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Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common 
human malignancy in the world, with high mortality and poor prognosis for patients. 
Among the risk factors are tobacco and alcohol intake, human papilloma virus, 
and also genetic and epigenetic modifications. Many studies show that epigenetic 
events play an important role in HNSCC development and progression, including 
DNA methylation, chromatin remodeling, histone posttranslational covalent modi-
fications, and effects of non-coding RNA. Epigenetic modifications may influence 
silencing of tumor suppressor genes by promoter hypermethylation, regulate tran-
scription by microRNAs and changes in chromatin structure, or induce genome 
instability through hypomethylation. Moreover, getting to better understand aber-
rant patterns of methylation may provide biomarkers for early detection and diag-
nosis, while knowledge about target genes of microRNAs may improve the therapy 
of HNSCC and extend overall survival. The aim of this review is to present recent 
studies which demonstrate the role of epigenetic regulation in the development of 
HNSCC.
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Introduction

Epigenetic modifications can be defined as heritable, reversible changes in gene 
expression which do not result from a change in the sequence of DNA bases 
(Momparler 2003; Teodoridis et  al. 2004; Castilho et  al. 2017). Therefore, epige-
netic mechanisms change the phenotype without interference in DNA sequences 
(Arantes et  al. 2014). Epigenetic processes include DNA methylation, histone 
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posttranslational covalent modifications, changes in chromatin structure, and effects 
of non-coding RNAs (Arantes et al. 2014; Castilho et al. 2017). An epigenetic pat-
tern may be modulated by external factors such as diet, alcohol, tobacco, toxins, or 
pharmaceutical treatment (Ghantous et al. 2018). Epigenetic mechanisms are associ-
ated with carcinogenesis of numerous cancers (Park et al. 2011; Osorio and Castillo 
2016) and play an important role in the development of head and neck squamous 
cell carcinoma (HNSCC).

HNSCC is placed at sixth of the most frequent human malignancies and belongs 
to the most aggressive cancers. Worldwide, more than half a million new cases are 
diagnosed per year and nearly 50% of them have a less than 5-year survival rate 
(Leemans et al. 2011; Ganci et al. 2012; Magić et al. 2013). Cancer cells spread to 
the oral cavity, larynx, naso-, hypo-, and oro-pharynx. Environmental and genetic 
factors influence the development of HNSCC and the main lifestyle risk factors 
include Human Papilloma Virus (HPV) infection, age, diet, tobacco use, and alcohol 
intake (Demokan and Dalay 2011; Magić et al. 2013; Koffler et al. 2014). External 
factors like alcohol abuse and tobacco influence epigenetic patterns in some types of 
HNSCC like oral cancer (Ghantous et al. 2018).

In this review, we summarize the main epigenetic modifications associated with 
HNSCC.

Methylation of DNA

DNA methylation, the covalent addition of a methyl group  (CH3) to carbon in the 
5 position  of cytosine in the sequence 5′-CG-3′, is one of the most common epi-
genetic mechanisms (Fig.  1) (Momparler 2003; Luczak and Jagodziński 2006; 
Gopisetty et al. 2006; Magić et al. 2013). The targets of methylation may be in any 
type of DNA sequence such as intergenic DNA, genes, or non-coding repetitive 
sequences (Reyngold and Chan 2018). However, in the genome CpG dinucleotides 
are arranged asymmetrically; in normal cells single CpGs are highly methylated, 
while CpG islands (CGIs), 0.5–4 kb regions of DNA which content 60–70% of CG 
dinucleotides, are usually unmethylated. Approximately 50% of genes contain CGIs 
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Fig. 1  DNA methylation. DNMTs add a methyl group  (CH3) to the carbon in the 5 position of cytosine, 
converting it to 5-methylcytosine. The donor of the methyl group is S-adenosylmethionine (SAM), which 
is converted to S-adenosylhomocysteine (SAH) (updated from Luczak and Jagodziński 2006; Osorio and 
Castillo 2016)
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in their promoter regions (Luczak and Jagodziński 2006; Magić et al. 2013; Reyn-
gold and Chan 2018) and methylation mostly occurs in the promoter region or the 
first exon sequence (Luczak and Jagodziński 2006; Gopisetty et  al. 2006; Arantes 
et  al. 2014). Methylation is catalyzed by members of the family of DNA methyl-
transferases (DNMTs) composed of DNMT1, DNMT2, DNMT3A, and DNMT3B. 
DNMT1 is a maintenance enzyme responsible for methylation during replication, 
while de novo methylation is catalyzed by DNMT3A and DNMT3B (Luczak and 
Jagodziński 2006; Arantes et al. 2014). The DNMT family enzymes use S-adenosyl-
methionine (SAM) as a methyl donor, which is converted to S-adenosylhomocyst-
eine (SAH) (Luczak and Jagodziński 2006; Osorio and Castillo 2016).

