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Abstract: Properties of the Voronoi tessellations arising from random 2D distribution points are
reported. We applied an iterative procedure to the Voronoi diagrams generated by a set of points
randomly placed on the plane. The procedure implied dividing the edges of Voronoi cells into
equal or random parts. The dividing points were then used to construct the following Voronoi
diagram. Repeating this procedure led to a surprising effect of the positional ordering of Voronoi
cells, reminiscent of the formation of lamellae and spherulites in linear semi-crystalline polymers
and metallic glasses. Thus, we can conclude that by applying even a simple set of rules to a random
set of seeds, we can introduce order into an initially disordered system. At the same time, the
Shannon (Voronoi) entropy showed a tendency to attain values that are typical for completely
random patterns; thus, the Shannon (Voronoi) entropy does not distinguish the short-range ordering.
The Shannon entropy and the continuous measure of symmetry of the patterns demonstrated the
distinct asymptotic behavior, while approaching the close saturation values with the increase in
the number of iteration steps. The Shannon entropy grew with the number of iterations, whereas
the continuous measure of symmetry of the same patterns demonstrated the opposite asymptotic
behavior. The Shannon (Voronoi) entropy is not an unambiguous measure of order in the 2D patterns.
The more symmetrical patterns may demonstrate the higher values of the Shannon entropy.

Keywords: voronoi tessellation; shannon entropy; random set of points; ordering; lamellae; spherulite;
continuous measure of symmetry

1. Introduction

The quantification of ordering appearing in 2D sets of objects is important from both
fundamental and engineering points of view. The quantification of 2D ordering is crucial
for understanding phase transitions [1–4], the characterization of attractors in non-linear
systems [5], the treatment of images [6] and machine learning applied for study of physical
systems [7–9]. Various measures and mathematical procedures were implemented for
the quantification of ordering in 2D patterns, including Voronoi tessellations followed by
the calculation of the information (Shannon) entropy of the distribution of the Voronoi
polygons (which is also called the Voronoi entropy and abbreviated in the text as VE; VE
below within the text denotes the Shannon entropy) [10–17], Minkovski functionals [18–20],
method of correlation functions [21–23], and calculation of the recently introduced continu-
ous and Shannon measures of symmetry [6,24–27]. It was demonstrated that the introduced
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measures of symmetry do not necessarily correlate [27,28]. Moreover, they may demon-
strate anti-correlation. For example, the maxima of the continuous measure of symmetry
(abbreviated CSM), calculated for the levitating droplet clusters, may correspond to the
minima of the VE of the same cluster [28]. The analysis of the Penrose tiling provides
an even more convincing example. It was demonstrated that the continuous symmetry
measure and the Shannon (Voronoi) entropy of the studied sets of points, generated by the
Penrose tiling, do not correlate [29]. We, therefore, conclude that the notion of “ordering”,
as applied to the characterization of 2D patents built of points, has a fine structure, and
cannot be quantified by a single numerical parameter. In the presented paper, we study the
fascinating phenomenon of ordering that emerges from an initial random 2D set of points
and compare the Shannon (Voronoi) entropy and the continuous measure of symmetry of
the addressed patterns.

2. Methods
2.1. Software

We used MATLAB software to generate sets of randomly located seeds, build and
evaluate properties of the corresponding Voronoi tessellations, and divide the edges of the
Voronoi cells. We also used the open-access software designed at the Department of Physics
and Astronomy at the University of California, Irvine, which is available on the website
https://www.physics.uci.edu/~foams/do_all.html (accessed on 1 March 2022). The soft-
ware enabled exact identification of the polygons constituting the given Voronoi tessellation.

2.2. Procedure for Generation of Voronoi Diagrams

We started with a set of 25 points randomly located on the plane (seeds), as shown
in Figure 1. Next, the Voronoi tessellation generated by the random seeds was built. A
Voronoi tessellation of an infinite plane is a partitioning of the plane into regions based
on the distance to a specified discrete set of points (called seeds or nuclei and shown with
black squares in Figure 1). For each seed, there is a corresponding region, consisting of all
points closer to that seed than to any other [10–17].

