKN2A-Ex2 and

PTPRN2 have also been reported in AAH.25,53 Genes

bearing somatic mutations or epigenetic modifications

often encode tumor-associated antigensable to elicit immu-

noresponse; therefore, the immune system is capable of

recognizing AAH. T-effector and cytotoxic cell infiltration

and upregulation of immunocheckpoint PDL1 and CTLA4

in AAH compared to normal lung tissue suggest that the

T cells might have already been activated in the AAH

stage.40,54 Activation of protumor (TH2; CCR2, CTLA4)

and reduction in antitumor (TH1; IL12A, GZMB, TBX21)

immunofunctioning-associated gene sets observed in the

development from normal lung to AAH further confirm

the involvement of aberrant immunopathways in AAH.55

Growth and progression of AAH with a more pronounced

cellular atypia inmorphologyevolve intoAIS, a small localized

(≤3 cm) adenocarcinoma with restricted growth of neoplastic

cells along preexisting alveolar structures.56 AIS is also

regarded as a preinvasive form of LUAD according to recent

classification and grading.28 Progression from AAH to AIS

occurs over an extended period, with different alterations

detected. A recent study by Izumchenko et al57 indicated that

only a few gene mutations were shared between AAH and

AIS, and that the most frequent base-pair substitutions were

C–T transitions in AAH, but G–A in MIA. Tanaka et al58

showed that BI1 is expressed in AIS, but not in AAH. Chung

et al59 combined AAH and AIS as preinvasive lesions and

investigated their multistep progression to adenocarcinoma.

Methylation of HOXA1, TMEFF2, and RARB was frequently

observed in preinvasive lesions, suggesting epigenetic altera-

tions in different genes involved in different stages.

Invasive Lesions: MIA and
Adenocarcinoma
Malignant cells become invasive once they leave the

epidermis.60–62 These invasive lesions generally harbor

driver mutations, including EGFR, KRAS, ALK, ERBB2,
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BRAF, AKT1, PIK3CA, MAP2K1, and MET mutations;63,64

however, few of these have been reported in precursor

lesions.33–43 A subset of invasive adenomatous lesions

appears to arise spontaneously in the absence of any pre-

cursor lesions for only around 15% of LUAD-harboring

precursor lesions,65 though it may also be possible that the

precursors are no longer detectable at diagnosis.

Substantive changes occur during the evolution to inva-

sive lesions fromMIA and adenocarcinoma from preinvasive

lesions. In contrast to AAH and AIS, microinvasion is pre-

sent in MIA, small, solitary, and discrete microinvasive

lesions no larger than 3 cm with a predominantly lepidic

pattern and invasion <5mm in any one focus, the majority

of which are nonmucinous.6,14 Currently, genomic studies

into MIA have been limited compared to preneoplastic

lesions, though unsurprisingly a higher frequency of KRAS,

EGFR, TP53, and NF1 mutations has been found in MIA

than AAH and AIS.57,66 A recent study by Qian et al66 also

demonstrated an increasing frequency in mutations ofKRAS,

TP53, and NF1 in MIA than its earlier stage — AIS.

Once the invasive area ofMIA extends >5 mm in diameter

or meets invasion criteria, the lesion becomes an invasive

predominant adenocarcinoma.6,14 The mutational landscape

of early-stage LUAD has been investigated by multiple stu-

dies: EGFR, TP53, KRAS, STK11, and NF1 are substantially

mutated in LUAD, and driver mutations in EGFR, BRAF,

MET, and TP53 are almost always clonal, with acquired

mutations directly linked to patient prognosis.8,13,67 It has

also been established that mutations acquired during progres-

sion are linked to patient prognosis.13With acquisition ofmore

mutations, the immune system also becomes more compli-

cated in early-stage LUAD. An example is that inactivation of

STK11 will result in accumulation of immunosuppressive

neutrophils and reduced PDL1 expression, as well as fewer

tumor-infiltrating lymphocytes.68

Rationale for LUAD Prevention:
A Clinical Insight
In clinical practice, preinvasive and early invasive LUAD

lesions can be detected by computed tomography or during

histopathological studies on surgically resected specimens,

and present as pulmonary nodules with ground-glass opa-

city (GGO): circumscribed hazy lesions with preservation

of bronchial and vascular margins.9,69 Prediction of

GGO nodules is difficult, as a considerable proportion will

disappear spontaneously; however, approximately 10%will

progress to invasive cancer.70–72 Therefore, management of

incidentally detected GGO nodules is recommended as

a follow-up for a minimum 3–4 years.73,74 According to

the American College of Chest Physicians, increased size or

solid-component development, pure GGO nodules >10 mm

with confirmed persistence, mixed (GGO >50%)

