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Abstract: When considering the concept of distributed intelligent control, three types of components
can be defined: (i) fuzzy sensors which provide a representation of measurements as fuzzy subsets,
(ii) fuzzy actuators which can operate in the real world based on the fuzzy subsets they receive,
and, (iii) the fuzzy components of the inference. As a result, these elements generate new fuzzy
subsets from the fuzzy elements that were previously used. The purpose of this article is to define the
elements of an interoperable technology Fuzzy Applied Cell Control-soft computing language for the
development of fuzzy components with distributed intelligence implemented on the DSP target. The
cells in the network are configured using the operations of symbolic fusion, symbolic inference and
fuzzy-real symbolic transformation, which are based on the concepts of fuzzy meaning and fuzzy
description. The two applications presented in the article, Agent-based modeling and fuzzy logic for
simulating pedestrian crowds in panic decision-making situations and Fuzzy controller for mobile
robot, are both timely. The increasing occurrence of panic moments during mass events prompted
the investigation of the impact of panic on crowd dynamics and the simulation of pedestrian flows in
panic situations. Based on the research presented in the article, we propose a Fuzzy controller-based
system for determining pedestrian flows and calculating the shortest evacuation distance in panic
situations. Fuzzy logic, one of the representation techniques in artificial intelligence, is a well-known
method in soft computing that allows the treatment of strong constraints caused by the inaccuracy of
the data obtained from the robot’s sensors. Based on this motivation, the second application proposed
in the article creates an intelligent control technique based on Fuzzy Logic Control (FLC), a feature
of intelligent control systems that can be used as an alternative to traditional control techniques for
mobile robots. This method allows you to simulate the experience of a human expert. The benefits
of using a network of fuzzy components are not limited to those provided distributed systems.
Fuzzy cells are simple to configure while also providing high-level functions such as mergers and
decision-making processes.

Keywords: fuzzy logic control; path planning; fuzzy interference system

1. Introduction

The rapid growth of interest in the development of intelligent systems has led to
the multiplication of sensor types, which provide an increasingly rich perception of the
surrounding reality, allowing the description and solving of various problems. The use
of new types of sensors and actuators leads to better quality, productivity, and process
safety. The general trend is a rapid increase in the number of measurements and actions in
the control of complex processes. Therefore, the needed processing power must increase
accordingly. Currently, no single microcontroller /processor is used to simultaneously
perform the measurements, the decision, and the process control loop, thus switching to
distributed intelligent processing. This intelligent processing is done through a spatial
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distribution, using certain logic, so that the cooperative solutions between the distributed
processors can be easily identified. The distribution of components should, as far as possi-
ble, ensure decentralization of computing capabilities without substantially reducing the
overall reliability of the system. Communication processes between functional components
should be limited; otherwise, the performance could decrease dramatically. The use of
communication systems ensures the exchange of data between distributed processors, thus
achieving the first stage of intelligence.

In addition, intelligent components must be able to process the data addressed to
them locally. This second level of intelligence is needed to reduce the exchange of infor-
mation as smart tools produce increasingly complex data. This new approach will allow
a faster exchange of data between system components and, at the same time, will ensure
the uniform and compact treatment of informational data coming from different sources.
Thus, distributed systems will perform complex functions of managing the entire dis-
tributed network. These functions will be referred to as interoperability and interfunctional
coordination. To achieve the concepts described above, it is necessary to access means
that allow the integration of intelligence at lower levels. Due to the ability to represent
gradual information in a way familiar to human thinking, fuzzy logic is a powerful tool
for integrating intelligence. In particular, the connection between linguistic terms and
numerical quantities allows the implementation of high-level functions, such as data fu-
sion and complex decision-making processes. The structure of fuzzy circuits is generally
characterized by the number and shape of input and output variables, the number of rules
it evaluates simultaneously, the type of inferences and defuzzification methods [1]. The
performance of fuzzy circuits will be evaluated according to the speed of data processing
(number of fuzzy inferences per second-FLIPS), the accuracy of the results (errors, internal
noise of analog circuits and the number of bits needed to represent the values of fuzzy
calculations) [2,3]. A fast response of circuits that implement nonlinear functions such as
MIN and MAX, whose output signals may be subject to discontinuities, is required [4,5].
Mamdani processors are currently applied in process control, robotics, and other expert
systems [6]. They are particularly suitable for the execution of command-and-control
actions of an operator. They lead to good results that are often close to those of a human
operator, eliminating the risk of human error [7-9]. Takagi-Sugeno processors are mainly
used in process modeling [9,10]. Fuzzy processors are made by observing the control
activity of the operators as the modeling process [11], thus acquiring a large amount of
data while the operator executes the control [12,13].

The Sugeno processor is a particular case of the Takagi-Sugeno processor [12]. The
particularity of distributed systems is that all output functions are precise values, and the
consequence functions will be replaced by constants that are weighted by the “decisions”
of truth established for the initial conditions to obtain the final output results. The fuzzy
sets that form these exact values are generally called “singletons” or Sugeno sets [14,15].

Fuzzy logic, one of the techniques of representation in artificial intelligence, is a well-
known method in soft computing that allows the treatment of strong constraints generated
by the inaccuracy that characterizes the data obtained from sensors. Fuzzy control is an
intelligent control technique, characteristic of intelligent control systems, which serves as
an alternative to conventional control techniques, and the construction of a mathematical
model is not necessary. The article presents two intelligent control applications, Agent-
based modeling and fuzzy logic for simulating pedestrian crowds in panic decision-making
and Fuzzy controller for mobile robot.

The increasing occurrence of moments of panic during mass events motivated the
study of the impact of panic on crowd dynamics and the simulation of pedestrian flows
in panic situations. The lack of understanding of moments of panic continues to cause
hundreds of casualties each year, not to mention methodological studies of panic behavior
capable of predicting crowd dynamics. Under these conditions, there are thousands of
casualties and twice as many accidents caused by the crowd around the world, despite
efforts to control the crowd and a large number of security forces. Based on this simulation,
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a system was developed for determining pedestrian flows and calculating the optimal
evacuation distance in panic situations. The system is based on the creation of a network
of sensors for receiving Bluetooth signals from mobile devices and the use of fuzzy logic
to determine the position of pedestrians in relation to escape routes by calculating the
optimal escape distance. This system can be used inside buildings in panic situations
that require the evacuation of the population, but also for anonymous monitoring of a
person’s route inside clinics and shops. The system can also be applied to open spaces for
monitoring the urban mobility of pedestrians and vehicles, with applicability for Crisis
Management systems (e.g., mobility of people during the COVID pandemic). We created a
new intelligent control interface for the evacuation of people in panic situations in order
to improve the performance of evacuation mobility from closed/open spaces, a useful
application in operations to save lives, in crisis situations, earthquakes, fires or terrorist
actions-CBRNE.

Fuzzy Logic Control (FLC) is suitable for controlling a mobile robot because it can
interfere even when the data acquired by the robot’s sensors is inaccurate. Based on this, we
built a Fuzzy controller for mobile robots that uses Bezier curves to evaluate the trajectory
and monitor the robot’s movement. This approach offers the opportunity to simulate the
experience of a human expert. However, the lack of systematic learning capacity in the
design of fuzzy logic-based systems has sparked a particular interest in combining fuzzy
logic with other special learning methods, such as neural networks, in order to achieve
flexible behavior. Flexible behavior involves the ability to learn-to acquire knowledge or to
improve skills, based on experience, observations, or training.