Methylation is an important process to regulate gene expression, especially in 
silenced genes located on the inactivated X chromosome in females and in genomic 
imprinting (Luczak and Jagodziński 2006; Park et  al. 2011; Arantes et  al. 2014; 
Reyngold and Chan 2018). Aberrant patterns of methylation have been reported in 
various cancers, and two different patterns of methylation are present. The first is 
genome-wide hypomethylation, and the second is hypermethylation of CGIs located 
in the promoter region of genes. Global hypomethylation is connected with chro-
mosomal instability and gene activation, while increased methylation in promoter 
regions concerns mostly tumor suppressor genes and in consequence reduces their 
expressions (Gopisetty et al. 2006; Arantes et al. 2014).

Hypomethylation

Global DNA hypomethylation in repeat sequences, transposons, gene deserts or 
CpG dinucleotides located in introns may influence genome instability (Ehrlich 
2009; Hatziapostolou and Iliopoulos 2011). In the other hand, it may stimulate 
activation of oncogenes or latent viruses (Magić et al. 2013; Castilho et al. 2017). 
Hypomethylation of promoters of genes or retrotransposons has been documented 
in studies of HNSCC. Lower methylation in retrotransposon elements, like long 
interspersed elements (LINEs) or short interspersed elements (SINEs), influences 
carcinogenesis through genome destabilization. In normal mammalian cells LINE 
sequences have a high methylation status, while during cancer development they are 
hypomethylated, which contributes to activating transcription of sequences which 
influence genome instability and as a result may facilitate carcinogenesis (Luczak 
and Jagodziński 2006; Reyngold and Chan 2018). LINE-1 (long interspersed nucle-
otide element-1) has decreased methylation in various cancer cells compared to 
normal cells, and meta-analysis shows that this hypomethylation is associated with 
advanced cancer (Kitkumthorn and Mutirangura 2011). In addition, another meta-
analysis, based on 20 studies concerning methylation of repeated sequences such as 
LINE, Alu, and Sat-α as prognostic markers for various cancers, suggests that the 
level of global DNA hypomethylation is connected with a dismal prognosis (Li et al. 
2014b). Several studies show hypomethylation of LINEs or SINEs in head and neck 
cancer (Richards et al. 2009; Subbalekha et al. 2009; Chaisaingmongkol et al. 2012). 
Hypomethylation of Alu, one of the SINEs, was confirmed by Puttipanyalears 
et al. (2013), who reported that in oral cancer among the Asian population the Alu 
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methylation decreased with advanced stages of cancer. Foy et  al. (2015) showed 
that in patients with premalignant oral lesions, LINE sequences are hypomethylated 
and associated with increased risk for oral carcinogenesis. Furthermore, LINE-1 
sequences are hypomethylated in oral squamous cell carcinoma (OSCC), but inde-
pendently of the tumor’s clinical stage and location (Subbalekha et al. 2009), as well 
as in oropharyngeal squamous cell carcinoma (OPSCC) (Furlan et al. 2017). Inter-
estingly, OPSCC patients with LINE-1 hypomethylation have a 3.5-fold higher risk 
of early relapse compared to cases with higher methylation (Furlan et al. 2017). On 
the other hand, Smith et al. (2007) showed that LINE-1 hypomethylation occurs in 
67% of HNSCC cases examined and that global hypomethylation is connected with 
an advanced stage of the tumor using ANOVA, although this correlation was not 
significant by multivariate analysis. Arayataweegool et al. (2019) utilized cocultures 
of HNSCC cell lines and peripheral blood mononuclear cells (PBMCs) to measure 
the methylation level of LINE-1 in PBMCs, and found that this level is significantly 
downregulated in coculture with cancer cells due to factors secreted by HNSCCs, 
an effect which could be used for HNSCC diagnostics. Kitkumthorn et  al. (2012) 
measured the methylation level of LINE-1 and Alu sequences in lymph node (LN) 
metastases of HNSCC patients and confirmed their lower methylation in HNSCC 
samples with metastasis; however, only hypomethylation of LINE-1 was statistically 
significant and furthermore the decreases of methylation levels were not associated 
with the stage and grade of tumors. It has been also reported that global hypometh-
ylation is characteristic for patients with tongue squamous cell carcinoma (TSCC) 
and, interestingly, is connected with female gender. In addition, Chen et al. (2016a) 
observed associations between decreased methylation and poor survival for TSCC 
patients, predominantly for female, older patients with a stage I or II AJCC (Ameri-
can Joint Committee on Cancer) cancer without lymph node involvement and with 
postoperative radiotherapy. On the other hand, Morandi et  al. (2017) observed no 
signs of hypomethylation in OSCC. Hypomethylation in promoter regions of genes 
has been shown in several studies of HNSCC (Table 1).