Figure 1. Voronoi diagram (tessellation) emerging from the initial 25 randomly placed points (black
squares); green polygon is a quadrangle; yellow polygons are pentagons; grey polygons are hexagons;
the orange polygon is an octagon.

https://www.physics.uci.edu/~foams/do_all.html
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Next, the following iterative procedure was applied to the initial random Voronoi
tessellation depicted in Figure 1 according to the following steps: the edges forming the
Voronoi polygons were divided into two or three parts, equally or randomly. The dividing
points were then taken as the new seeds for new Voronoi tessellations (the former seeds
were excluded). This new diagram, in turn, was subjected to the division of the edges of
the polygons. The experiment was carried out for 10 different initial sets of random points.
The boundary open shapes recognized in Figure 1 were excluded under the quantitative
treatment of the Voronoi tessellations.

A random number generator of the MATLAB software was used for the generation of
the initial sets of coordinates of uniformly distributed random seeds in the interval (0, 1).
Ten sets of the coordinates resulting in the initial Shannon (Voronoi) entropy of the set
restricted within 0.950 < Svor < 1.735 were selected as initial sets for the aforementioned
iterative procedure.

2.3. Procedure of Calculation of the Continuous Measure of Symmetry

Now we introduce the continuous symmetry measure (abbreviated CSM), as it was
defined in references [24–26]. Consider a non-symmetrical shape consisting of nk points Mi,
(i = 1, 2 . . . nk) (which are the seed points of the given Voronoi diagram) characterized by a
given symmetry group G. The continuous symmetry measure denoted S(G) is determined
by the minimal average square displacement of the points Mi that the shape must undergo
in order to acquire the prescribed G-symmetry. Assume that the G-symmetrical shape,
emerges from the set of points M̂i. Since the set M̂i is established, a CSM is defined as

S(G) =
1

np
∑np

i=1

∣∣Mi − M̂i
∣∣2 (1)

(the square values in Equation (2) provide a function that is isotropic, continuous, and
differentiable). At the first step, the points of the nearest shape possessing the G-symmetry
must be identified. An algorithm that identifies the set of points M̂i that constitutes this
symmetrical shape was introduced in references [24–26]. Figure 2 depicts an equilateral
triangle M01M02M03 representing the symmetric shape that corresponds to the given
non-symmetric triangle M1M2M3.

Figure 2. Given non-symmetric triangle M1 M2 M3 (a). The equilateral triangle M01 M02 M03 rep-
resents the symmetrical shape corresponding to the non-symmetric triangle M1 M2 M3. (b) The
equilateral triangle M01 M02 M03 is depicted. Calculation of the CSM where point O is the common
centroid is shown (c).

The details of the transformation of the non-symmetric triangle M1M2M3 to the sym-
metric equilateral triangle M01M02M03 and algorithm of the calculation of the continuous
measure of symmetry are supplied in references [27–29].
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3. Results
3.1. Ordering in Voronoi Diagrams: Qualitative Analysis

Consider the division of the Voronoi cells’ edges into two equal parts. The procedure
of generating new seeds was repeated four times, giving rise to the patterns depicted in
Figure 3. The peculiarities inherent to this pattern were typical for all of the initial sets used.
The patterns depicted in Figure 3 somewhat surprisingly demonstrate the short-range
order (recall that the initial set of points was random). Two types of order appear in the
patterns depicted in Figure 3, which we call lamellae-like structures (circled with dashed
black rectangles in Figure 3) and spherulite-like patterns (circled with dashed black circles
in Figure 3), built on the aforementioned lamellae. This type of self-organization is inherent
in the melt-crystallized polymers, such as polypropylene [30,31]. Suppose a molten linear
polymer (such as polypropylene or polyethylene) is cooled down slowly. In that case,
some polymer chains take on a certain orderly configuration: they align themselves in
semicrystalline plates called lamellae [30,31].