The article is organized as follows: first, we present a brief overview of the math-
ematical concept for fuzzy control; then, we describe the language Fuzzy Applied Cell
Control Technology-soft computing, and finally, we present two applications for Intelligent
Systems and Control

2. Related Work

Currently, the planning of routes for the movement of robots plays an important role in
their mobility to avoid obstacles. Consequently, the development of smart and autonomous
systems refers to the academic and industrial environments in the R&D segment, given
the improved efficiency of smart systems. Intelligent systems use artificial intelligence and
pattern recognition algorithms to detect events, make decisions, and ultimately achieve the
most complex control of systems. Currently, developments for robot control using fuzzy-
based intelligent obstacle-avoidance strategy have been reported in the literature [16-18].
Fuzzy algorithms for the design, modeling and implementation of a fuzzy controller have
been presented in the literature for an intelligent overtaking system using neuro-fuzzy
controllers [19] and the design of a robust adaptive fuzzy controller for a single input-
single class (SISO) Uncertain nonlinear systems [20]. Moreover, other authors introduced a
real-time optimal path planning of humanoid robots [21-23], and Hongtao X and the team
presented a fuzzy algorithm for controlling the direction of a robot [24]. The authors [25]
presented a control architecture for automatic direction preservation using PID algorithms
with fuzzy logic.

Researchers [26,27] proposed trajectory tracking control of a four-wheeled omnidirec-
tional mobile robot based on the reference model approach.

Other authors have presented algorithms for steering control [28,29]. For localization,
using different fuzzy controllers and localization algorithms has been proposed in [30-33].
The applications proposed by us in this article are in a way of a novelty character, especially
fuzzy control applications for estimating the dynamics of the pulpation in panic conditions
and designing a Mamdani type fuzyy controller with two outputs.

As a result, fuzzy logic can be roughly equated to Computational Word (CW). CW is a
methodology that differs from the traditional definition of computing, which is the manip-
ulation of numbers and symbols. As a direct consequence, CW provides a methodology
for bridging the gap between human brain mechanisms and machine processes to solve
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problems by equipping computers with tools to deal with imprecision, uncertainty, and
partial truth. CW [34] deals with words and propositions from a natural language as the
main objects of computation, for example: “small”, “big”, “expensive”, “quite possible”
or even more complex sentences as “tomorrow will be cloudy but not very cold”. The
main inspiration of CW is the human ability of performing several different tasks (walk
on the street, play football, ride a bicycle, understand a conversation, making a decision)
without needing an explicit use of any measurements nor computations. This capability is
sustained by the brain’s ability to manipulate different perceptions (usually imprecise, un-
certain, or partial perceptions), which plays a key role in human recognition, decision, and
execution processes. In recent years, many researchers have seen CW as a very interesting
methodology to be applied in decision making [35]. As it allows to model perceptions and
preferences in a more human-like style and it can provide computers some of the needed
tools, if not to fully simulate human decision making, to develop complex decision support
systems to ease the decision makers to reach a solution [36].

3. Materials and Methods

In this article, we will not present the theory of fuzzy logic in detail, because we did
this in a previous article “Aircraft Trajectory Tracking Using Radar Equipment with Fuzzy
Logic Algorithm”, where in Sections 2.1-2.3, we detailed these elements [37]. In this article,
we will focus on how to achieve an optimal fuzzy controller and on the implementation of
the architecture and functionalities of fuzzy processors.

Fuzzy processors are programmable like standard microprocessors, but the execution
of fuzzy operations is much faster. PC’s operation as well as the availability of a wide
range of data acquisition modules makes the implementation of control systems with the
help of PC’s in various programming systems/platforms to know a strong development.
The integration of fuzzy logic on such platforms programming has become easy due to the
use soft computing tools.

3.1. Fuzzy Controllers” Processor

In general, a fuzzy controller has the basic structure shown in Figure 1, where the
following component blocks are highlighted:

The fuzzy rules (knowledge base);

The fuzzification block;

The inference decision (inference decision);

The defuzzification block.

Base of
‘ Rules |
In Out
Block Block
Fuzzification Defuzzification

Base of Decision | |
:> Inference

Figure 1. The informational structure of a fuzzy controller.

The fuzzification block represents the input block in the fuzzy controller, with the
role of obtaining fuzzy information in the form of linguistic variables, linguistic terms and
membership functions from a crisp value. This fuzzy information (fuzzy values) will be
compared with the premises of all “if, then” type rules contained in the rules base and used
by the inference mechanism for their activation and application.

The basis of continuous rules is the transposition into fuzzy logic of the linguistic
description of the way in which an efficient control would be achieved.
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Therefore, this block consists of using the set of “if” and “then” rules set by the expert
and defined on the fuzzy input and output variables.

The inference mechanism expresses the way in which the rules established by the
expert for the input variables are interpreted and applied. This mechanism evaluates
which of the rules are relevant at the appropriate time based on the degrees of membership
and decides the (fuzzy) value of the output quantity from the controller using operators
appropriate to vague logic.

The defuzzification block ensures that the result obtained from the decision block, a fuzzy
value, is converted into a real physical value that will be transmitted to the process/execution
element. Practically, the reverse fuzzification operation will be performed here.

3.2. Classification of Fuzzy Processor

Fuzzy processors can perform three essential operations: real-fuzzy transformation
(TRF), inference, and fuzzy-real transformation (TFR). If X and L(X) are the finite set of
numeric values and the set of linguistic terms associated with the processor inputs, U and
L(U) are the finite set of numeric values and the set of linguistic terms associated with the
processor outputs. In this hypothesis, it is E any set, and F(E) is the set of fuzzy subsets of
E. If so, E will represent the “discourse universe”. TRF can be represented by a function,
denoted ¢, on the interval determined by the set X to the fuzzy subsets associated with the
processor input, which we denote by F(Y). The inference will produce a new fuzzy subset
starting from the TRF result, using a lot of rules. This can be represented by a function,
denoted g, from the set F(Y) associated with the processor input, to a set of fuzzy subsets
associated with the output denoted F(Z).

TFR produces a real output using the inference result. The result obtained can be
represented by a function, which we will denote J, for the set F(Z) associated with the
output, at U. The set Y associated TRF and the inference can correspond to the set of
numerical values, X, or the set of linguistic terms, L(X). Similarly, the set Z associated with
the inference and TFR processes can represent a set of numerical values, U, or a set of
linguistic terms, L(U). Thus, the definitions mentioned above determine a classification
of fuzzy processors into four classes, as shown in Figure 2. A fuzzy processor that uses
inference g; will be called type i or abbreviated fuzzy processor, CF;.

F(X) 01—» F(U)
@1

1

0

" HLM] —— L)

&

Figure 2. Classification of fuzzy processors into four classes.

3.3. Fuzzy Component
We can define the following components:

Fuzzy sensors, which ensure the representation of measurements as fuzzy subsets.
Fuzzy actuators, which operate in the real world, are depended on the fuzzy subsets
they receive at the input.

e Inference fuzzy components that can perform fuzzy calculations. They produce new
fuzzy subsets obtained from the received fuzzy subsets.
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In general, we use two types of components: components that work with subsets of
numbers and components that work with subsets of symbols. The first components can
be called numeric fuzzy components and the other symbolic fuzzy components. In the
mentioned classification, the fuzzy sensors are represented by the function ¢, the fuzzy
actuators by the function ¢ and the fuzzy inference components by the function g. Their
purpose is to interconnect all the fuzzy components in a network, to reduce the amount
of information they will exchange with each other. Due to the use of a small number of
linguistic terms in applications, it is useful to develop symbolic fuzzy components. In the
following, we will consider only the obscure symbolic components, omit the notion of
“symbolic” and use only the term “fuzzy component”. The fuzzy sensors are represented
by the ¢, function, the fuzzy actuators by the é, function and the inference components by
the g4 function.

Their purpose is to interconnect all the fuzzy components in a network, to reduce the
amount of information they will exchange with each other. Due to the use of a small number
of linguistic terms in applications, it is useful to develop symbolic fuzzy components. In
the following, we will consider only the obscure symbolic components, omit the notion
of “symbolic” and use only the term “fuzzy component”. Most fuzzy control applications
that rely on computers or microprocessors are programmed to make numerical inferences
by sequential calculations is limited to solving problems that do not require high response
speeds. Real-time systems require short response times in most cases. In this case, the
hardware implementation of fuzzy systems is the only affordable solution. The digital
(numerical) hardware approach of fuzzy systems will contain the logic circuits needed
to execute fuzzy algorithm, memory for storing fuzzy rules and tables correspondence
(look-up tables) for storing the membership functions of the input and output variables.
Thus, compared to an analog approach, the digital approach offers greater flexibility in
design and good compatibility with other digital systems. On the other hand, in order to
communicate with sensors and actuators, most digital systems require analog-to-digital
and digital-to-analog converters.

