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A B S T R A C T   

The quality of asymptomatic corona virus disease 2019 (COVID-19) computed tomography (CT) image is 
reduced due to interference from Gaussian noise, which affects the subsequent image processing. Aiming at the 
problem that asymptomatic COVID-19 CT image often have small flake ground-glass shadow in the early lesions, 
and the density is low, which is easily confused with noise. A denoising method of wavelet transform with 
shrinkage factor is proposed. The threshold decreases with the increase of decomposition scale, and it reduces the 
misjudgment of signal points. In the advanced stage, the range of lesions increases, with consolidation and 
fibrosis in different sizes, which have similar gray value to the CT images of suspected cases. Aiming at the 
problems of low contrast and fuzzy boundary in the traditional wavelet transform, the threshold function based 
on the optimization of parameters combined with the improved particle swam optimization (PSO) is proposed, so 
that the parameters of wavelet threshold function can change adaptively according to the lung lobe and ground- 
glass lesions with fewer iterations. The simulation results show that the paper method is significantly better than 
other algorithms in peak signal-to-noise ratio (PSNR), signal-to-noise ratio (SNR) and mean absolute error (MSE). 
For example, aiming at the early asymptomatic COVID-19, compared with the comparison methods, the PSNR 
under the proposed method has increased by about 5 dB, the MSE has been greatly reduced, and the SNR has 
increased by about 6.1 dB. It can be seen that the denoising effect under the proposed method is the best.   

1. Introduction 

1.1. Background & problem domain 

COVID-19 is a new type of virus that is extremely contagious, and the 
population lacks immunity [1]. According to reports [2], asymptomatic 
COVID-19 accounts for 12% of the confirmed cases. Goh [3] finds that 
the viral load in asymptomatic COVID-19 patients is similar to that in 
symptomatic patients, suggesting that asymptomatic patients have the 
potential to spread the virus. This paper intends to analyze asymptom
atic COVID-19 CT image denoising, so as to reduce the rate of missed 
and mistake diagnosis for asymptomatic COVID-19 patients. It is helpful 
for the subsequent image processing and doctors’ judgment of 
patients’condition. 

1.2. Review of literature 

CT images will produce high-dose radiation in the process of acqui
sition, which will pose a great threat to the patient’s health. The damage 
to the patient’s body is usually reduced by decreasing the CT dose at 
present. But CT images taken with low dose usually have Gaussian noise. 
In addition, when the dose remained constant, the fatter the subject, the 
greater the noise. Relevant experiments have proved that when the 
volume of the subject increases by 8 cm, the Gaussian noise will double. 
On the other hand, the medical equipment is used for a long time and the 
use environment is poor, resulting in poor heat dissipation, which will 
also produce Gaussian noise. The asymptomatic COVID-19 CT image 
will inevitably be polluted by Gaussian noise during transmission, which 
causes the image to be blurred and affects the quality of the subsequent 
processing. Therefore, an effective image denoising method is very 
important. Wavelet transform can adjust the sampling length of different 
frequencies in time domain, and it has the characteristic of multi- 
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resolution for Gaussian noise [4,5]. However, the traditional wavelet 
transform has some problems of constant deviation and discontinuous 
threshold. Hence, some scholars have researched on it. Reference [6] 
proposed a new threshold function, which has an adjustment factor. 
Although the threshold function can be adjusted dynamically, the 
denoising effect is not very ideal. Reference [7] proposed to add the 
adjustment parameters to optimize the typical hard and soft threshold, 
but the effect has been improved to a certain extent. Reference [8] 
proposed wavelet transform based on multi-layer threshold function, 
which adjusts the threshold factor according to the different sampling 
length, but it did not analyze the influence on the denoising effect. 
Reference [9] proposed an adaptive threshold function, which reduces 
the deviation between the original wavelet coefficients and the esti
mated wavelet coefficients by setting appropriate adjustment parame
ters, but the denoising effect is not ideal. Reference [10] proposed an 
improved wavelet threshold with symbolic function, and it set different 
adjustment factors to compare and analyze the changes of PSNR. It can 
be seen from the simulation results that there is still a constant devia
tion. Reference [11] proposed a new threshold function combined with 
the traditional hard and soft threshold. Through the comparison of 
simulation results, it can be seen that the PSNR increases, but the effect 
is not particularly significant. Reference [12] made full use of 3D 
wavelets and proposed a weighted 3D wavelet denoising algorithm 
based on the principle of volume sub-band weighting. The sub-band 
weighting aims to better improve the image representation ability and 
adaptively remove noise in the image, and it has a good noise coefficient 
representation ability. Reference [13] proposed the framework of dual 
tree complex wavelet transform (DTCWT). DTCWT overcomes the de
fects of wavelet transform. It also has translation invariance and multi- 
directional selectivity, which can express the characteristics of image 
more effectively. Reference [14] proposed an image denoising method 
in the dual-tree complex wavelet transform domain, which combines 
multi-level median filtering in the complex wavelet domain to remove 
the noise caused by the imaging environment and imaging firmware 
defects. Reference [15] proposed to introduce the bivariate statistical 
model into the real part and the imaginary part coefficients of dual tree 
complex wavelet transform, and the joint probability model of real part 
and imaginary part coefficients was used as the mathematical model to 
remove Gaussian noise. Reference [16] combined the unsampled 
wavelet transform with the dual-tree complex wavelet transform to 