GGO nodules >8 mm with confirmed persistence, or

mixed GGO nodules >15 mm without follow-up should be

considered for surgery.75,76 However, patients may still

relapse following resection: according to a report from

Cho et al77 5.1% (five of 97) of patients with

GGO nodules experienced recurrence after resection,

while Nakao et al reported that 8% (four of 50) of patients

with GGO nodules recurred after limited section.78 For

patients with early-stage NSCLC following standard treat-

ment surgery, as many as 40% of patients with stage I and

66% of stage II NSCLC are still found to relapse and finally

die within 5 years.79–82 In addition, surgical resection may

not be feasible for patients carrying multiple potentially

aggressive transformation nodules.83 Therefore, drug

development for lung cancer prevention and interception

becomes our next-step consideration. Gene mutations can

lead to activation of specific oncogenic pathways, leading to

the occurrence of cancer. Therefore, targeting key molecu-

lar events will help in lung cancer interception (Figure 1).

Molecular changes also have major effects on the TME,

and thus secretion of specific inhibitory cytokines or pro-

duction of chemokines and other factors related to

immunosuppression. A typical example is that early KRAS-

mutated pancreatic neoplastic cells can secrete VEGF, GM-

CSF, and cytokines to recruit Tregs, myeloid-derived

suppressor cells, adipocytes, neutrophils, macrophage, and

chemokines, leading to a progressively immunosuppressive

TME that contributes to immunoescape.84,85 In NSCLC,

EGFR and STK11 mutations are more likely to have low

levels of PDL1 expression and mutational burden, thus

lacking benefit in immunoheckpoint blockadetherapy.86–90

As to the positivity of EGFRT790M, Haratani et al91 showed

that as a result of higher PDL1 expression level in

EGFRT790M-negative patients, they are more likely to ben-

efit from nivolumab after EGFR TKI treatment. A recent

study by Hastings et al92 suggested that EGFR-mutant

tumors have generally low response to immunocheckpoint

inhibitors, but outcomes varied by allele, eg, lung tumors

with EGFRΔ19 alterations harbored a lower tumor-mutation

burden compared with EGFRL858R lung tumors. In contrast,

TP53 and KRAS mutations and loss of PTEN and STK11

were observed to increase with PDL1 expression and muta-

tional burden, as well as activated T-effector and IFNγ
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signature in LUAD, and thus remarkable clinical benefit to

PD1 inhibitors are found in patients with TP53 and KRAS

mutations.7,68,93,94 Therefore, TME interception could also

be a potential interception method.

Conclusion
As the most common subtype of lung cancer, LUAD has

gained great attention from oncologists. In this review, based

on the most recent International Association for the Study

of Lung Cancer–American Thoracic Society–European

Respiratory Society International Multidisciplinary

Classification of Lung Adenocarcinoma, we elaborated

a conceptual framework to reveal the stepwise genomic

evolution of LUAD from preinvasive AAH and AIS lesions

to invasive MIA lesions and adenocarcinoma. We also pro-

posed a scheme for LUAD prevention based on our clinical

perspective.

The advent of sequencing technologies has allowed us to

understandpathogenesis duringLUADdevelopment; however

our knowledge of its detailed pathogenesis remains somewhat

superficial. Firstly, the current treatmentmethod for pulmonary

nodules with GGO in the clinic is observation and a wait-and-

see approach once they are detected by computed tomogra-

phy scan. Associations between antigen expression and the

mechanism of cellular transformation are unknown. In addi-

tion, how long GGO nodules should be followed up, appro-

priate timing for surgical resection, and the extent of resection

are other questions.95 Secondly, many risk factors contribute to

the development of LUAD, and recognizing these risk factors

can be a potential consideration for prevention. As we all

know, human papillomavirus vaccination has already been

successfully used in cervical cancer. However, many gene-

modified autologous vaccines for LUAD have already been

tested, but not with the effects we expected.10,96 Thirdly,

alterations in the TME during carcinogenesis, especially

immuneffector processes mediating cancer elimination, equili-

brium, and escape, need to be elucidated. Potential interception

of LUAD development would be enhancing the immune sys-

tem’s recognition and elimination or weakening immuno

escape of the abnormal preneoplasias, ie, immunoprevention.

Therefore, identifying molecular mechanisms and antigen

expression in premalignancy responsible for immunoediting

becomes crucial. Last but not least, beyondwhat we have sum-

marized, other challenges associated need to be addressed,

includingmaintenance of the lung environment, key driving

events, and personalized cancer intervention.

Overall, this review serves to enrich our knowledge

of molecular aspects ofLUAD pathogenesis.

A limitation of this review is that we did not explicitly

address the concrete genomic evolution during early

lung adenomatous progression due to current superficial

understanding, but we believe that our viewpoints will

help to propel precancer research in the next few years

and eventually expand cancer prevention to a greater

subset of patients.
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