3.4. Fuzzy Cells

Fuzzy components can be considered as independent applications belonging to a
general model, called the fuzzy cell (Figure 3). Fuzzy cells can be implemented with the
microcontroller, DSP, and FPGA. Local communications can be provided by a local bus ar-
chitecture and the communication performance. The input interface can be provided by an
analog converter-numerically, with which the microcontroller can be equipped. The same
converter can be accessed successively by several analog channels. If the microcontroller
is equipped with inputs for pulse modulation, an output interface may also be available
local analog.

Communication between fuzzy cells can be provided on an I12C bus, which is known
to have an extremely low implementation cost. However, any other communications
interface supported by the microcontroller can be used. Each component connected to
the I2C bus has an address that identifies it. Specialized circuits have been developed to
facilitate connection to the bus I12C. Depending on the configuration we use, the fuzzy cell
can be a fuzzy sensor, a fuzzy actuator, or an inference component (Figure 4a). A fuzzy
sensor can be implemented in the same cells together with the inference component.

Using this principle, a fuzzy processor can be easily implemented using a single fuzzy
cell. In this case, the fuzzy cell performs TRF, inference, and TFR. Figure 4b shows the
implementation of a fuzzy sensor in cell 1, and in cell 2 a fuzzy controller is implemented.
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(a)

Bus I2C
CELL
Sp Communication Interface
Interface
> < - A 4 A 4 A 4
Output T . oG
Transformation o Transformation
R-F F-R
| Additional Functions |
FACCT
Figure 3. Fuzzy cell architecture.
PROCESS PROCESS
CELL 1 CELL 2 CELL 3 Supervisor CELL 1 CELL 2 Supervisor
Transform
R-F
Transform Inference Transform Transform Inference
R-F F-R R-F
Transform
F-R

(b)

Figure 4. The configuration of a fuzzy cell: (a) configuration with a fuzzy sensor, a fuzzy actuator or an inference component;

(b) implementations of a fuzzy sensor in cell 1 and a fuzzy controller in cell 2.

3.5. Mathematical Models for Fuzzy Components
3.5.1. Real-Fuzzy Symbolic Transformation

The symbolic fuzzification used in fuzzy cells is based on the definitions of the notions
of meaning and description. If X is a discourse universe and L(X) a lot of linguistic terms
associated with it, then the relationship between X and L(X) defines a fuzzy language and
can be characterized by a fuzzy graph whose realization function is pg(x, L), where x € X
and L € L(X) for pugr(x,L) : XxL(X) — [0,1]. The linguistic term fuzzy is defined by the
function M: M : L(X) — F(X) for which

Vx € X, upr)(x) = pr(x, L)

)

The membership function ) (x) shows to what extent an element of X can be

associated with the meaning of a linguistic term.
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The fuzzy description of an element of the set X (this is in this case a measurement)
defined by the function D : X — F[L(X)], so that

VL € L(X), pp(x)(L) = pr(x,L) )

The membership function jip(,) (L) shows to what extent the linguistic term L satisfies
the description of an element in X.

It follows that the meaning of fuzzy and the description of fuzzy are linked by an
equal relation (see Figure 5), which shows that an element is described by a linguistic term
if this element also belongs to the meaning of the term

Hp(x) (L) = paqr) (x) ®3)

Most of the time, the notation M(L) is abbreviated to L. Thus, instead of writing
(e (x), we write pp (x). It is considered that, in most cases, the context will make the
difference between the term and its meaning. In this situation, the clarification is established
by the precise definition of the fuzzy description whose result is a fuzzy subset defined on
a set of linguistic terms. Thus, the fuzzy description becomes consistent with the symbolic
fusing defined by the function j,. It turns out that the solution for implementing fuzzy
sensors is to calculate the fuzzy descriptors associated with a measurement simultaneously
with the definition of all fuzzy signification for all linguistic terms.

M) (x)
¢ A
po(i (L)
UM (near) MM(mean) ﬂM(far)
/. .
\ ®
I * I g ® >

Near Mean Far

10 12 B

Figure 5. The fuzzy meanings and the fuzzy linguistic for x = 12.

3.5.2. Symbolic Fuzzy Inference

Fuzzy cells use the g4 inference, for which the relation associated with the set of rules
can be defined by the Cartesian multiplication of the set of linguistic terms. If L(¢), L(Ae)
and L(U), respectively, representing the datasets for linguistic terms for error, error variation,
and command term variation. Each control rule defines a relation on the cartesian multipli-
cation L(€) x L(Ae) x L(U), where L € (¢), L' € L(Ae) and L” € L(U). This relationship
can be represented on the fuzzy graph and the membership function is ur(L,L’,L"). For
example, the principle “If the error is negative and the error variation is positive then the
command is zero” leads to the conclusion that yr(negative, positive, zero) = 1.

The result of the inference results from the law of composition. With two inputs and
the operator min as the triangular rate, inference is relation below (4), resulting in a fuzzy
subset of L(U).

VL € L(U), pp(L) = min{min{p (L) pgaaey (L], pr(L L, L) |

: @
Le L(e),L € (AS)
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In this expression, max is the projection operator, and L(U) represents the finite set of
linguistic terms. The first min operator represents the combination operator that performs
the conjunction between the input and the representation of the fuzzy graph. The second
min operator represents the aggregation of the inputs and determines the establishment of
the rules.

3.5.3. Fuzzy-Real Symbolic Transformation

TFR is one of the main processes used in fuzzy control. The classical models of TFR,
represented by the J; in Figure 2, are the Mean Maximum (MoM) and the Center of Area
(CoA). The Fuzzy—Real symbolic transformation, represented by the function ¢, in Figure 2,
makes the connection between the Fuzzy subset set F[L(U)] and the action control, U. We
can approach several calculation variants for the symbolic Fuzzy—Real transformation.
In this article we will choose the method that considers the function J, as a unification
of the other two functions mentioned above. The first, denoted J3: [L(U)] — F(U),
will transform the result of the inference, from a fuzzy subset L(U), into a fuzzy subset
belonging to the set U. The second function, denoted J;, represents the classical method
defuzzification.

Knowing the meanings of the symbols in L(U), the relation 3 is analogous in principle
with an inference of type g3. It can be calculated (using the law of composition of inference)
because of the fuzzy subset signification of these symbols. If the function associated with
the inputs is pr, it results

Vu € U, pg(u) = min|pe(L), paaqr ()] 5)

Using the center of area method, the numerical value return by the fuzzy actuator is

Jre(y)xdy
U=0(F) =", 7€l 6
= Toimay T ©
and the discrete variant through
N,

Yoty 1s(yq)
Con(r) = Eratavn o

Ygtq 18(Yq)

where Nj; is the number of quanta used to discretize the membership function yg(y) of the
fuzzy output B.

0 04 06
P

Let fuzzy subset be F : {N' =, . In Figure 6 is proposed a defuzzification solution

obtained with a triangular norm min which leads to the result y = 0.12.

A A
IF HMmN) HMm2) HM(P)

-0.7 0 0.7

Ze
N
T

Figure 6. The proposed solution for defuzzification obtained with a triangular norm min which leads
to the result y = 0.12.
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3.6. Fuzzy Cell Configuration
3.6.1. Use a Local Compiler and Soft Computing

Setting up a fuzzy cell should be as simple as possible. Due to the distribution of fuzzy
operations in several cells, the solution based on the unique system configuration must be
avoided. Defining the rules and fuzzy meanings associated with linguistic terms is similar
globally. However, none of them allows easy implementation of distributed systems for
TREF, inference and TFR.

That is why new languages need to be developed, specially designed to configure
fuzzy cells. We call such a language Fuzzy Applied Cell Control Technology (FACCT).

A FACCT compiler must be integrated into each fuzzy cell. After receiving a FACCT
file, the fuzzy cell must call the compiler. It generates an internal representation of the file
that is processed by the cell. FACCT files can be transmitted by any component connected
to the network, these can be other fuzzy cells but also processing computers. Figure 7
shows a three-cell configuration fuzzy connected to a computer that works as a supervisor.