produce an unsampled dual-tree complex wavelet transform, which 
provides improved low-scale sub-band localization and improved di
rection selectivity for better Gaussian noise removal. Reference [17] 
proposed a dual-tree complex wavelet transform which combines sin
gular value decomposition and Frobenius energy correction factor, and 
the image is threshold processed with a binary shrink function (SVDBL). 
However, the Frobenius energy correction factor lacks theoretical basis, 
which is difficult to apply to different images and it has poor robustness. 
Reference [18] improved the DTCWT filter and proposed the integer 
DTCWT filter, which reduces the hardware complexity of the method 
and it has the advantages of DTCWT translation invariance and multi- 
directional selectivity. However, its disadvantage is that it reduces the 
representation accuracy of the image coefficients and ignores the subtle 
features of the image. 

1.3. Gaps identified from review 

The above improved algorithms have great improvements in 
denoising performance, which reduce the deviation between the orig
inal wavelet coefficients and the estimated wavelet coefficients, so as to 
improve the approximation between the reconstructed image and the 
original image to a certain extent, but there are still some deficiencies in 
dealing with image detail blur. Asymptomatic COVID-19 CT image 
shows small pieces of ground-glass shadow in the early lesions, and its 
border has halo sign, which is easily confused by noise. On the other 
hand, the lesions of asymptomatic COVID-19 show uneven in the 
advanced stage, which is similar to the CT image of suspected cases such 
as influenza virus and staphylococcal pneumonia. The traditional 
wavelet transform has problems of low contrast and fuzzy boundary. 

1.4. Paper structure 

The rest of this paper is organized as follows. Section 2 describes the 
wavelet transform including the wavelet threshold and the threshold 
function. We present its mathematical properties. In Section 3, we pro
pose the improved particle swarm including the inertia weight and 
learning factor for optimization of wavelet parameters. In Section 4, we 
show the simulation experiments for the different kinds of CT images 
including early asymptomatic COVID-19, advanced asymptomatic 
COVID-19, resolution asymptomatic COVID-19, influenza virus 

Fig. 1. Paper structure.  
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(suspected case of asymptomatic COVID-19), staphylococcal pneumonia 
(suspected case of asymptomatic COVID-19). This paper is structured as 
shown in Fig.1. 

1.5. Highlights 

The objective of this paper is to denoise the asymptomatic COVID-19 
CT images better, which is helpful for the subsequent image processing 
and doctors’ judgment of patients’ condition. The highlights of this work 
can be summarized as the following: (i) In Section 2, an improved 
wavelet threshold based on the shrinkage factor is proposed. In this 
method, the threshold decreases with the increase of decomposition 
scale. It improves the accuracy of noise detection to a greater extent for 
asymptomatic COVID-19; (ii) In Section 2, we develop the wavelet 
threshold function based on the adjustment factor integrated with the 
arc tangent, which overcomes the discontinuity and the constant devi
ation of the traditional threshold function. It is suitable for noisy signals 
with different variance; (iii) In Section 3, a wavelet transform based on 
the optimization of parameters combined with improved PSO is pro
posed, so that the wavelet parameters can change adaptively according 
to the details of lung lobes and ground-glass shadow with relatively few 
iterations; (iv) In Section 4, aiming at the different kinds of asymp
tomatic COVID-19 CT images, the simulation experiments prove that the 
paper method has strong robustness to Gaussian noise, which enhances 
the ability of image denoising while better protecting the details of the 
lesion. It reduces the rate of missed and mistake diagnosis for asymp
tomatic COVID-19. 

2. Principle and calculation of wavelet transform denoising 

2.1. Principle of wavelet transform 

An image model f(j,l) containing Gaussian noise [19] is expressed as: 

f (j, l) = g(j, l)+ n(j, l) (1)  

Where, f(j,l) represents the image with Gaussian noise; g(j,l) represents 
the original image without noise; n(j,l) represents Gaussian noise and it 
follows normal distribution N(0, δ2) ; (j,l) represents the pixel position of 
the image. The main steps of wavelet transform denoising are as follows: 
a) The wavelet coefficient wj,l is obtained by wavelet transforming of f(j, 
l); b) The threshold of each decomposition scale is set, and the wavelet 
coefficient wj,l is processed by the threshold function to obtain the 
wavelet estimation coefficient ŵj,l; c) The wavelet estimation co

efficients are used to reconstruct the denoised image f̂ j,l . 

2.2. Calculation of wavelet threshold 

The calculation of threshold directly affects the denoising effect. At 
present, the traditional threshold calculation methods include Stein 
unbiased likelihood estimation [20], heuristic threshold [21], maximum 
and minimum threshold [22], fixed threshold [23]. Aiming at the 
problems that the image detail is easy to be lost and the denoising effect 
is not obvious in the traditional threshold. This paper proposes an 
improved wavelet threshold based on the shrinkage factor, which is 
expressed as: 

λ =
δ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ln(M × N) × e1/n

√

ln(n + 1)
× z (2)  

Where,
̅̅̅̅̅̅
e1/n

√

ln(n+1)is the shrinkage factor. n is the number of decomposition 
scale. M× Nrepresents the size of the image.δ represents the variance of 

Gaussian noise, and the expression is δ =
median(|wj,l|)

0.6745 . The wavelet 
threshold will gradually decrease with the increase of decomposition 
scale, which has good adaptability and better denoising effect. z is an 

adjustable parameter. 