Figure 3. The pattern emerging from the initial random Voronoi tessellation is depicted. Centers
of the initial Voronoi tessellation edges were taken as the seeds for a new one; the former seeds
were excluded. The pattern emerging from the four-time repetition of the procedure is depicted.
(A) Short-range ordering appearing in the pattern is illustrated with the dashed figures: lamellae-
like structures are circled by black dashed rectangles; spherulite is shown with the dashed circle.
(B) Polygons inherent for the Voronoi four-time tessellation are depicted: purple polygons are trian-
gles; green polygons are quadrangles; yellow polygons are pentagons; grey polygons are hexagons;
blue (aqua) polygons are heptagons; orange polygons are octagons; teal polygons are nonagons; red
polygons are decagons; deep blue polygons have 11 and more vertices.
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Spherulites are acicular structures radiating from a common core. Spherulites appear
not only in polymer science but also in geology [32–34] and biology (calcium carbonate
spherulites) as a result of animal digestive processes [35]. In geology, spherulitic aggregate
are radiating arrays of fibrous, needle-like or acicular crystals that are common in glassy
felsic volcanic rocks [32–34]. In polymer science, spherulites are defined as spherical
semicrystalline regions inside non-branched linear polymers [30,31,36]. Their formation is
associated with the crystallization of polymers from the melt and is controlled by several
parameters, such as the number of nucleation sites, structure of the polymer molecules and
cooling rate [30,31,36]. Depending on those parameters, the spherulite diameter may vary
in a wide range from a few micrometers to millimeters. Spherulites are composed of highly
ordered lamellae (thin ordered plates), which result in higher density, hardness, but also
brittleness when compared to disordered regions in a polymer.

Spherulite-like self-organization is clearly recognized in the pattern, shown in Figure 3.
The lamellae in non-branched polymers are connected by amorphous (disordered) regions;
this type of a structure is also inherent in the reported Voronoi tessellations. It should
be emphasized that spherulites appear in Voronoi tessellations built according to the
aforementioned iterative procedure, regardless of the initial random distribution of the
seed points. The physicochemical mechanisms of formation and ordering in polymer
spherulites are still unknown and controversial [36]. The mechanism of self-organization in
the studied patterns in its relation to the formation of spherulites in non-branched polymers
is discussed below in detail.

So we recognized that the procedure mentioned above for the construction of the
Voronoi tessellations gave rise to the distinct polymer-like short range ordering in the
Voronoi diagrams arising from the initial random 2D distribution of points. What is the
reason for this surprising ordering? We hypothesized first that the effect of ordering
emerged from the equal division of the edges of the Voronoi cells. In order to check this
hypothesis, we carried out an iterative procedure under which the edges of the Voronoi
polygons were divided into two random parts.

After four-time repetition of the procedure, the random division of the edges of the
Voronoi tessellations yielded the patterns depicted in Figure 4. Again, the similar short-
range order is distinguished in the pattern, the same types of the short-range order appear
in the patterns shown in Figure 4, namely, the lamellae-like structures (circled with dashed
black rectangles) and spherulite-like patterns built of lamellae (circled with dashed black
circles in Figure 4). Again, spherulites and lamellae appeared in the Voronoi tessellations,
regardless of the initial random distribution of the seed points. Thus, we conclude that
the random partition of the edges appearing in the Voronoi tessellation emerging from the
random initial distribution of points also give rise to the crystalline-polymer-like patterns,
demonstrating the short-range order.

We continued our investigations and performed the same procedure, which differed
from the aforementioned ones, in the division of the edges of the Voronoi tessellation
arising from the initial random distribution of points into three equal sections. Again,
spherulites and lamellae are distinctly recognized from the pattern, shown in Figure 5. The
pattern depicted in Figure 5 is the most interesting result of our simulations. Again, the
pattern demonstrates amazing similarity to the structures typical for crystalline polymers
ordered under slow cooling of the polymer melt.

In the next experiment, the same set of randomly placed points was also subjected to
the iterative procedure with division of the polygons’ edges into three random parts. The
process was repeated four times. This procedure yielded the eventual pattern, shown in
Figure 6. In this case, also spherulite-like structures (circled in Figure 6) emerged as well;
however, the ordering in this case is less pronounced, when compared with the pattern
depicted in Figure 5.
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Figure 4. The pattern emerging from the initial random Voronoi tessellation after four-time repetitions
of the procedure of random division of the polygons’ sides is depicted (A) Short-range ordering
appearing in the pattern is illustrated with the dashed figures: lamellae-like structures are circled by
black dashed rectangles; spherulites are shown with the dashed circles. (B) Polygons inherent for the
Voronoi tessellation are depicted: purple polygons are triangles; green polygons are quadrangles;
yellow polygons are pentagons; grey polygons are hexagons; blue (aqua) polygons are heptagons;
orange polygons are octagons; teal polygons are nonagons; red polygons are decagons; deep blue
polygons have 11 and more vertices.
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Figure 5. The pattern emerging from the initial random Voronoi tessellation is depicted. Edges of
the initial Voronoi tessellation were divided into three equal segments; the dividing points were
taken as the seeds for a new tessellation; the former seeds were excluded. The pattern emerging
from the four-time repetition of the procedure is depicted. Spherulites and lamellae are distinctly
distinguished within the pattern. Marking of the polygons is as follows: purple polygons are triangles;
green polygons are quadrangles; yellow polygons are pentagons; grey polygons are hexagons; blue
(aqua) polygons are heptagons; orange polygons are octagons; teal polygons are nonagons; red
polygons are decagons; deep blue polygons have eleven and more vertices.