PROCESS
| |
CELL 1 CELL 2 CELL 3
|
Supervisor Text File Text File Text File
LCCF-Celll 1 LCCF-Cell2 I LCCF-Cell3

Figure 7. Configuration of three fuzzy cells connected to a computer that functions as a supervisor.

Inserting a compiler at the cell level is not a common practice, so some explanations
are needed. The first reason would be an active configuration at any time for connecting
components and easily configurable, unlike the classic solution in which the use of a
microcontroller in the cell configuration leads the compilation and link-editing outside
the system.

The second reason would be the advantage of soft computing distribution. It is
commonly accepted that a smart component (smart sensors or smart actuators) contains
local processing capabilities. Therefore, the association between the “intelligence” of
a component and the use of microprocessors, DSP or FPGA is always made. In fact,
intelligence is included in processor operation algorithms rather than local configuration.
It is also possible admits that a component could be considered intelligent without having
local processing capabilities. Suppose a rapid Fourier transformation is required in the
event of an exceptional situation. The classic solution leads to the implementation of an
intelligent sensor based on a microprocessor powerful enough to process such an algorithm,
even if the probability of occurrence of the exception it is small. Thanks to the component
interconnection bus, one can imagine components that have locally stored algorithms
that can be executed on any remote resource in the network. We call these components
“Distributed Intelligence Components.” The realization of this solution implies the existence
of an interoperable language, so that all computing resources, regardless of the type of
processor used, can perform calculations and exchange information.

From this point of view, FACCT can be considered an interoperable language for
the development of fuzzy components with distributed intelligence (Figure 8). Thus,
fuzzy cells and fuzzy computing resources that use the FACCT language can make a
resident compiler.
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FUZZY LOGIC CALCULATION UNIT

TRANSDUCER SEQUENCES Execution Unit

Converter
Analog-Digital REREE— Compiler LCCF

AM \ i Compiler FACCT
RAM Memory ; Network Interfaces

A
Network Interfaces

Figure 8. Development fuzzy components with distributed intelligence using the Fuzzy Applied
Cell Control Technology (FACCT) programming language.

3.6.2. Soft Computing Implementation of Fuzzy Applied Cell Control Technology

Now we understand by the Fuzzy Applied Cell Control Technology soft computing
language a general method of solving a certain type of problem, which can be implemented
on the computer. In this context, an algorithm is the absolute essence of a routine. The
programming language that underlies the fuzzy machine includes, in addition to the
logical part, an algebraic part. It is therefore a mixed type of algorithm, organized as a
finite sequence of steps, comprising several specific operations. They fully meet the basic
conditions to be implemented on the computer, i.e., they are defined and effective. The form
that the algorithm takes in a computer implementation is subordinated to the programming
style and depends especially on the type of language. The software implementation of the
fuzzy automaton can also be done based on a parallel algorithm. Parallel computing gives
a new dimension to the construction of Fuzzy Applied Cell Control Technology algorithms
and programs. It is emphasized that parallel programming is not a simple extension of
serial programming and that not all sequential algorithms can be parallelized.

In the case of Fuzzy Applied Cell Control Technology soft computing implementations,
the synthesis of fuzzy automata (controllers) is sufficiently flexible, being practically a
problem of emulating the typical phases of the algorithm, for the model of the given
problem. The ability to program a problem is important in this case. However, some
considerations are needed, which must be considered when structuring a fuzzy control
system, regardless of the form in which it will be implemented. The configuration of a
fuzzy controller, intended to lead a process, considers the conventional decomposition of
its dynamics, corresponding to the evolution strategies adopted in the modeling stage.

From the command point of view, the fuzzy controller will be structured on con-
trol channels depending on the type of dynamic controlled system: single-input/single-
output (SISO), multiple -input/single-output (MISO) and multiple-input/multiple-output
(MIMO). The problem of control channel independence is analyzed in the context of the
existence of the informational coupling. The interdependence of the channels is imposed
by the methodology of leading the control process, taking it into account when describing
the heuristic basis of the problem and in the stage of compiling the rule base.

This is important, especially in software implementation, because the way information
is processed depends on the sequential operating principle and the limited possibilities to
parallelize the calculations. The possibilities of direct hardware implementation of fuzzy
systems are currently a reality due to the appearance of fuzzy logic circuits, elementary ma-
chines for performing fuzzy inferences and circuits for generating characteristic functions
with controlled membership. These microelectronic systems are found in the structure of
dedicated or general-purpose fuzzy processors.
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Designing the Fuzzy Applied Cell Control Technology Architecture

To implement the mathematical models developed for special applications that we
present in the next chapter, it is necessary to design each component of the structure of
a fuzzy system: fuser, inference motor and defuzzification. The solution proposed for
the implementation of the decision-making system is based on the classic structure of a
fuzzy system with some specific modifications. The proposed architectures implement the
fuser based on the membership functions defined in the table by means of memory blocks.
The capacity of each memory block depends directly on the value range of the parameter
it defines. To define the membership functions and their shapes, the relative variation
of the wire resistance and the variation of the pressure in the glass tube were used. The
implementation of this method of fusing involves the use of memory circuits, which offers
the possibility of defining non-linear membership functions, different from the classical
ones, which can be quite convenient in case of more specific problems. The main advantage
of the fuzzifier implemented with this method is the possibility to render some rather
complex nonlinear membership functions. Another advantage is the use of memory blocks
with the help of which membership functions can be defined which can be subsequently
changed dynamically. The main disadvantage of the given approach is the use of a large
memory capacity to define all the membership functions of the fuzzy variable qualifiers.
The memory capacity used can be reduced by decreasing the value ranges. To define the
membership functions in the table and to register them in the RAM/ROM memory blocks,
it was necessary to perform the procedure for adjusting them. The given procedure consists
in translating the range of values to the right or to the left of the x-axis. This procedure must
be performed so that the value of the input variable represents the address of the memory
cell where the value of the membership function of the respective qualifier is located. To
implement the inference engine model with reconfigurable architecture, several of the
classic solutions were analyzed and then the most suitable ones were used to solve the
problem in question. The concept of the generic inference engine is required to be defined
in the case of solving specific problems of automatic decision-making, algorithms that can
change over time. Usually, these systems are characterized by the ability to self-organize the
decision-making process, which makes it difficult to design such a system and implement
such a decision-making algorithm. The architectures proposed for solving these problems
can be used both for the implementation of generalized decision-making algorithms and for
ensuring the possibility of dynamic reconfiguration. This methodology is used to describe
nonlinear or probabilistic decision-making processes. The use of configurable inference
rules in the inference engine structure offers the possibility to change them over time.
The use of configurable architectures in the inference engine structure, unlike specialized
Fuzzy processors, excludes the redesign of integrated circuits by using FPGA circuits that
have many inputs/outputs ports and only require reconfiguration of the circuit. Even
the design stage of a new fuzzy kernel can be significantly simplified by using libraries
of fuzzy logical elements. The generic inference engine can serve for the development of
decision-making algorithms initially implemented in the conditions of insufficient data.
Therefore, the use of reconfigurable inference engines offers the possibility to implement
different decision-making algorithms in fuzzy systems.

Below, we will mention some Fuzzy Applied Cell Control Technology elements:

> Declaration type variables

Crisp [numeric variable] = Defines numeric variables belonging to rigid input and
output sets, as well as other numeric variables useful in the system

Subset [ ... ] = Defines variables as fuzzy subsets.

Varlin [linguistic variable] = Defines the linguistic variables that will receive fuzzy partitions.

Term [linguistic term] = Defines the list of linguistic terms used to describe linguistic
variables.

> [nitialization type variables
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Partition [varlin, term, inf, sup, a, b, ¢, d] = Defines the meaning of the linguistic term
term associated with the linguistic variable varlin, in the universe of discourse [inf, sup].

varlin_1 = varlin_2 = Assigns the meanings of the linguistic terms of the variable
varlin_1 to the linguistic variable varlin_2. Both variables must be previously defined with
the varlin function.

subfuse as varlin = The fuzzy subfuse subset is defined relative to the set of linguistic
terms of the varlin linguistic variable.