2.3. Improvement of wavelet threshold function 

The traditional hard threshold function [24] has the problem that the 
continuity of wavelet estimation coefficients is very poor, which is 
discontinuous at ±β. Therefore, the reconstructed image will produce 
oscillation and truncation effect. The soft threshold function has good 
continuity, but there is a certain deviation between the wavelet co
efficients and the estimated coefficients, thus the final denoising effect is 
not very ideal. This paper improves the threshold function by increasing 
the adjustment factor integrated with the arc tangent to reduce the 
constant deviation between the original wavelet coefficients and the 
estimated coefficients, and its expression is: 

ŵj,l =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1 − μ

)
wj,l+

μsgn
(

wj,l

)(⃒
⃒wj,l

⃒
⃒ − m × λearctan(|wj,l|− λ)

a)
,

⃒
⃒wj,l

⃒
⃒⩾λ

sgn
(

wj,l

)[
w2t+1

j,l

(
et − 1

/
2
)

λ− 2t
]
,

⃒
⃒wj,l

⃒
⃒<λ

(3)  

Where, u = e− b(|wj,l|− λ)2 
; a,b,m and t are adjustable parameters, and they 

are all positive numbers, so the denoising performance of the threshold 
function can be improved by selecting different value of parameters. 
Moreover, in the interval of 

⃒
⃒wj,l

⃒
⃒<λ , the threshold function is not 

directly set to 0, it is gradually compressed through a nonlinear function, 
which can avoid the oscillation effect caused by the direct truncation of 
the traditional threshold function. From the view of mathematical point 
to examine the improved threshold function: 1) Analysis of function 
continuity 

lim
wj,l→λ+

ŵj,l = lim
wj,l→λ+

[(

1 − μ
)

wj,l+

μsgn
(

wj,l

)(⃒
⃒wj,l

⃒
⃒ − m × λearctan(|wj,l|− λ)

a)]
=

lim
wj,l→λ+

[

μsgn
(

wj,l

)(
⃒
⃒wj,l

⃒
⃒ − m × λearctan(|wj,l|− λ)

a
)]

=

lim
wj,l→λ+

[

sgn
(

wj,l

)(
⃒
⃒wj,l

⃒
⃒ − m × λearctan(|wj,l|− λ)

a
)]

=

lim
wj,l→λ+

[

wj,l − m × λearctan(|wj,l|− λ)
a
]

= 0

(4)  

Where,limwj,l→λ+ ŵj,l = 0, limwj,l→λ− ŵj,l = 0. Then there is limwj,l→λ+ ŵj,l =

limwj,l→λ− ŵj,l = 0, indicating that the threshold function is continuous at 
λ. 

lim
wj,l→− λ−

ŵj,l = lim
wj,l→− λ−

[(

1 − μ
)

wj,l+

μsgn
(

wj,l

)(⃒
⃒wj,l

⃒
⃒ − m × λearctan(|wj,l|− λ)

a)]
=

lim
wj,l→− λ−

[

− μ
(
⃒
⃒wj,l

⃒
⃒ − m × λearctan(|wj,l|− λ)

a
)]

=

lim
wj,l→− λ−

[

−

(
⃒
⃒wj,l

⃒
⃒ − m × λearctan(|wj,l|− λ)

a
)]

=

lim
wj,l→− λ−

(

λ− − m × λearctan(|wj,l|− λ)
a
)

= 0

(5)  

Where,limwj,l→− λ− ŵj,l = 0, limwj,l→− λ+ ŵj,l = 0.Then there is 
limwj,l→− λ− ŵj,l = limwj,l→− λ+ ŵj,l = 0, indicating that the threshold func
tion is also continuous at − λ. In conclusion, the improved threshold 
function is continuous at ±λ. 2) Analysis of function deviation 

lim
wj,l→+∞

(

ŵj,l − wj,l

)

= lim
wj,l→+∞

[(

1 − μ
)

wj,l+

μsgn
(

wj,l

)(⃒
⃒wj,l

⃒
⃒ − m × λearctan(|wj,l|− λ)

a)
− wj,l

]
=

lim
wj,l→+∞

(

wj,l − wj,l

)

= 0

(6)  
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lim
wj,l→− ∞

(

ŵj,l − wj,l

)

= lim
wj,l→− ∞

[(

1 − μ
)

wj,l+

μsgn
(

wj,l

)(⃒
⃒wj,l

⃒
⃒ − m × λearctan(|wj,l|− λ)

a)
− wj,l

]
=

lim
wj,l→− ∞

(

wj,l − wj,l

)

= 0

(7)  

Therefore,limwj,l→+∞(ŵj,l − wj,l) = limwj,l→− ∞(ŵj,l − wj,l) = 0 can be ob
tained. When increases, the deviation between and will gradually de
creases, which can overcome the problem of constant deviation in the 
soft threshold function. 3) Influence analysis of threshold adjustable 
factors a, b, m and t When 

⃒
⃒wj,l

⃒
⃒⩾λ, a = 0 and b = 0, the improved 

threshold function is hard threshold function. When b→∞, the improved 
threshold function is soft threshold function. Therefore, the improved 
threshold function can be adjusted between soft and hard threshold 
function. In the interval of 

⃒
⃒wj,l

⃒
⃒
〈
λ , the value of threshold can be 

adjusted by selecting different value of t. In summary, by analyzing the 
continuity, deviation and adjustable factors of the improved threshold 
function, it can be seen from the proof that the threshold function in this 
paper overcomes the discontinuity of the hard threshold function and 
the constant deviation of the wavelet coefficients in the soft threshold 
function. 