Figure 6. The pattern emerging from the initial random Voronoi tessellation is depicted. Three points
randomly placed on the edges of the initial Voronoi tessellation were taken as the seeds for a new
tessellation; the former seeds were excluded. The pattern emerging from the four-time repetition
of the procedure is depicted. Spherulites are circled. Polygons inherent for the Voronoi tessellation
are depicted: purple polygons are triangles; green polygons are quadrangles; yellow polygons are
pentagons; grey polygons are hexagons; blue (aqua) polygons are heptagons; orange polygons are
octagons; teal polygons are nonagons; red polygons are decagons; deep blue polygons have 11 and
more vertices.

3.2. Quantitative Analysis of the Voronoi Diagrams

Quantitative characterization of the reported Voronoi diagrams was performed with
the calculation of the Voronoi entropy (VE) and continuous measure of symmetry (CSM) of
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the diagrams. The Shannon (Voronoi) entropy of the given set of points located on a plane
is defined as

Svor = −∑i PilnPi (2)

where Pi is the fraction of polygons possessing n edges for a given Voronoi diagram (also
called the coordination number of the polygon) and i is the total number of polygon types
with a different number of edges. The summation in Equation (1) is performed from i = 3 to
the largest coordination number of any available polygon, e.g., to i = 6, if a polygon with the
largest number of edges is a hexagon. For the details of calculation of CSM, introduced into
Section 2.3, see reference [29]. Let us start from the binary dividing of the initial Voronoi
diagrams, which generated the patterns in Figures 3 and 4. The results of the calculations
are illustrated in Figure 7.

Figure 7. Cont.
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Figure 7. VE calculated for the patterns emerging from a random initial distribution of the points. The
number of repetitions is shown on the X-axis. (A) VE for the seeds arising from the equal partition
of the edges for 10 original sets of random points. (B) VE for the seeds arising from the random
partition of the edges for 10 original sets of random points. (C) Comparison of VE for one of the sets
(set 25Rand_06). Blue circles depict VE for the seeds arising from the random partition of the edges;
orange triangles correspond to the VE established for the Voronoi diagrams emerging from the equal
partition of the edges into two segments.

It is clearly recognized from Figure 7 that regardless of the VE of the original set, with
the increasing number of repetitions (iterations), VE approaching the close asymptotic
values, namely the random partition of the edges, yielded the asymptotic value of the
VE Sasymp

vor, random
∼= 1.8, whereas the equal partition of the edges yielded Sasymp

vor, 2
∼= 1.7. This

means that an increase in the number of iterations yields more disordered patterns (as
estimated with the informational (Shannon) measure of the distribution of the Voronoi
polygons) approaching a fixed asymptotic value of the VE. It is noteworthy that VE of the
aforementioned patterns is close to that corresponding to completely random patterns [37],
namely Svor,random

∼= 1.71. Thus, we necessarily conclude that VE does not distinguish
positional ordering, namely the spherulite-like ordering, inherent for the patterns depicted
in Figures 3 and 4.

The continuous measure of symmetry of the same patterns demonstrated the opposite
asymptotic behavior, i.e., CSM decreased with the number of repetitions (iterations) of
the suggested process, as it is recognized from Figure 8. In other words, polygons in the
patterns become more symmetric with the number of iterations. We conclude that VE
and CSM demonstrated the opposite tendency when calculated for the same patterns,
demonstrating spherulite-like short ordering, when edges of the Voronoi tessellations were
divided into two segments.