> Execution variables

crisp_1 = crisp_2 = Assigns to numeric variable crisp_1 value of numeric variable
crisp_2

crisp = input (i) = The numeric variable crisp is assigned the numeric value converted
to the analog and processor input

fuzz (crisp) = The fuzz operator merges the crisp numeric variable defined with the
crisp function.

defuzz (crisp) = The defuzz operator defuses the crisp numeric variable defined with
the crisp function.

output (crisp) = The defusification result is transmitted to the analog output associated
with the crisp numeric variable defined with the crisp function.

if subfuz_1 is term_1 and subfuz_2 is term_2 and ... then subfuz_k is term k [(height)] =
Defines inference rules of type if then, where subfuz_i are the fuzzy subsets defined with
the subset function, and term_i are the linguistic terms associated with the fuzzy subset
defined relatively to a linguistic variable.

recv (adr, name, key) = Initiates the reception of the contents of the name variable from
the cell with the address adr.

send (adr, name, key) = Initiates the issuance of the contents of the name variable to the
cell with the address adr, associating the key with it.

4. Results

In this chapter, we will exemplify two specific examples: evacuation dynamics using
fuzzy control for escape panic flow control and complex decision system of an autonomous
vehicle. To implement these solutions, we performed the simulation of algorithms in
MATLAB version R2015 and LabVIEW version 2015 to validate the operation and per-
formance. Subsequently, the developed algorithms will be implemented hardware using
Fuzzy Applied Cell Control Technology soft computing.

4.1. Agent-Based Modeling and Fuzzy Logic for Simulating Pedestrian Crowds in Panic
Decision-Making Situations

The increasing occurrence of moments of panic during mass events motivated the
study of the impact of panic on crowd dynamics and the simulation of pedestrian flows
in panic situations. The lack of understanding of moments of panic continues to cause
hundreds of casualties each year, not to mention methodological studies of panic behav-
ior capable of predicting crowd dynamics. Under these conditions, there are thousands
of casualties and twice as many accidents caused by the crowd around the world, de-
spite efforts to control the crowd and many security forces. Pedestrian crowd dynamics
are generally predictable in high-density crowds, where pedestrians cannot move freely,
self-propelled interactions develop between pedestrians. Although each pedestrian has
personal preferences, the dynamics of the movement can be shaped as a social force of the
crowd. The corresponding forces can be controlled for each individual and represent a
different variety of behaviors that can be associated with panic situations, such as avoiding
danger, crowding, and pushing [38,39].

In this application we propose a new approach to intelligent control of mobility of
people in panic situations for their evacuation to improve the performance of evacuation
mobility from closed/open spaces, useful application in operations to save lives, in cri-
sis situations, earthquakes, fires or terrorist acts-CBRNE. In this software development
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(Figure 9), we use an agent-based model for pedestrian behavior in panic situations to
predict collective human behavior in a dynamic crowd situation using fuzzy logic controller.
The proposed simulations are a practical way to reduce fatalities and minimize evacuation
time (traffic flow) in panic situations.
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Figure 9. Graphical interface for simulating pedestrian crowds in panic decision-making situations.

The application (Figure 9) realizes the optimization of multimer flows, in the case
of disasters at events with high population densities in the open air and in closed spaces.
Using this application, we follow the execution of evacuation scenarios by decreasing the
population density to make efficient evacuations.

Integrated Intelligent Systems. Fusion architectures are the first form of integrated
intelligent systems. These include systems that combine different techniques into a single
computational model and share data structures and knowledge representations. Another
approach is to place different techniques side by side and analyze the interactions be-
tween them in a problem-solving task. This method allows the integration of alternative
techniques and their simultaneous exploitation. Moreover, the conceptual perspective
of the intelligent agent with cognitive ability allows the abstraction of individual tech-
niques and focus on the global behavior of the system but also the study of the individual
contribution of each component. The benefits of integrated models include robustness,
improved performance and increased troubleshooting capabilities. Finally, fully integrated
models provide a number of capabilities such as adaptation, generalization, noise tolerance
and reasoning. Merged systems have limitations caused by the increasing complexity of
interactions between modules, and specifying, designing and building fully integrated
models is an extremely complex process.

This application is based on serial processing performed by the fuzzy system and
intelligent agents, as shown in Figure 10. Before intelligent agents are modeled to determine
crowd behavior, the information entered is processed by fusing, and the usefulness of
the fuzzy system in this case is when we are dealing with uncertain information before
learning intelligent agents takes place. This structure is suitable for the design of systems
for determining population dynamics in crisis situations (panic) but also for the control
of autonomous robots, as the data collected from unknown and dynamic environments
are generally safe. It is necessary to process “fuzzy” data through fuzzy logic. In this
way, we can build a perfect model for intelligent agents with cognitive ability through a
neural network.
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Figure 10. Serial processing architecture made by the fuzzy system and intelligent agents with
cognitive ability.

The mathematical models used are multi-agent Artificial Intelligence algorithms,
discretization in time and space, realization of autonomous cell type models using fuzzy
logic, mathematical modeling of each agent to act individually; the simulation is performed
on static tactical field with probabilistic dynamics.

The input data comes from BT detection sensors, which power the RSSI signal recep-
tion power and the MAC address of mobile devices, and the output values are distance,
crowd dynamics, time horizon and speed. The output results return to the feedback curve
in the fuzzification block. The deffuzzification block is based on the centroid method.

To build the sensor system, we used Bluetooth (BT) sensors to receive signals from
mobile devices and then used fuzzy logic to determine a person’s location. The goal
is to use two fuzzy subsets to characterize the mobile device detected by position and
orientation relative to an orientation direction (escape route) [40].

Bluetooth sensors use signal strength (RSSI) and fuzzy logic to estimate the user’s
distance from each of the two transmitters installed. The method we use is a pseudo-
trilateral that employs fuzzy logic to determine position and orientation based on the
power of the receiving signal (RSSI), the MAC address and the actual physical coordinates
of the installed Bluetooth access points. Based on the RSSI received by the Bluetooth sensor
from the mobile terminal, the distance between the access points and the mobile terminal
can be determined.

To streamline the evacuation, we need a pedestrian control system that can auto-
matically optimize the waiting time for each evacuation route based on the number of
pedestrians (social crowds) already near the escape route and the number of those who
will arrive at the escape route.

Before implementing the application in the Fuzzy Applied Cell Control Technology
soft computing language, the solution was simulated using the MATLAB R2015 program.

Algorithm Design
Input sizes are:
Number of pedestrians already on the QUEUE escape route;
Number of pedestrians who will arrive ARRIVAL.
The output size is

e  The evacuation time interval for each pedestrian passing through the EXTENSION
escape route.

Value ranges of input and output quantities

Crisp (ARRIVAL) [0 6];

Crisp (QUEUE) [0 6];

Crisp (EXTENSION) [0 12].

Linguistic variables and membership functions

For the linguistic variables of the regulator the following linguistic terms are chosen:

For ARRIVAL: ALMOST (AM), FEW (FE), MANY (MA), TOO MANY (TMA);
For QUEUE: VERY SMALL (VSM), SMALL (SM), MEDIUM (ME), LARGE (LA);
For EXTENSION: ZERO (ZE), SHORT (SH), MEDIUM (ME), LONGER (LO);

The membership functions are chosen according to the Figures 11-13:
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Figure 11. The membership functions of the ARRIVAL entry.
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Figure 12. Membership functions of the QUEUE entry.
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Input variable EXTENSION

Figure 13. EXTENSION output membership functions.