3. Optimization of wavelet transform parameters based on 
improved PSO algorithm 

3.1. Basic PSO algorithm 

The parameters of a, b, m, t and z are optimized by the improving 
PSO algorithm. The basic formula for the velocity and position of the 
particle swarm [25] is: 

{
vt+1

id = wvt
id + c1r1

(
gbestt

id − xt
id

)
+ c2r2

(
zbestt

gd − xt
i,d

)

xt+1
id = xt

id + vt+1
id

(8)  

Where,d = 1,2,…,n (n represents the dimension of feature space);i = 1,2, 
…,m (m represents population size); t represents the current particle 
evolution algebra; w represents the inertia weight; c1 and c2 represent 
learning factor; r1 and r2 represent the random number in [0,1]; vt

id 
represents the velocity of the particle in the feature space; xt

id represents 
the position of the particle; gbestt

id represents the individual optimal 
solution; zbesttgd represents the global optimal solution of the population. 

3.2. Improvement of inertia weight 

In the advanced stage of asymptomatic COVID-19, the lesion is larger 
than that of the early stage, with consolidation and fibrosis in different 
sizes. The ground-glass shadow is uneven and it have similar gray value 
to the CT image of suspected cases such as influenza virus and staphy
lococcal pneumonia. Aiming at the problems of low contrast and fuzzy 
boundary in the traditional denoising method, a wavelet transform 
combined with improved PSO is proposed. The wavelet denoising pa
rameters can be changed adaptively according to the details of lung 
lobes and ground-glass shadow lesion with relatively few iterations. The 
inertia weight based on combining sine and cosine with normal distri
bution is proposed, the expression is: 

Fig. 2. Flow chart of wavelet transform combined with improved PSO.  
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w = wmax ×

(

1 − sin
(

π × t
2 × Tmax

))

+

1̅̅̅
̅̅

2π
√

θ

(

wmax − wmin

)

×

(

e−
(t/Tmax )k

2θ2 − e
)

× cos
(

π × t
2 × Tmax

)

+

rand × wmin × sin
(

π × t
2 × Tmax

)

(9)  

Where, wmax represents the maximum coefficient of inertia weight; wmin 
represents the minimum coefficient of inertia weight and t represents 
the current number of iteration; Tmax represents the maximum number 
of iteration and k represents the nonlinear control factor; θ represents 
the degree of dispersion for the normal distribution, θ = 0.4433; rand 
represents a random number between (0, 1). 

3.3. Improved learning factor 

In the traditional PSO algorithm, the value of learning factors c1 and 
c2 is usually fixed [26], which is not set according to different stages. 
The learning factor based on combining sine and cosine with inertia 
weight is proposed, which satisfies the relationship of “as one falls, 

another rises” between c1 and c2, the expression is: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c1 =

2.5sin
[π
2

(

1 −
t

Tmax

)]

1 + e− w

c2 = 2.5 − 2.5cos
[

π
2

(

1 +
t

Tmax

)]
(10)  

Where, t represents the current number of iteration and Tmax represents 
the maximum number of iteration. By adjusting the learning factor, the 
particles are searched in a large range at the initial stage in order to 
obtain a variety of high-quality particles. In the later stage, they 
continue to learn from the global optimization and get rid of the inter
ference of local extremum as much as possible, so as to improve the 
accuracy of the solution. The steps of the CT image denoising method 
based on the wavelet transform combined with the improved PSO al
gorithm are as following: a) Step 1: we select the wavelet basis function 
db5 and perform wavelet transform on the noisy image f(j,l) to obtain a 
set of wavelet decomposition coefficients wj,l; b) Step 2: the noise vari

ance δ is calculated by δ =
median(|wj,l|)

0.6745 . On this basis, the threshold λ is 
calculated by Equ. (2). The wavelet decomposition coefficient wj,l is 

Fig. 3. CT image of early asymptomatic COVID-19: (a) impulse (30%) noise; (b) original CT image; (c) denoised image by WTPSO; (d) denoised image by BSTF; (e) 
denoised image by TATF; (f) denoised image by MLTF; (g) denoised image by ISTF; (h) denoised image by STF; (i) denoised image by HTF. 
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Fig. 4. CT image of advanced asymptomatic COVID- 
19: (a) impulse (30%) noise; (b) original CT image; 
(c) denoised image by WTPSO; (d) denoised image by 
BSTF; (e) denoised image by TATF; (f) denoised image 
by MLTF; (g) denoised image by ISTF; (h) denoised 
image by STF; (i) denoised image by HTF. CT image of 
resolution asymptomatic COVID-19: (j) impulse 
(30%) noise; (k) original CT image; (l) denoised image 
by WTPSO; (m) denoised image by BSTF; (n) denoised 
image by TATF; (o) denoised image by MLTF; (p) 
denoised image by ISTF; (q) denoised image by STF; 
(r) denoised image by HTF.   
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processed by Equ. (3). When 
⃒
⃒wj,l