It was also instructive to study the distribution of polygons within the studied Voronoi
tessellations. The histograms representing these distributions are supplied in Figure 9. It is
seen that the most popular polygon in these Voronoi tessellation is a hexagon; this situation
is typical for random patterns. This result arises from the general topological properties of
random 2D patterns as discussed in reference [11].
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Figure 8. Continuous measure of symmetry (CSM) calculated for the patterns emerging from the
random initial distribution of the points. The number of repetitions is shown on the X-axis. (A) CSM
for 10 original sets of seeds after division into two equal parts is depicted. (B) CSM for 10 original
sets of seeds after division into two random parts is shown. (C) Comparison of the CSM in the same
original set of seeds after division of edges into two equal or random parts. Blue circles depict CSM
for the seeds arising from the random partition of the edges; orange triangles correspond to seeds
emerging from the equal partition of the edges into two segments.
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Figure 9. Histogram representing the distribution of polygons in the Voronoi diagrams emerging
from the seeds dividing the edges of the preceding Voronoi tessellation into two parts: blue columns
represent the random partition; orange columns represent the equal partition of the edges.

Now, consider the properties of the diagrams established for the patterns obtained
when the edges of the pristine Voronoi tessellations were divided into three equal segments,
or alternatively the same edges were randomly divided into three segments.

It should be emphasized that in this case, the Voronoi entropy is growing with the
number of iterations of the discussed process under attaining the asymptotic value of
Svor = 2.03 ± 0.02, as shown in Figure 10A; CSM demonstrated the same asymptotic
behavior, attaining with the number of iterations the value of CSM ∼= 0.4, as shown in
Figure 10B. This is true for both random and non-random partitions of the edges of the
pristine Voronoi tessellations. This means that the asymptotic behavior of patterns, shown
in Figures 5 and 6, demonstrates ordering recognized by both VE and CSM. Consider that
CSM in this case is twice larger than that established for the patterns emerging from dividing
the edges of the Voronoi diagrams into two parts as shown in Figure 8, pointing to the
less symmetrical nature of the polygons constituting the patterns. This quantitative result
evidences the elongated shapes of the lamellae, inherent for the patterns corresponding to
the partition of the edges into three parts, when compared to the same shapes corresponding
for the patterns arising from the partition of the edges into two parts. This means that the
sides of lamellae are more different in their length.

Figure 10. Cont.
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Figure 10. VE and CSM calculated for the patterns emerging from the random initial distribution of
the points. (A) Blue circles depict VE for the seeds arising from the random partition of the edges into
three segments; orange triangles correspond to the VE established for the Voronoi diagrams emerging
from the equal partition of the edges into three segments. (B) Blue circles depict CSM for the seeds
arising from the random partition of the edges into three segments; orange triangles correspond to
CSM established for the Voronoi diagrams emerging from the equal partition of the edges into three
segments. The number of repetitions is shown on the X-axis.

Now, consider the distribution of polygons in the patterns arising from dividing the
edges of the Voronoi diagrams into three segments, illustrated in Figure 11. The similarity
of the distributions corresponding to the random and non-random partitions of the edges
catches the eye. One of the surprising features of these distributions calls for explanations:
the most common polygons in both of these distributions are pentagons; it should be
stressed the that the most popular polygon in random 2D patterns is a hexagon [11]. This
observation also evidences the ordered nature of the patterns shown in Figures 5 and 6. The
presence of exotic polygons possessing a large number of edges in the patterns arising from
the partition of edges of the pristine Voronoi tessellation into three segments, recognized
from Figure 11B, is also noteworthy.

Figure 11. Cont.
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Figure 11. Histograms representing the distribution of polygons in the Voronoi diagrams emerging
from dividing the edges of the preceding Voronoi tessellation into three parts: (A) Blue columns
represent the random partition; (B) Orange columns represent the equal partition of the edges.

3.3. Physical Interpretation of the Self Organization

Possible interpretation of the observed self-organization may be suggested within the
physical model suggested in reference [11]. Let us view the initial Voronoi diagram, such
as that depicted in Figure 1 as a random two-dimensional soap foam. The total “surface
energy” U of such a soap is defined by the total length of all cell edges.

