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ABSTRACT Using a murine model of Klebsiella pneumoniae bacterial infection, we
demonstrate that gentamicin dissolving microarray patches, applied to murine ears,
could control K. pneumoniae infection. Mice treated with microarray patches had re-
duced bacterial burden in the nasal-associated lymphoid tissue and lungs compared
with their untreated counterparts. This proof of concept study represents the first
published data on the in vivo delivery of the antibiotic gentamicin via dissolving mi-
croarray patches, resulting in the control of bacterial infection.
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Neonatal infections, including pneumonia and sepsis, remain a significant cause of
mortality and morbidity, with an estimated 3 million neonatal deaths occurring

every year worldwide (1). Neonates born in low- and middle-income countries are at
greatest risk of mortality due to bacterial infections because of limited access to
hospitals, facility-based care, or lifesaving antibiotics (2). In response to this, the World
Health Organization (WHO) has provided guidelines for managing possible serious
bacterial infections (PSBI) in young infants when referral to a hospital is not possible.
Treatment includes intramuscular (i.m.) gentamicin (GEN) in combination with oral
amoxicillin (AMX) (3).

GEN is a potent aminoglycoside antibiotic with bactericidal activity against Gram-
negative bacteria and is widely utilized due to its efficacy and low cost (4). Similar to
other aminoglycosides, GEN has a narrow therapeutic index and has the potential for
ototoxicity and nephrotoxicity (5, 6). GEN is excreted in the kidneys primarily by
glomerular filtration and has a short plasma elimination half-life in healthy individuals
presenting with normal renal function (7). In neonates and young children, GEN half-life
can vary according to weight, and thus, careful dose calculation based on infant weight
is necessitated (8, 9). As a consequence of this, well-resourced settings have imple-
mented therapeutic drug monitoring of GEN serum levels to reduce the incidence of
toxicity (4). However, in outpatient resource-poor settings, this regimen has challenges
and many neonates do not receive appropriate treatment (10). For those that do
receive antibiotics, drug levels are unmonitored and first-line care is often provided by
those lacking specialist pediatric training, often resulting in dose miscalculations and
subsequent toxicity. As GEN must be delivered by i.m. injection, health care providers
require access to safe injection supplies and sharps disposal, which is often unavailable
in low-resource settings (11).

Based on the aforementioned challenges, it is evident that novel, simplified ap-
proaches are warranted to expand access to lifesaving antibiotics in this population
group. Accordingly, we have developed dissolving microarray patches (MNs) (also
known as microneedles) for transdermal delivery of GEN (7). MNs are minimally invasive
devices that consist of an array of microscopic needles attached to a base support (12).
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Upon insertion into the skin, the needles create microscopic holes, bypassing the
stratum corneum barrier and subsequently delivering drug contained in the MNs into
the viable skin (reviewed in reference 13). MNs are typically fabricated such that they
are short enough to avoid stimulation of dermal nerves, and therefore, they provide a
simplified, painless method of drug delivery that is well accepted by human subjects
(14, 15). MNs offer the possibility for GEN delivery by less-experienced personnel and
easier logistics for supplying to remote areas (16). As MNs dissolve upon insertion in the
skin, they eliminate the requirement for sharps disposal and avoid transmission of
blood-borne infections through needlestick injuries (17). Our previous work has dem-
onstrated the successful transdermal delivery of therapeutically relevant concentrations
of GEN using dissolving MNs in an in vivo model (7). However, the in vivo efficacy of
antibiotics delivered transdermally via MN to control bacterial infection has yet to be
demonstrated.

In this study, we aimed to test the therapeutic efficacy of antibiotics delivered via
MNs. MNs containing GEN were prepared utilizing simplified manufacturing processes,
as previously described (Fig. 1) (12). MNs were formulated from aqueous blends
containing 3.4% sodium hyaluronate, with molecular weight (MW) 250 to 400 kDa, in
combination with 1% polyvinylpyrrolidone (PVP; 58 kDa; Sigma-Aldrich, Dorset, UK) and
containing 10% GEN sulfate (Tokyo Chemical Industry UK Ltd., Oxford, UK). Upon
insertion of MNs into skin, the drug content in the needles is delivered concurrently
with MN dissolution. Some drug may also diffuse into the skin layers from the
baseplate, thus, allowing for sustained drug release (18). GEN exhibits a concentration-
dependent bactericidal effect with peak and trough serum concentrations that are
therapeutically effective and nontoxic. Sustained delivery of GEN, with peak serum
levels above 10 to 12 �g/ml and trough serum levels above 2 �g/ml, may be toxic (7,
19). Accordingly, we fabricated MNs in two steps to localize the GEN content to needles
and, thus, prevent toxicity associated with sustained GEN delivery. Thus, the baseplates
contained no GEN and were formulated from 15% PVP (360 kDa). The resultant MNs
had heights of approximately 500 �m and base widths of approximately 300 �m, as
confirmed by microscopic analysis (Fig. 1).