⃒
⃒⩾λ, the expression of the estimated 

wavelet coefficient is ŵj,l1 = (1 − μ)wj,l + μsgn(wj,l)(
⃒
⃒wj,l

⃒
⃒ − m×

λearctan(|wj,l|− λ)a ). When 
⃒
⃒wj,l

⃒
⃒<λ , the expression of the estimated wavelet 

coefficient is ŵj,l2 = sgn(wj,l)[w2t+1
j,l (et − 1/2)λ− 2t ]; c) Step 3: the param

eters of the wavelet transform is optimized by the improved PSO. The 
value of MSE is taken as the fitness function [27]28. The inertia weight is 
calculated by Equ. (9) and the learning factor is calculated by Equ. (10). 
When the number of iteration is exceeded, the optimal parameters of the 
wavelet transform is output and then the estimated wavelet coefficient 
ŵj,l is obtained. d) Step 4: the wavelet basis function db5 is used for 

wavelet reconstruction to obtain the denoised image ̂f j,l. The flow of the 
improved algorithm in this paper is shown in the Fig.2. (See Fig.3) 

3.4. Theoretical analysis of average computational time complexity of 
improved PSO 

This section analyzes and compares the average computational time 
complexity of the improved PSO algorithm and the traditional PSO al
gorithm. According to the above description of the traditional PSO al
gorithm and the improved PSO algorithm, it can be seen that for the 
traditional PSO algorithm, the value of the particle inertia weight and 
the learning factor in each iteration remain unchanged. Assuming that 
the operation time required for each iteration of each particle in the i-th 

step is Ti, where, i = 1,2,…,m. m represents the maximum number of 
iteration, so there is T1 = T2 = … = Tm = T. Assuming that the number 
of particles in the iteration is N, it can be concluded that the total 
running time required by the traditional PSO algorithm for optimization 
is N× m× T. For the improved PSO algorithm proposed in this paper, 
the value of the inertia weight of the particles decreases with the number 
of iterations, and the learning factors are complementary. Therefore, 
there is T1⩾T2⩾…⩾Tm. Assuming that the number of particles in the 
iteration is N, the total running time required by the improved PSO 
optimization is 

∑m
i=1N× Ti. It can be seen from the above analysis that 

the difference in the computational complexity between the improved 
PSO and the traditional PSO is mainly reflected in the running time 
required by each particle in each iteration. The following section will 
analyze the average computational time complexity of the algorithm 
based on the experimental results. 

4. Experimental results and analysis 

In order to verify the effectiveness of the improved threshold func
tion, the wavelet basis function db5 is used for different layers of 
decomposition and reconstruction. The size of the test image is 512  ×
512 (M = 512, N = 512). The software platform is Intel E8200 CPU 2.5 
GHz, RAM 8G, windows 10 and MATLAB 2016a. Bayes shrink threshold 
function(BSTF) [4], traditional adaptive threshold function(TATF) [29], 

Fig. 5. CT image of influenza virus (suspected cases of COVID-19): (a) impulse (30%) noise; (b) original CT image; (c) denoised image by WTPSO; (d) denoised image 
by BSTF; (e) denoised image by TATF; (f) denoised image by MLTF; (g) denoised image by ISTF; (h) denoised image by STF; (i) denoised image by HTF. 
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multi-layer threshold function(MLTF) [30], improved symbolic 
threshold function(ISTF) [31], soft threshold function (STF) [24], hard 
threshold function(HTF) [24] and paper method(wavelet transform 
combined with improved PSO,WTPSO) are used for early CT image, 
advanced CT image and suspected cases of asymptomatic COVID-19 
with different variance noise. Different Gaussian noise variance values 
(δ = 0.1,δ = 0.2,δ = 0.3,δ = 0.4,δ = 0.5,δ = 0.6,δ = 0.7) are added to 
the image, and different decomposition levels n are selected at the same 
time. The experimental parameters are set as:wmax = 0.9, wmin = 0.4,
Tmax = 150. The particle population dimension is set as 5. The particle 
size is set as 50. When δ = 0.3, n = 3, the denoised asymptomatic CT 
images of early COVID-19, advanced COVID-19 and suspected cases are 
shown in Figs. 4–7. From a visual point of view, the denoised image 
under WTPSO in this paper is clearer and the denoising effect is more 
obvious than the comparison methods. 