Hypermethylation

In normal cells, CGIs are poorly methylated in transcriptionally active genes, while 
a high level of methylation in promoters of genes is characteristic for epigenomes 
of cancer cells (Castilho et al. 2017; Reyngold and Chan 2018). This hypermethyla-
tion of CGIs may lead to transcriptional silencing of tumor suppressor genes and in 
consequences promote malignant transformation (Fig. 2) (Herman and Baylin 2003; 
Magić et al. 2013). Hypermethylation of promoter regions in head and neck cancer 
has been shown in many studies, and below we summarize recent studies about p16, 
PTEN, DAPK, MGMT, ECAD and RASSF1 genes which are frequently analyzed in 
HNSCC. Genes which are less common hypermethylated in HNSCC are presented 
in Table 2.

The gene p16 (CDKN2A) is a known tumor suppressor gene, which inhibits 
cyclin-dependent kinases and cell cycle progression (Magić et al. 2013; Padhi et al. 
2017). Hypermethylation of its promoter is a common finding in HNSCC studies 
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and meta-analyses (Sanchez-Cespedes et al. 2000; Don et al. 2014; Choudhury and 
Ghosh 2015; Sushma et al. 2016; Dvojakovska et al. 2018; Alsofyani et al. 2017; 
Veeramachaneni et al. 2019). Allameh et al. (2018) reported a higher methylation 
level of its promoter in OSCC patients compared to a control group, and hypermeth-
ylation was associated with lower expression of that gene in tumor samples. A meta-
analysis comparing 67 case control studies confirms the higher methylation of the 
p16 promoter region in HNSCC than in normal controls, and shows that the meth-
ylation level increases progressively from the control group to patients with prema-
lignant lesions and then to HNSCC patients, respectively. Hypermethylation was 

Table 1  Selected genes which are hypomethylated in HNSSC

Gene Cancer Observed connections with hypomethylation References

WSIP1 OSCC Higher expression of WSIP1 protein character-
istic for patients with lymph node metastasis

Clausen et al. (2016)

CSPG4 HNSCC Worse clinical outcome
Overexpression of mRNA and protein

Warta et al. (2014)

PD-L1 HNSCC Overexpression of PD-L1 protein Franzen et al. (2018)
PD-L2 HNSCC Upregulation of PD-L2 mRNA expression Franzen et al. (2018)
IL6 OSCC Upregulation of gene expression Basu et al. (2017)
PTPN22 OSCC Upregulation of gene expression Basu et al. (2017)
RUNX1 OSCC Upregulation of gene expression Basu et al. (2017)
CD28 OSCC Upregulation of gene expression Basu et al. (2017)
CD22 OSCC No data related to gene expression Basu et al. (2017)
CD80 OSCC Upregulation of gene expression Basu et al. (2017)
TLR1 OSCC Upregulation of gene expression Basu et al. (2017)
TNFa OSCC Upregulation of gene expression Basu et al. (2017)
APEX2 HNSCC Decreased mRNA expression in tumor Chaisaingmongkol et al. (2012)
TREX2 HNSCC No data related to gene expression Chaisaingmongkol et al. (2012)
MSH4 HNSCC Decreased mRNA expression in tumor Chaisaingmongkol et al. (2012)
MIR296 OSCC No date related to gene expression Morandi et al. (2017)
TERT OSCC No date related to gene expression Morandi et al. (2017)
GP1BB OSCC No date related to gene expression Morandi et al. (2017)