We subsequently probed the capacity of GEN MNs to induce therapeutic effects
in vivo. We tested the GEN MNs in a Klebsiella pneumoniae murine model of
pneumonia. K. pneumoniae is one of the most important Gram-negative pathogens
associated with a wide spectrum of infections, including pneumonia, intra-
abdominal infections and bloodstream infections (20, 21). GEN is a clinically rele-
vant antibiotic treatment against K. pneumoniae, and therefore, this bacteria was
selected as a model pathogen (22–24). Mice were infected with a live culture of K.
pneumoniae (ATCC 43816) delivered intranasally (105 CFU per mouse in 30 �l of
endotoxin-free phosphate-buffered saline [PBS]), and this results in dissemination
24 h postinfection. The inoculum was plated for confirmation of bacterial number/
load. Following this, mice (n � 6 to 7/group) were treated as per the schematic in
Fig. 2A. In short, 8 h post-K. pneumoniae infection, GEN MNs were applied to the
dorsal surface of each murine ear and held in place using micropore tape for 24 h,
after which they were removed and replaced with additional MNs. GEN delivered
i.m. to the thigh muscle of the hind limb was included as control. At 48 h
postinfection, mice were sacrificed and the organs were harvested for analysis of
bacterial burden. Body weights were monitored over the course of infection;
however, no significant differences between groups were observed 48 h postinfec-
tion (Fig. 2B). As demonstrated in Fig. 2C, mice which received GEN i.m. or GEN MNs
exhibited a greater capability to control infection, as evidenced by reduced num-
bers of CFU in the nasal-associated lymphoid tissue (NALT) and lungs. A significant
reduction in CFU was observed in the NALT (P � 0.0053) and lungs (P � 0.0006) of
mice treated with MNs compared with their untreated counterparts, demonstrating
the in vivo activity of GEN delivered via MN. Specifically, application of GEN MN
resulted almost a two-log reduction in the number of CFUs in the NALT and a
3.4-log reduction in lung CFU. A one-way analysis of variance (ANOVA), followed by
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correction for false discovery rate, was used for determination of statistical signif-
icance. A greater spread of results was evident in mice receiving GEN MNs than that
of mice receiving GEN i.m., and this is likely attributable to the variability in the MNs
manufactured under small-scale laboratory conditions. All experiments were per-
formed in accordance with the UK Home Office and approved by the Queens
University Belfast Ethical Review Committee.

FIG 1 A schematic illustration outlining the steps involved in the manufacture of MNs containing GEN.
MNs were prepared in two steps, namely, the fabrication of the baseplates which contained no drug and
the fabrication of the needles which contained GEN. (A) Baseplates were prepared from 15% PVP (360
kDa) and contained no GEN. (B) The formulation (250 mg) was cast into MN molds devoid of needles, and
(C and D) baseplates were dried for 24 h before being removed. For the MN formulation, (E) selected
polymers and GEN (3.4% sodium hyaluronate, 250 to 400 kDa), in combination with 1% PVP (58 kDa) and
10% GEN sulfate, were mixed and sonicated for 4 h. (F) Following this, 25 mg of MN formulation was
added to MN molds, and (G) a pressure (3 to 4 bar) was applied for 15 min to fill the molds. (H) The
baseplates were then applied to the backs of the MN, and pressure was applied as previously described.
The combined MNs were dried for 48 h before being carefully removed from the molds and microscop-
ically analyzed to ensure complete formation.
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In conclusion, the results presented herein collectively demonstrate that MNs
containing GEN effectively control K. pneumoniae infection in mice. While further
studies are warranted to demonstrate complete clearance, this is the first reported
study utilizing MNs for the treatment of bacterial infection. MNs may be a potentially
viable delivery platform for antibiotic delivery, offering the possibility to expand access
to lifesaving antibiotic treatment in low-resource settings. As MNs dissolve upon
insertion in the skin, they circumvent the generation of sharps waste and associated
transmission of blood-borne pathogens. Our ongoing efforts entail the optimization of
GEN MNs to increase bioavailability and develop a thorough understanding of the
pharmacokinetics and pharmacodynamics of GEN delivered via this route compared
with that delivered i.m. In the era of increasing antimicrobial resistance, novel ap-
proaches for empirical therapy are necessitated and MNs may offer an ideal solution.
Importantly, as MNs bypass the gastrointestinal microbiota, they also offer an alterna-
tive delivery option for antibiotics that are currently delivered orally and could poten-
tially prevent dysbiosis of the gut microbiota.
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