In order to further verify the denoising effect of the improved 
threshold function in this paper from the objective data; Mean square 
error (MSE), peak signal-to-noise ratio (PSNR) and signal-to-noise ratio 
(SNR) and structural similarity (SSIM) are used to evaluate the denoised 
image. The lower the MSE, the better quality of the denoised image. The 
higher the PSNR and SNR, the better effect of the denoising method. 
SSIM is an index to measure the similarity of two different images. The 
range of SSIM is [0,1], the value of SSIM is closer to 1, the more similar 
the two images are. It indicates that the effect of image denoising 

method is better. The expression of MSE is: 

MSE =
1

M × N

∑M

j=1

∑N

l=1
[f (j, l) − f̂ (j, l)]2 (11)  

The expression of PSNR is: 

PSNR = 10 × lg
(

2552

MSE

)

(12)  

The expression of SNR is: 

SNR = 10lg

∑M

j=1

∑N

l=1
f (j, l)2

∑M

j=1

∑N

l=1
[f (j, l) − f̂ (j, l)]2

(13)  

The expression of SSIM is: 

SSIM =

(
2 × μx × μy + c1

)(
2 × σxy + c2

)

(
μ2

x + μ2
y + c1

)(
σ2

x + σ2
y + c2

) (14)  

Where, μx and μy represent the average gray value of the original image 
and the denoised image respectively; σ2

x and σ2
y represent the grayscale 

Fig. 6. CT image of staphylococcal pneumonia (suspected cases of COVID-19): (a) impulse (30%) noise; (b) original CT image; (c) denoised image by WTPSO; (d) 
denoised image by BSTF; (e) denoised image by TATF; (f) denoised image by MLTF; (g) denoised image by ISTF; (h) denoised image by STF; (i) denoised image 
by HTF. 
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variance value of the original image and the denoised image respec
tively; σxy represents the grayscale covariance of the original image and 
the denoised image; c1 = 6.4025,c2 = 6.4025. In the Equ.11–13, f(j, l)
represents the denoised signal, f̂ (j, l) represents the input signal with 
Gaussian noise, M and N represent the length and width of the input 

image; the picture size is 512 * 512. In order to compare the perfor
mance of the threshold function more comprehensively, different noise 
variances δ and different decomposition levels n are selected. The datas 
obtained through simulation are shown in Fig.7, 8. 

Different threshold functions are tested on the noisy CT image of 
early asymptomatic COVID-19. The evaluation values are shown in 

Fig. 7. Early asymptomatic COVID-19 with different noise density: (a) comparison of the MSE; (b) comparison of the PSNR. Advanced asymptomatic COVID-19 with 
different noise density: (c) comparison of the MSE; (d) comparison of the PSNR. Resolution asymptomatic COVID-19 with different noise density: (e) comparison of 
the MSE; (f) comparison of the PSNR. Influenza virus with different noise density: (g) comparison of the MSE; (h) comparison of the PSNR. Staphylococcal pneumonia 
with different noise density: (i) comparison of the MSE; (j) comparison of the PSNR. 
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Table 1. From the change trend of the datas in the Table 1, it can be seen 
that compared with the comparison methods, the PSNR under WTPSO 
has increased by about 5 dB, the MSE has been greatly reduced, and the 
SNR has increased by about 6.1 dB. The SSIM has increased by about 
0.22. The maximum value of the PSNR under WTPSO is 31.3 dB, which 
is an increase of about 5.6 dB than the traditional hard threshold func
tion. It can be seen that the denoising effect under WTPSO is the best. 
The traditional CT image denoising algorithms have the higher value of 
MSE and the lower value of PSNR. It is easy to cause the CT image to be 

confused with noise, and it is easy to cause missed diagnosis for patients 
with early asymptomatic COVID-19. The WTPSO method improves the 
denoising accuracy for the CT image of early asymptomatic COVID-19. 
On the same way, different wavelet transform methods are tested on 
the noisy CT images of advanced asymptomatic COVID-19, resolution 
asymptomatic COVID-19 and suspected cases. The evaluation values of 
denoised images are shown in Table 2–5. 

From the change trend of the data in the Table 2, compared with the 
comparative denoising methods, WTPSO has increased the value of 

Fig. 8. Early asymptomatic COVID-19 with different decomposition scale: (a) comparison of the MSE; (b) comparison of the PSNR. Advanced asymptomatic COVID- 
19 with different decomposition scale: (c) comparison of the MSE; (d) comparison of the PSNR. Resolution asymptomatic COVID-19 with different decomposition 
scale: (e) comparison of the MSE; (f) comparison of the PSNR. Influenza virus with different decomposition scale: (g) comparison of the MSE; (h) comparison of the 
PSNR. Staphylococcal pneumonia with different decomposition scale: (i) comparison of the MSE; (j) comparison of the PSNR. 
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PSNR by about 3.5 dB, the value of MSE has been greatly reduced, the 
value of SNR has been increased by about 3.2 dB. The SSIM has 
increased by about 0.23. It can be seen that the denoising effect for the 
CT image of advanced asymptomatic COVID-19 under WTPSO is the 
best. In the advanced stage, asymptomatic COVID-19 lesions have been 
enlarged scope. The consolidation shadows can be seen inside the le
sions, and the halo signs can be seen around them, which is easily 
misdiagnosed as suspected cases. The WTPSO method improves the 
denoising accuracy for the CT image of advanced asymptomatic COVID- 
19 and it reduces the misdiagnosis rate for the advanced lesions. 

From the change trend of the data in the Table 3, compared with the 
comparative denoising methods, WTPSO has increased the value of 
PSNR by about 2.9 dB, the value of MSE has been greatly reduced, the 
value of SNR has been increased by about 4.3 dB. The SSIM has 
increased by about 0.24. It can be seen that the denoising effect for the 
CT image of resolution asymptomatic COVID-19 under WTPSO is the 
best. In the resolution stage, asymptomatic COVID-19 lesion has the 
narrow focus range and the smaller density, with a little thin ground- 
glass opacity, which is easy to be misdiagnosed as early COVID-19. 
The WTPSO method improves the denoising accuracy for the CT 
image of resolution asymptomatic COVID-19 and it reduces the misdi
agnosis rate for the resolution lesions. 