Normal cell

Cancer cell

PROMOTER EXON 1 EXON 2

PROMOTER EXON 1 EXON 2

transcription

inhibition of transcription

unmethylated cytosine

methylated cytosine

Fig. 2  Methylation of promoter region of genes in normal and cancer cells (updated from Hatziapostolou 
and Iliopoulos 2011; Reyngold and Chan 2018)
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associated with male gender as well as with LN metastasis. Methylated CDKN2A 
may therefore be a useful marker in diagnosis and prognosis for head and neck can-
cer (Zhou et al. 2018).

Another hypermethylated tumor suppressor gene in HNSCC is phosphatase and 
tensin homolog (PTEN), which negatively regulates Akt signaling and in conse-
quence decreases cell proliferation (Sushma et  al. 2016). Several studies reported 
hypermethylation in the promoter of PTEN in oral cancer (Alyasiri et  al. 2013; 
Sushma et  al. 2016), and nasopharyngeal cancer (Li et  al. 2014a). Moreover, in 
OSCC, this increased methylation is associated with well-differentiated tumors and 
with age of under 50 years among an Indian population; no correlation was found 
between methylation and gender (Alyasiri et al. 2013). Increased methylation in the 
PTEN promoter in NPC tissues and NPC cell lines is connected with down-regu-
lation of PTEN (Li et al. 2014a) and lower expression of PTEN mRNA in OSCC-
derived cell lines (Tanzawa et al. 2008).

Death-associated protein kinase (DAPK), a tumor suppressor gene, is also hyper-
methylated in head and neck cancer (Sanchez-Cespedes et al. 2000; Choudhury and 
Ghosh 2015), and hypermethylation is positively correlated with LN metastases 
and with stages III and IV of HNSCC (Sanchez-Cespedes et al. 2000), as well as 
inversely correlated with lower expression of DAPK in tongue cancer (Bhat et  al. 
2017). A meta-analysis of eighteen studies confirmed that methylation of the DAPK 
promoter is over fourfold higher in HNSCC patients compared to healthy controls 
(Cai et  al. 2017), while another meta-analysis confirmed DAPK promoter hyper-
methylation among OSCC patients (Don et al. 2014) as well as an association with 
a higher risk of nasopharyngeal carcinoma (Zhang et  al. 2018a). The DAPK pro-
moter is also more highly methylated in OSCC samples compared to matched sur-
gical margins, and interestingly is associated with LN metastasis and older age of 
HNSCC patients (Strzelczyk et al. 2019).

The gene MGMT (O6-methylguanine-DNA methyltransferase) is related to DNA 
repair, and increased methylation in its promoter has been reported in HNSCC 
(Koutsimpelas et al. 2012; Chaisaingmongkol et al. 2012; Dvojakovska et al. 2018). 
In a meta-analysis based on 20 studies, the promoter of MGMT was hypermethylated 
in HNSCC compared to healthy controls, suggesting a connection between higher 
methylation and an increased risk of head and neck cancer (Cai et al. 2016). Meta-
analysis of OSCC cases also confirmed higher methylation in this promoter (Don 
et al. 2014) and in addition, the increased methylation was connected with a lower 
level of MGMT protein (Koutsimpelas et al. 2012). Onerci Celebi et al. (2016) uti-
lized a pyrosequencing technique to assay methylation level, and showed that hyper-
methylation of MGMT promoter is frequent in laryngeal cancer; however, without 
association with clinicopathological features of patients such as age, tumor stage or 
differentiation, and disease-free survival. Moreover, hypermethylation was found in 
HNSCC tumors compared to the surgical margins (Strzelczyk et al. 2018).

E-cadherin (CDH1, ECAD) is another tumor suppressor gene related to cell adhe-
sion, and is frequently hypermethylated in HNSCC cases (Choudhury and Ghosh 
2015; Strzelczyk et  al. 2018). A meta-analysis based on 13 studies revealed that 
increased methylation of the promoter of CDH1 is associated with oral cancer risk 
(Wen et al. 2018), and it has been suggested that this hypermethylation is associated 
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with lower expression of E-cadherin protein in OSCC patients (Pannone et al. 2014). 
In contrast, Domingos et al. (2017) showed no differences in the methylation level of 
CDH1 promoter between groups of patients with potentially malignant oral lesions, 
OSCC, and healthy controls; moreover, in most samples the CDH1 gene promoter 
was unmethylated and in the OSCC group the level of methylation was not associ-
ated with clinicopathological features.