U = 2γ ∑edges li (3)

where γ denotes the “surface tension” (the dimensions of γ are [γ] = J
m , consider that

the pattern is a two-dimensional one), and li is the length of cell edge i. When the edges
forming the Voronoi polygons are divided into two or three parts, equally or randomly,
∑edges li = const takes place. This implies U = const; thus, the formation of the next gener-
ation of the Voronoi diagrams takes place under the constant surface energy of the foam,
which is not kept constant within the entire iterative process. Thus, the entire iterative
process, suggested in the manuscript, may be interpreted as follows: we start from the
random 2D Voronoi foam, generated by the randomly distributed nuclei. In the next step,
new nuclei precipitate on the edges of the polygons, forming the foam. The process of
precipitation keeps the “total surface energy” of the foam constant. Physically, precipitation
of new nuclei (seeds) on the edges of polygons sounds natural and thermodynamically
justified. The system rearranges itself around new nuclei. Thus, self-ordered polymer-like
lamellae appear in the pattern. In the realm of polymer crystallization, the introduced
process corresponds to the “secondary nucleation” scenario introduced by Lauritzen and
Hoffman in their pioneering paper on the theory of polymer crystallization from dilute
solution, published in 1960 [38]. Secondary is the nucleation which occurs on the surfaces
of crystals of the material [38,39]. Thus, new seeds appearing on the edges of the Voronoi
tessellation are seen as the centers of the secondary crystallization [39]. Secondary crys-
tallization in polymer results in formation of lamellae constituting polymer spherulites,
as shown in references [38,39]. The consequent iterations of the introduced procedure
of generation of Voronoi diagrams correspond to the stages of secondary, tertiary, etc.,
crystallization occurring in the polymer melt or solution. It is noteworthy that lamellar
structures were registered not only in polymers, but also in the metallic glasses [40,41]. The
physical reasoning of such short-range ordering calls for additional insights; however, it is
reasonable to suggest that they emerge from the secondary crystallization process.
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4. Conclusions

We investigated the properties of patterns arising from the Voronoi tessellations
stemming from the random initial distribution of points on the plane [11–17]. The following
mathematical procedure was applied: at the first stage, the Voronoi tessellation generated
by a random set of seeds was built. At the next stage, the following iterative procedure
was applied to the initial random Voronoi tessellation: the edges forming the Voronoi
polygons were divided into two or three parts, equally or randomly. The dividing points
were then taken as the new seeds for the new Voronoi tessellations (the former seeds were
excluded). This new diagram, in turn, was subjected to the division of the edges of the
polygons. The mathematical experiment was repeated for 10 different initial sets of random
points. The results of the experiment were quite surprising: equal or random dividing
of the edges of the Voronoi polygons gave rise to ordered patterns, strongly resembling
those registered for linear semi-crystalline polymers such as polyethylene or polypropylene
and metallic glasses [30–32,34,35]. Lamellae and spherulite-like structures, perceived as
the evidence of short-range ordering, systematically, appeared in the eventual patterns.
Thus, clearly distinguished 2D ordering emerged from the aforementioned mathematical
procedure applied to the initially random set of points. We quantified the ordering with
Voronoi entropy and the continuous measure of symmetry [24–29]. The Shannon (Voronoi)
entropy and the continuous measure of symmetry of the addressed patterns demonstrated
pronounced asymptotic behavior, while approaching the close asymptotic values with
the increase in the number of iteration steps. Voronoi entropy grew with the number of
repetitions (iterations), whereas the continuous measure of symmetry of the same patterns
demonstrated the opposite asymptotic behavior, i.e., it decreased with the number of
repetitions (iterations) of the introduced process. In other words, polygons in the patterns
become less ordered from the point of view of the Voronoi entropy, but more symmetric (as
quantified with the continuous measure of symmetry) with the number of iterations. We
necessarily conclude that the notion of ordering is not well defined. The Shannon (Voronoi)
entropy, which increased in our mathematical experiments, is not sensitive to the lamellae
and spherulite-like ordering, clearly recognized in our model experiments. So, the Voronoi
entropy is not an unambiguous measure of order in the 2D patterns. The more symmetrical
patterns may demonstrate relatively higher values of the Shannon (Voronoi) entropy. These
conclusions support the findings established under the analysis of the Penrose tiling and
ordering registered for the levitating water clusters [28,29]. It is reasonable to suggest that
the introduced mathematical iterative procedure possesses substantial common features
with the secondary crystallization process, giving rise to the formation of spherulites in the
polymer melts and solutions [38,39].
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