From the change trend of the data in the Table 4, compared with the 
comparative denoising methods, WTPSO has increased the value of 
PSNR by about 3.5 dB, the value of MSE has been greatly reduced, the 
value of SNR has been increased by about 5.3 dB. The SSIM has 
increased by about 0.23. It can be seen that the denoising effect for the 
CT image of influenza virus under WTPSO is the best. The lesion of 
influenza virus is generally distributed along the edge of the lung, with 

patches or large blurred opacity, and it is easy to be misdiagnosed as 
advanced asymptomatic COVID-19. The WTPSO method improves the 
denoising accuracy for the CT image of influenza virus and it reduces the 
misdiagnosis rate for the asymptomatic COVID-19 suspected cases. 

From the change trend of the data in the Table 5, compared with the 
comparative denoising methods, WTPSO has increased the value of 
PSNR by about 3.9 dB, the value of MSE has been greatly reduced, the 
value of SNR has been increased by about 4.5 dB. The SSIM has 
increased by about 0.24. It can be seen that the denoising effect for the 
CT image of staphylococcal pneumonia under WTPSO is the best. The 
staphylococcal pneumonia presents a single diffuse ground-glass opacity 
with unclear boundary, which can be accompanied by consolidation 
opacity and bronchial wall thickening. It is easy to be misdiagnosed as 
resolution asymptomatic COVID-19. The WTPSO method improves the 
denoising accuracy for the CT image of staphylococcal pneumonia and it 
reduces the misdiagnosis rate for the asymptomatic COVID-19 suspected 
cases. 

For the noisy CT image of early asymptomatic COVID-19, the num
ber of wavelet decomposition layers is 3, and different noise variances 
are set up. The value of PSNR changes with the variance of noise. The 
simulation results is shown in Fig.7(b). It can be seen from the trend of 
the curve that the PSNR decreases gradually with the increase of noise 
variance. Compared with the PSNR under other comparison functions, 
the PSNR under the paper method is still the largest and the denoising 
effect is ideal. The value of MSE increases with the increase of noise 
variance. The simulation results is shown in Fig.7(a). It can be seen from 
the trend of the curve that when the noise variance increases, the MSE 
under the six comparison functions increases. When the variance in
creases to 0.8, the MSE under the paper method is higher than the other 
comparison methods.On the same way, different threshold denoising 
methods are used on the CT images of the advanced asymptomatic 
COVID-19, resolution asymptomatic COVID-19 and the suspected cases. 
The simulation results are shown in Fig.7(c)-(j). 

For the CT image of early asymptomatic COVID-19, the noise vari
ance is set to 0.3, and different wavelet decomposition levels are set. The 
value of PSNR changes with the change of the decomposition levels. The 
simulation results are shown in Fig.8(b). From the change trend of the 
curve, it can be seen that the value of PSNR is different with the number 
of wavelet decomposition layers. With the increase of the number of 
wavelet decomposition layers, the PSNR shows a downward trend, and 
the useful information in the noisy image will be lost. The noise variance 
is taken as 0.3 and setting different wavelet decomposition levels n, the 

Table 1 
Evaluation index of the denoising effect for early asymptomatic COVID-19 CT 
image (n = 3, δ=0.3).  

Denoising method MSE PSNR/dB SNR/dB SSIM 

WTPSO 48.5 31.3 25.6 0.96 
BSTF[4] 89.7 28.6 23.7 0.89 
TATF[29] 101.2 28.1 22.4 0.84 
MLTF[30] 111.8 27.7 21.7 0.81 
ISTF[31] 140.5 26.7 21.2 0.77 
STF[24] 163.8 26.0 20.5 0.75 
HTF[24] 176.3 25.7 19.5 0.74  

Table 2 
Evaluation index of the denoising effect for advanced asymptomatic COVID-19 
CT image (n = 3, δ=0.3)  

Denoising method MSE PSNR/dB SNR/dB SSIM 

WTPSO 51.7 31.1 24.5 0.95 
BSTF[4] 96.3 28.3 23.4 0.88 
TATF[29] 106.9 27.9 21.9 0.86 
MLTF[30] 113.3 27.6 21.3 0.80 
ISTF[31] 118.1 27.4 20.7 0.76 
STF[24] 133.6 26.9 19.6 0.73 
HTF[24] 155.4 26.2 19.2 0.72  

Table 3 
Evaluation index of the denoising effect for resolution asymptomatic COVID-19 
CT image (n = 3, δ=0.3)  

Denoising method MSE PSNR/dB SNR/dB SSIM 

WTPSO 64.7 30.1 25.6 0.94 
BSTF[4] 102.4 28.1 22.8 0.86 
TATF[29] 115.0 27.6 21.6 0.82 
MLTF[30] 124.4 27.2 21.3 0.80 
ISTF[31] 148.5 26.4 20.9 0.78 
STF[24] 167.2 26.0 20.4 0.71 
HTF[24] 182.8 25.5 19.6 0.70  