RASSF1 (Ras association domain-containing protein 1) is a tumor suppressor 
gene which plays an important role in cell cycle control, apoptosis, and cellular 
adhesion, and its inactivation is associated with development of many cancers (Don-
ninger et al. 2007). In head and neck cancer, hypermethylation of RASSF1 promoter 
is a frequent event (Choudhury and Ghosh 2015) and meta-analysis shows that it 
is significantly associated with these cancers. It has been suggested that aberrant 
methylation of RASSF1A may be a useful biomarker for HNSCC (Meng et al. 2016). 
Also, a recent meta-analysis of OSCC confirmed that promoter hypermethylation of 
RASSF1A is connected with oral cancer risk (Wen et al. 2018) although, Koutsim-
pelas et  al. (2012) observed hypermethylation of RASSF1A in only 13% of tumor 
samples examined.

HPV Status and Level of DNA Methylation

Differences in methylation level occur between HPV(+) and HPV(-) HNSCC cases. 
In addition, HPV status influences aberrant methylation patterns in head and neck 
cancer independently of other external risk factors like smoking or alcohol (Degli 
Esposti et al. 2017). Several studies reported that HPV infection may be connected 
with hyper- or hypomethylation of genes, which are presented in Table 3.

Smoking and Drinking Abuse and Their Potential Influence on DNA Methylation

Exposure to smoke and alcohol influences methylation level (Ghantous et al. 2018). 
Methylation linked with exposure to smoke or alcohol is presented in Table 4.

Methylation Enzymes

A level of enzymes associated with methylation and demethylation processes and 
their activity may influence epigenetic regulation. Below we present the recent stud-
ies on DNMTs and TET enzymes and their connections with HNSCC.

DNMT

The level and activity of DNMTs may contribute to HNSCC development. DNMT3b 
is upregulated in esophageal squamous cell carcinoma, and associated with hyper-
methylation of multiple tumor-associated genes such as DAPK, p16, or CDH1 
(Li et  al. 2011). The mRNA expression of DNA methyltransferases (DNMT1, 
DNMT3a and DNMT3b) was upregulated also in OSCC. Moreover, overexpression 
of DNMT1 was an independent marker of poor clinical outcome and relapse-free 
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Table 3  The level of methylation connected with HPV status

Gene HPV status Methylation References

CDH18  + ↑ Degli Esposti et al. (2017)
CTNND2  + ↑ Degli Esposti et al. (2017)
ELMO1  + ↑ Degli Esposti et al. (2017)
CDH8  + ↑ Degli Esposti et al. (2017)
CRMP1  + ↑ Degli Esposti et al. (2017)
PCDH10  + ↑ Degli Esposti et al. (2017)
MSX2  + ↑ Degli Esposti et al. (2017)
SYN2  + ↑ Degli Esposti et al. (2017)
PCDHB11  + ↑ Degli Esposti et al. (2017)
HTR1E  + ↑ Degli Esposti et al. (2017)
CCNA1  + ↑ Colacino et al. (2013) and 

Virani et al. (2015)
GRB7  + ↑ Colacino et al. (2013)
CDH11  + ↑ Colacino et al. (2013)
RUNX1T1  + ↑ Colacino et al. (2013)
SYBL1  + ↑ Colacino et al. (2013)
TUSC3  + ↑ Colacino et al. (2013)
MINT31  + ↑ Choudhury and Ghosh (2015)
NDN  + ↑ Virani et al. (2015)
CD1A  + ↑ Virani et al. (2015)
DCC  + ↑ Virani et al. (2015)
CADM1  + ↑ van Kempen et al. (2014)
TIMP3  + ↑ van Kempen et al. (2014)
ADORA2  + ↑ Vogt et al. (2018)
NCAN  + ↓ Degli Esposti et al. (2017)
NRXN1  + ↓ Degli Esposti et al. (2017)
COL19A1  + ↓ Degli Esposti et al. (2017)
SYCP2  + ↓ Degli Esposti et al. (2017)
RPA2  + ↓ Degli Esposti et al. (2017)
SMC1B  + ↓ Degli Esposti et al. (2017)
SPDEF  + ↓ Colacino et al. (2013)
STAT5A  + ↓ Colacino et al. (2013)
MGMT  + ↓ Colacino et al. (2013)
ESR2  + ↓ Colacino et al. (2013)
JAK3  + ↓ Colacino et al. (2013)
HSD17B12  + ↓ Colacino et al. (2013)
p16  + ↓ Virani et al. (2015)