The basis of rules are

If ARRIVAL is AL and QUEUE is VSM, then EXTENSION is ZE;
If ARRIVAL is AL and QUEUE is SM, then EXTENSION is ZE;

If ARRIVAL is AL and QUEUE is ME, then EXTENSION is ZE;

If ARRIVAL is AL and QUEUE is LA, then EXTENSION is ZE;

If ARRIVAL is FE and QUEUE is VSM, then EXTENSION is SH;
If ARRIVAL is FE and QUEUE is SM, then EXTENSION is SH;

If ARRIVAL is FE and QUEUE is ME, then EXTENSION is ZE;

If ARRIVAL is FE and QUEUE is LA, then EXTENSION is ZE;

If ARRIVAL is MA and QUEUE is VSM, then EXTENSION is ME;
If ARRIVAL is MA and QUEUE is SM, then EXTENSION is ME;
If ARRIVAL is MA and QUEUE is ME, then EXTENSION is SH;
If ARRIVAL is MA and QUEUE is LA, then EXTENSION is ZE;

If ARRIVAL is TMA and QUEUE is VSM, then EXTENSION is LO;
If ARRIVAL is TMA and QUEUE is SM, then EXTENSION is ME;
If ARRIVAL is TMA and QUEUE is ME, then EXTENSION is ME;

OB AT S TR me A0 T
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p-  If ARRIVAL is TMA and QUEUE is LA, then EXTENSION is SH.
Table 1 presents the basis of rules identified for the proposed application.
Table 1. Basis of rules identified for the proposed application.
ARRIVAL VSM QUEUE ME LA
SM

AL ZE ZE ZE ZE
FEW SH SH ZE ZE
MA ME ME SH ZE
TMA LO ME ME SH

(x0, y0)

d1

C1

d2

Implementing the application in the Fuzzy Applied Cell Control Technology soft computing
language. The problem is to obtain a symbolic description of the position of an object, based
on two sensors for measuring distance, ¢; and c;, represented in Figure 14. The purpose
of this application is to characterize the detected object by determining its position and
orientation by analyzing two fuzzy subsets. The syntax sets of terms are {close, quite_close,
quite_far, far} and {left, front, right].

C1 C2
s ' . e Supervisor
Fuzzy Sensor Fuzzy Sensor inference

Communications bus

C2

Figure 14. Description of the position of an object, based on two distance measuring sensors.

To obtain the distances d; and d, we use two BT sensors. The system can be extended
by introducing the 3rd BT sensor, thus forming pairs of 2 BT sensors each to reduce the
error of estimating the position/orientation of an object.

Smart sensors can be turned into fuzzy sensors by simply applying the FACCT pro-
gramming language, without using additional hardware. Each fuzzy distance sensor
describes the measurement as a fuzzy subset over the recognition set {close, medium,
headlight}. A third cell is used to aggregate the two distances, which involves creating a
virtual sensor to detect obstacles. The aggregation is performed by two different sets of
rules (see Figure 15), the first rule being associated with the position and the second rule
being associated with the orientation of the objects. The configuration of the fuzzy cells is
described in Figure 16. The two configurations are based on the same text files made in
the FACCT language. Each cell first performs the fuzzy symbolic transformation of the
measurements. The resulting fuzzy subsets are transmitted to cell 3.
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dl
POSITION CLOSE MEDIUM FAR
CLOSE CLOSE QUITE_CLOSE QUITE_FAR
d2 MEDIUM QUITE_CLOSE QUITE_FAR FAR
FAR QUITE_FAR FAR FAR

B 1 s»sis or ruies For cuance [N

dl
ORIENTATION CLOSE MEDIUM I FAR |
CLOSE FRONT RIGHT RIGHT
d2 MEDIUM LEFT FRONT RIGHT
FAR LEFT LEFT FRONT

Figure 15. The aggregation is performed by two different sets of rules.

For example, suppose that d; =90 m and d, = 230 m. According to the syntax definition
of the varying distance shown in Figure 16, the specific fusions are

®)

0.3 07 0
close” mediu’ far

(i) = {

0 02 08 } ©)

close” mediu’ far

() = {

The proposed operators give for h and i

086 014 0
h= {left' front’ right} (10)

(11)

0 006 038 056
close” quite_close” quite_far’ far

When designing a system that facilitates the evacuation of a crowd in a panic situation
(Figure 17), we must synchronize all consecutive exits (evacuation direction) so that the
evacuation of the crowd is as efficient as possible, based on distance and position calcula-
tions made by logic fuzzy and based on intelligent agents with cognitive behavior that will
determine population dynamics.
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Fuzzy Sensors Fuzzy Sensors Inference Fuzzy
Cell 1/Address 32 Cell 2/Address 64 Cell 3/Address 96

CONFIGURATION SOURCE FILES

declarations:
crisp d;

subset f:

varlin Distance;

initialisation;

partition(Distance, “Medium” 0, 255, 0, 125,
125,255);

partition(Distance, “Close”,0,255, , 0, 0, 125);
partition(Distance, “Far”,0,255, ,125,125,0,);

main;

d =input(0);
f=fuzz(d);
send(96, f, 0);

- FUZZY LOGIC -

Distance
A Close Medium Far

100 150 255

SUPERVISOR
Address 32

- CONFIGURATION SOURCE FILES -

declarations

subsetf, g, h, [;

varlin Distance, Position, Orientation;

term Close, Medium, Far, Left: Distance;

term Left, Front, Right: Orientation

term Close, Quite_close, Quite_far, Far:Position

initialisation block
recv(48, f, 0);
recv(64, g, 0);

f as Distance;
gas Distance;

h as Orientation;
| as Position;

main

h=0;

if fis “Close” and g is “Close” then h is “Front”;

if fis “Close” and g is “Medium” then h is “Left”;

if fis “Close” and g is “Far” then h is “Left”;

if fis “Medium” and g is “Close” then h is “Right”;

if fis “Medium” and g is “Medium” then h is “Front”;

if fis “Medium” and g is “Far” then h is “Left”;

if fis “Far” ang g is “Close” then h is “Right”;

if fis “Far” and g is “Medium” then h is “Right”

if fis “Far”and g is “Far” then his “Far”

i=0;

if fis “Close” and g is “Close” then i is “Close”;

If fis “Close” and g is “Medium” then i is “Quite _close”;
iffis “Close” and g is “Far” then i s “Quite_far”;

if fis “Medium” ang g is “Close” then i is “Quite_close”,
if fis “Medium” and g is “Medium” then i is “Quite_Far”
if fis “Medium” and g is “Far” then i is “Far”;

if fis “Far” and g is :Close” then i is “Quite_Far”;

if fis “Far” and g is “Medium” then i is “Far”;

if fis “Far”and g is “Far” then i is “Far”;

send (32, h, 0);

send (32,1, 1);

Figure 16. Configuration of fuzzy cells system.
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Figure 17. The result of modeling with intelligent cognitive agents.

4.2. Fuzzy Controller for Mobile Robot

In designing robots, they are intended to act more like human beings than machines.
Traditional logic makes use of firm numerical values and is therefore not suitable for ap-
proximating the human decision-making process. Fuzzy logic mimics the human thought
process by using the entire interval between zero and one, being used to represent human
thinking quite accurately [41]. The design of a fuzzy logic system can generally be divided
into the following stages: fuzzification, inference and defuzzification.

This application demonstrates the use of fuzzy logic to simulate parking a robot in a
specified location.

The autonomous robots are an independent mobile system equipped with various
mechatronic devices that act on the steering, acceleration and brake, respectively, to travel
without the intervention of the driver, in a real environment [41-43]. The main functions of
an Automobile as Mobile Robot vehicle: perception, recognition and identification of the
environment through the external sensory system; location, identifies the spatial position
in relation to fixed, sometimes mobile objects in the moving space; mapping, modeling
the adjacent environment through maps; planning, generating routes and trajectories;
autonomous management, control and command of the execution subsystems for tracking
the trajectory requirements; manual guidance, by preserving the primary guiding function
by a human leader. Figures 18 and 19 show the system implementation architecture
using fuzzy logic and Bezier curves to achieve a route optimization algorithm. Figure 20
illustrates the diagram of the Mamdani fuzzy controller for controlling the mobile robot
considered in the present paper.