Table 4 
Evaluation index of the denoising effect for influenza virus CT image (n = 3, 
δ=0.3)  

Denoising method MSE PSNR/dB SNR/dB SSIM 

WTPSO 59.4 30.4 25.8 0.94 
BSTF[4] 116.9 27.5 21.7 0.87 
TATF[29] 125.4 27.2 21.2 0.85 
MLTF[30] 134.7 26.9 20.5 0.81 
ISTF[31] 158.4 26.1 19.8 0.80 
STF[24] 167.3 25.9 19.4 0.72 
HTF[24] 176.5 25.7 18.3 0.71  

Table 5 
Evaluation index of the denoising effect for staphylococcal pneumonia CT image 
(n = 3, δ=0.3)  

Denoising method MSE PSNR/dB SNR/dB SSIM 

WTPSO 62.5 30.2 24.7 0.94 
BSTF[4] 119.6 27.4 21.4 0.86 
TATF[29] 133.7 26.9 20.8 0.84 
MLTF[30] 153.3 26.3 20.2 0.80 
ISTF[31] 168.5 25.9 19.6 0.77 
STF[24] 179.8 25.6 19.1 0.72 
HTF[24] 185.3 25.4 18.5 0.70  
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MSE is also different.Taking the noise variance as 0.3 and setting 
different times of wavelet decomposition layer, the value of MSE is also 
different. The simulation results are shown in Fig.8(a). According to the 
change trend of the curve, the MSE shows a upward trend with the in
crease of the number of wavelet decomposition layers. When the same 
number of wavelet decomposition layer is taken, the MSE under the 
paper method is greater than the other comparison methods, indicating 
that the effect of the paper method is ideal. Similarly, the CT images of 
advanced asymptomatic COVID-19 and suspected cases are tested by 
different threshold denoising methods among different decomposition 
levels. The simulation results are shown in Fig.8(c)-(j). From the analysis 

of the above simulation experimental datas, it can be seen that the PSNR 
decreases with the increase of the noise variance. The MSE rises with the 
increase of the noise variance. Compared with the other comparison 
methods, the WTPSO in this paper improves the PSNR to a certain 
extent. It reduces the MSE and significantly improves the denoising 
effect. 

Aiming at the different kinds of asymptomatic COVID-19 CT images, 
competitive particle swarm optimization (CPSO) [32], quantum particle 
swarm optimization (QPSO) [33], binary particle swarm optimization 
(BPSO) [34], sine/cosine adjusted particle swarm optimization (SCPSO, 
paper method) are used for simulation of denoising parameters 

Fig. 9. Fitness evolution curve of denoising parameters optimization for different CT images. (a) Early asymptomatic COVID-19; (b) Advanced asymptomatic COVID- 
19; (c) Resolution asymptomatic COVID-19; (d) Influenza virus; (d) Staphylococcal pneumonia. 
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optimization. The fitness evolution curve for different asymptomatic 
COVID-19 CT images are shown in Fig.9. The evaluation index values of 
time processing under different methods are shown in Table 6. 

It can be seen from the Fig.9 and Table 6 that with the increase of the 
number of iterations, the standard deviation of the objective function is 
gradually reduced and the processing time is gradually increased under 
different parameters optimization methods. Compared with the 
different comparison methods, the number of iterations of SCPSO is still 
the smallest, and the processing time of SCPSO is still the fastest. In 
conclusion, the paper method (SCPSO) significantly improves the 
denoised effect for different kinds of COVID-19 CT images of parameters 
optimization with relatively few iterations. From the change trend of the 
data in the Table 6 and Fig.9, compared with the comparative PSO 
optimization methods for the early asymptomatic COVID-19, SCPSO has 
decreased the value of running time by about 0.8s, and the number of 
iterations is reduced by about 40. It can be seen that the average 
computational time complexity for the CT image of early asymptomatic 
COVID-19 under SCPSO is the lowest. Therefore, it can be concluded 
that under the premise of obtaining the same optimal value, the average 
computational time complexity of the improved PSO is reduced by at 
least 25% compared to the comparison PSO methods. 

5. Conclusion 

In this paper, the CT image denoising method for asymptomatic 
COVID-19 based on wavelet transform combined with improved PSO is 
proposed. By selecting different noise variance and different wavelet 
decomposition layer, the three evaluation indexes are compared and 
analyzed under the comparison methods and paper method. In this 
paper, the wavelet threshold adopts the shrinkage factor. Therefore, 
different threshold values can be calculated for different decomposition 
layers, which increases the flexibility for threshold selection. It reduces 
the missed diagnosis for early and resolution asymptomatic COVID-19. 
At the same time, the wavelet threshold function includes adjustment 
factor integrated with the arc tangent.The optimal wavelet estimation 
coefficient is obtained by changing the adjustment parameters based on 
the improved PSO. It reduces the mistake diagnosis for advanced 
asymptomatic COVID-19 with suspected cases. The simulation results 
show that the denoising effect based on the paper method is more ideal 
than other denoising methods. Although the improved wavelet trans
form proposed in this paper has a good denoising effect on Gaussian 
noise, there are many types of noise on CT image. Whether the denoising 
effect of other types of noise is ideal still needs in-depth research and 
experiments. 
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