The algorithm for generating routes based on Bezier curves is based on the idea of
fixing an intermediate point and calculating the optimal trajectory that joins the current
position of the Mobile Robot with this point. The midpoint is defined by the partition (var-
lin,term,inf,sup,a,b,c,d) instruction, which has as a variable parameter the distance measured
from the reference point of the vehicle to the target point to which it is desired to travel
locally. The steering angle can be calculated based on this data. To generate the trajectory;,
it is necessary and sufficient to define the following parameters (Figure 21): START point
with position (X0, Y0), speed Gs, curvature Cs, speed Vs, STOP point with position (X4,
Y4), speed Gf, curvature Cf and velocity Vf. In addition, intermediate points must be
defined, like START /STOP points. This is done by using the data received from the fuzzy
algorithm. The importance of trajectory estimation using the extended fuzzy logic, Kalman
filter algorithm and Voronoi diagrams has been detailed in articles [44,45], in this article
using Beziers curves.
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Figure 18. Closed-Loop Control structure with Fuzzy Controller.
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Figure 19. Control system of the robot.
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Figure 20. Representation of the architecture for the realization of the route optimization algorithm.
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Figure 21. Example for calculation the optimization of the trajectory with Bezier curves and fuzzy.

Thus, when a jump in the path is detected that exceeds a previously established value,
an intermediate point (Xi, Yi) is placed. This intermediate point is then used as a control
point for generating the Bezier curve.

Fuzzy functions of expert knowledge encapsulated within statistical workflow data
are shown in Figures 22 and 23, simulate software in LabVIEW version 2015.

Dual inputs/outputs Fuzzy Controller (Figure 19) that is used to automate the ma-
neuvering process leading a truck from an arbitrary start position in backward direction
to a loading ramp. The robot is supposed to be run at constant low speed. The ma-
neuvering algorithm is represented by an appropriate rule base (knowledge basis). The
current maneuvering situation is at least represented by the two linguistic input variables
“vehicle-position” towards the loading ramp position and “vehicle-orientation”. The con-
troller output variable “steering-angle” serves as process command variable. This Fuzzy
Controller is responsible for the normal backward manneuvering operations.

Dual input Fuzzy Controller (Figure 20) is used to automate the maneuvering process
leading a truck from an arbitrary start position in backward direction to a loading ramp.
The robot is supposed to be run at constant low speed. The maneuvering algorithm is
represented by an appropriate rule base (knowledge basis). The current maneuvering
situation is at least represented by the two linguistic input variables “vehicle-position” to-
wards the loading ramp position and “vehicle-orientation”. The controller output variable
“steering-angle” serves as process command variable. This Fuzzy Controller is responsible
for foreward maneuvering operations necessary to bring the vehicle in a good start position
when backward operation fails to hit the ramp. The basis of rules is shown in Figure 24.
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Figure 22. LabVIEW implementation of the fuzzy controller system for backward trajectory optimization.

Consider an example in which you want to automate a robot to park itself from an
arbitrary starting position. A driver can control the vehicle by constantly evaluating the
current status of the vehicle, such as the distance from the target position and the orientation
of the vehicle, to derive the correct steering angle. Figure 25 represent this example.

You can define two input linguistic variables for this example. Vehicle Position
x represents the vehicle position in relation to the destination. Vehicle Orientation
represents the orientation of the vehicle. You also can define an output linguistic variable,
Steering Angle ¢, to represent the steering angle of the vehicle that you want to control.
You can define linguistic terms of Left, Left Center, Center, Right Center and Right for the
Vehicle Position x input linguistic variable to describe the possible positions of the vehicle
in relation to the destination. You can define linguistic terms of Left Down, Left, Left Up,
Up, Right Up, Right and Right Down for the Vehicle Orientation 3 input linguistic variable
to describe the possible orientations of the vehicle. The linguistic terms of the Steering
Angle ¢ output linguistic variable must represent both the direction and magnitude that
the steering angle changes. Therefore, you can use the linguistic terms Negative Large,
Negative Medium, Negative Small, Zero, Positive Small, Positive Medium and Positive
Large for this output linguistic variable.
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Figure 23. LabVIEW implementation of the fuzzy controller system for forward trajectory optimization.
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Figure 24. Cont.



Sensors 2021, 21,2617

25 of 33

output varisbles
— rnge
steering-angle -30 |0
- user- e user- e user- ln'ne user- . user- — user-
INW defined |Nqsmc| defined 2 defined PosSmall defined PosMed defined Pos! defined
ihape shapeindex  color shapeinde <ol ehape shapeindex ol chape shapeindex  color [shape e T shapeindex  cole
[ Trangle 0 n iTmnqle 0 o irmqu 0 W [[inge 0 W [inge |0 B [[vnge 0 |
2 |5 s 5 |5 Jo s Jo s o s s s s |» 5 |0 |»
(b)

Figure 24. LabVIEW implementation of the basis of rules for input variables (a) and output variables (b)—membership functions.
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Figure 25. Automating robot parking.

Membership functions are numerical functions corresponding to linguistic terms. A
membership function represents the degree of membership of linguistic variables within
their linguistic terms. For example, the linguistic variable Vehicle Position x might have
full membership (1) within the linguistic term Center at 5 m, no membership (0) within that
term at 4 m or less and 6 m or greater and partial membership at all distances between 4
and 6 m. If you plot the degree of membership against the value of Vehicle Position x, you
can see that the resulting membership function is a triangle function.

Sometimes a linguistic variable has full membership within a linguistic term at a
range of values rather than at a point value. If, for example, the linguistic variable Vehicle
Position x has full membership within the linguistic term Center at values x =5 + 0.25m, a
trapezoidal membership function applies, as shown in Figures 26 and 27.

Figures 28-30 show all membership functions for the input and output linguistic
variables of the robot maneuvering fuzzy system.
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Figure 26. Triangular membership function for the linguistic term Center.
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Rules describe, in words, the relationships between input and output linguistic vari-
ables based on their linguistic terms. A rule base is the set of rules for a fuzzy system.

To create a rule, you must specify the antecedents, or IF portions, and consequents, or
THEN portions, of the rule. For example, consider the following rule: IF Robot Position
x is Left Center AND Robot Orientation 3 is Left Up, THEN Steering Angle ¢ is Positive
Small. The clauses “Robot Position x is Left Center” and “Robot Orientation {3 is Left Up” are
the antecedents of this rule. The clause “Steering Angle ¢ is Positive Small” is the consequent
of this rule.

Associate an input linguistic variable with a corresponding linguistic term to form
an antecedent. Associate an output linguistic variable with a corresponding linguistic
term to form a consequent. The consequent of a rule represents the action you want the
fuzzy controller to take if the linguistic terms of the input linguistic variables in the rule
are met. When constructing a rule base, avoid contradictory rules, or rules with the same
IF portion but different THEN portions. A consistent rule base is a rule base that has no
contradictory rules.

The total number N of possible rules for a fuzzy system is defined by the following
equation:
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where pn is the number of linguistic terms for the input linguistic variable n. If each input
linguistic variable has the same number of linguistic terms, the total number N of possible
rules is defined by the following equation:

N=p"

where p is the number of linguistic terms for each input linguistic variable, and m is the
number of input linguistic variables. For example, for three input linguistic variables with
five linguistic terms each, the total number of possible rules is N = 53 = 125.

A rule base with at least one active rule for each possible combination of input
linguistic variables and linguistic terms is a complete rule base. If you define an incomplete
rule base, you must specify a default linguistic term for each output linguistic variable so
the fuzzy controller can handle situations in which no rules are active.

The Robot Position x input linguistic variable has five linguistic terms, and the Robot
Orientation B linguistic variable has seven linguistic terms. Therefore, the rule base of the
vehicle maneuvering example consists of N = 5 x 7 = 35 rules. You can document the
complete rule base in matrix form, as shown in Figure 31.

Vehicle Position x [m]
AND
Left Left Center Center Right Center Right
Negative Negative Negative Negative Negative
Eaff Dioin Small Medium Medium Large Large
Left Positive Negative Negative Negative Negative
Small Small Medium Large Large
; Left U Positive Positive Negative Negative Negative
c P Medium Small Small Medium Large
o
3
= s 5 2 5
& Up P05|lt|ve P03|lt|ve Zero Neggtlve Neggtlve
5 Medium Medium Medium Medium
2
]
< . Positive Positive Positive Negative Negative
2 Higiitg Large Medium Small Small Medium
Right Positive Positive Positive Positive Negative
9 Large Large Medium Small Small
Right Down Positive Positive Positive Positive Negative
9 Large Large Medium Medium Small

Figure 31. Complete rule base for the robot maneuvering.

Each column or row represents an antecedent of a rule. The term at the intersection
of a column and a row is the consequent of the rule corresponding to the aggregated rule
antecedent. For example, the following rule is highlighted in Figure 31. IF Robot Position x
is Left Center, AND Robot Orientation 3 is Left, THEN Steering Angle ¢ is Negative Small.

The fuzzy logic controller then uses the following equation to calculate the geometric

center of this area. .
" f(x)xdx
Cott =
f Ximin f (X) *
where CoA is the center of area, x is the value of the linguistic variable, and x,,;, and Xax
represent the range of the linguistic variable. The Center of Area defuzzification method

effectively calculates the best compromise between multiple output linguistic terms.
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Figure 32 illustrates the Center of Area (CoA) defuzzification method for the Steering
Angle ¢ output linguistic variable, assuming the minimum implication method. The shaded
portion of the graph represents the area under the scaled membership functions.
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Figure 32. Center of Area (CoA) Defuzzification Method.

Figure 33 summarizes the process of a fuzzy controller for the robot maneuvering,
using the CoA method of defuzzification.

(1) IF vehicle position x = center
AND vehicle orientation B = left up
THEN steering angle ¢ = negative small
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Figure 33. Process of a Fuzzy Controller using CoA Defuzzification.
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5. Discussion

After explaining the concept of distributed intelligent control, this article described
the concept of fuzzy components and their definition in terms of hardware and software.
A simple solution to implement fuzzy cell-based systems has been described. The cells
configuration in the network is performed by a specific syntax, called Fuzzy Applied Cell
Control Technology. The advantages of using a network of fuzzy components does not
limit only to those offered by the distributed systems. We find that fuzzy cells are easy
to configure, offering high-level programming functions, such as mergers and decision-
making processes. The distributed network configuration allows the addition of fuzzy cells
to increase system performance. The added components are not necessarily necessary to be
fuzzy components, because the network supports a multitude of data, thus creating an IoT
network. There is also the possibility to create virtual components, where cell 3 represents
a virtual position sensor.

The main contributions that the research presented in the article makes are the following:

> Defining the concept of distributed fuzzy control.

> Defining fuzzy components in a system with distributed fuzzy control.

> Defining the operations of symbolic fusing, symbolic inference and fuzzy-real symbolic
transformation based on the notions of fuzzy meaning and fuzzy description.

> Defining the elements of an interoperable language Fuzzy Applied Cell Control Technol-
ogy for the development of fuzzy components with distributed intelligence.

Within the theoretical and experimental research carried out, especially for application
Fuzzy controller for mobile robot, two essential problems were solved: the mapping of
the environment to be traveled and the planning of the Automobile as Mobile Robot
trajectory. From the point of view of mapping, efficient methods and algorithms have been
proposed from the point of view of calculation, able to consider uncertainties, to accurately
model the operating environments as well as to navigate autonomously according to the
optimal trajectories. In addition, issues related to simultaneous localization and mapping
issues related to the extraction of features and the issue of association have been resolved.
Obtaining credible information from sensors as well as the accuracy of identifying the
previous exploration of the same territory are key elements for the convergence of a
simultaneous localization and mapping algorithm.

We implemented a baking calculation of the route using Bezier curves. To simulate
the closed loop system, the fuzzy logic controller has been implemented for automatic
backward parking control. The algorithm is based on the initial position of the robot
and the final position, and the logical Fuzzy controller will control the steering angle and
speed of the robot, so that the robot maintains its course towards the parking position.
The parking error was reduced (minimized) by designing the fuzzy inference system in
the fuzzy logic controller. However, the results obtained from the simulation showed an
orientation accuracy of 94%. We will continue research to modify the fuzzy rules algorithm
to improve back parking accuracy.

The navigation algorithms for planning the designed, implemented and tested naviga-
tion routes meet the requirements imposed by the total autonomy, being able to model, gen-
erate and follow in real time the complicated trajectories to avoid obstacles that appear ran-
domly in the operating environment. The validation of the algorithms designed, developed
and implemented was done based on simulations, followed by laboratory experiments.

6. Conclusions

From the point of view of the concept of distributed intelligent control, three types of
components can be defined: Fuzzy sensors, which provide a representation of measure-
ments as fuzzy subsets; Fuzzy actuators, which can act in a real world; depending on the
fuzzy subsets; and they also receive fuzzy components of inference, which can perform
distributed fuzzy logic. They produce new fuzzy subsets from the fuzzy subsets they
received. Fuzzy components can be integrated for different applications into a compact
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model of components, called the fuzzy cell. The configuration of the cells in the network is
done through a specific programming language.

The advantages of using a network of fuzzy components are not only those offered by
distributed systems, because fuzzy cells are easy to configure, offering high-level functions
such as mergers and decision-making processes. The presented application Agent-based
modeling and fuzzy logic for simulating pedestrian crowds in panic decision-making
is based on the implementation of a network of sensors for receiving Bluetooth signals
from mobile devices and the use of fuzzy logic to determine the position of pedestrians
towards escape routes and calculation of the optimal evacuation distance. The purpose of
this research was to develop a solution for locating, tracking and analyzing populations
in panic situations, with different fields of application, from public transport to Crisis
Management systems. The accuracy of locating Bluetooth targets in indoor environments
depends on the efficiency of the data processing algorithms. The activities presented in
this paper focused mainly on the implementation of distance calculus using fuzzy logic
to improve the tracking of current positioning algorithms (trilateral and triangular). An
improved BT positioning algorithm is proposed through the merger using fuzzy control
and intelligent multi-agent algorithms. We created a new intelligent control interface for
evacuation of people in panic situations in order to improve the performance of evacuation
mobility from closed/open spaces, a useful application in operations to save lives in crisis
situations, earthquakes, fires or terrorist actions-CBRNE.

We have successfully designed a fuzzy controller that solves the problem of navigating
a robot in terms of obstacle avoidance behaviors, wall tracking, exploration and tracking
of the predetermined trajectory. One of the main contributions is the development of
the sensor-based navigation system, a system that uses fuzzy logic. Two types of fuzzy
controllers were developed, and simulation demonstrated that the fuzzy controller based
on the Bezier function is better suited for the development of robotic navigation systems.
The uniqueness of this application comes from the use of fuzzy Mamdani type logic with
two outputs. In the revised literature, many authors either avoided the use of the fuzzy
two-output logic controller or developed their own application program by using various
programming languages. In this application, we use standard fuzzy controller development
tools for autonomous mobile robot navigation.

Future Research Directions

The research carried out as well as the theoretical, experimental and practical results
obtained, integrated in a logical structure for obtaining autonomous robotic systems, only
partially cover the diversity of issues highlighted after the current stage. From the analysis
of the studies carried out as well as of the results obtained within this paper, four main
directions of their continuation are highlighted:

Implementation of the results obtained on real complex systems for telecommunications;

Implementation of the results obtained on real systems for navigation in real environ-
ments (industrial, road);

Implementation of the traffic flow algorithm in an ITS management system at the level
of a city;

Implementation of the traffic flow algorithm in complex telecommunication networks;

Development of virtual reality environments for complex integrated systems used in
communication networks;

Development of virtual reality environments for learning Automobile as Mobile Robot
systems as well as the development of a high-performance product dedicated to their
programming by learning.

Studies on multimodal human-vehicle communication interfaces correlated with the
new trends in cognitive programming of robots.
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7. Patents

Part of this research has been previously tested for developing a method for the anony-
mous collection of travelers flowing in a public transport system and resulted in a Patent
proposal: ROA /00493, “Method and System for Anonymous Collection of Information re-
garding Position and Mobility in Public Transportation, employing Bluetooth and Artificial
Intelligence” in 2019.
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