 + ↑ Choudhury and Ghosh (2015)
RASSF1  + ↓ Colacino et al. (2013)

 + ↑ Choudhury and Ghosh (2015)
NT5E  + ↓ Vogt et al. (2018)
CHFR − ↑ van Kempen et al. (2014)
PAX1 − ↑ Guerrero-Preston et al. (2014)
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survival of OSCC patients (Supic et al. 2017). Another study also confirmed upreg-
ulation of DNMT3a in OSCC, in connection with low expression of Klotho, the 
anti-aging gene (Adhikari et  al. 2017). Chen et  al. (2016b) revealed that in inva-
sive subclone HNSCC cell lines, DNMT3b was upregulated, while E-cadherin was 
downregulated, suggesting that DNMT3B may be involved in induction of epithe-
lial–mesenchymal transition (EMT). Moreover, miR-29b mimic leads to a decrease 
of DNMT3b expression and inhibits EMT (Chen et  al. 2016b). DNMTs expres-
sion may be associated with the expression of other epigenetic factors. Mochizuki 
et al. (2018) observed that overexpression of EZH2, member of Polycomb protein, 
is positively correlated with the upregulation of DNMT3a but not associated with 
DNMT3b in HNSCC. The level of enzyme may be also modulated by a dietary 

“+” HPV-positive; “−” HPV-negative; “↑” hypermethylation; “↓” hypomethylation

Table 3  (continued)

Gene HPV status Methylation References

PAX5 − ↑ Guerrero-Preston et al. (2014)
CDH13  ± ↑ van Kempen et al. (2014)
RARB  ± ↑ van Kempen et al. (2014)
DAPK  ± ↑ van Kempen et al. (2014)

 + ↑ Choudhury and Ghosh (2015)
LINE1 seguences  + ↑ Furlan et al. (2017)

- ↓ Richards et al. (2009)

Table 4  Methylation linked with exposure to smoke or alcohol

“+” used; “−” not used; “↑” hypermethylation; “↓” hypomethylation

Gene Smoke Alcohol Methylation References

NDN  + No data ↓ Virani et al. (2015)
CD1A  + No data ↓ Virani et al. (2015)
DCC  + No data ↓ Virani et al. (2015)
PAX1  + No data ↑ Guerrero-Preston et al. (2014)
PAX5  ± No data ↑ Guerrero-Preston et al. (2014)
DAPK  + No data ↑ Arantes et al. (2015)

No correlation  + ↑ Cai et al. (2017)
CADM1 − − ↑ van Kempen et al. (2014)
TIMP3 − No correlation ↑ van Kempen et al. (2014)
RASSF1 No correlation No correlation ↑ Wen et al. (2018)
p16  + No data ↑ Allameh et al. (2018)

No correlation No correlation ↑ Sushma et al. (2016)
PTEN No correlation No correlation ↑ Sushma et al. (2016)
Alu seguences  + No data ↓ Puttipanyalears et al. (2013)
Line1 sequences No correlation No correlation ↓ Smith et al. (2007)

No correlation No correlation ↓ Subbalekha et al. (2009)
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component such as folate (diet-derived methyl donor). Methyl donor depletion leads 
to increased expression of DNMT3a in HPV(+) HNSCC cell line, while DNMT1 
and DNMT3a expressions are either not altered or not significantly higher, respec-
tively (Hearnden et  al. 2018). DNMTs may be a potential target for enhancement 
of HNSCC chemotherapy by the use of inhibitors of DNMTs and reversal of genes 
methylation (Suzuki et al. 2009). It has been reported that DNMT1 was a target of 
miR-148a-3p in LSCC. It was found that the overexpression of miR-148a-3p down-
regulated DNMT1 expression, which led to upregulation of RUNX3, tumor suppres-
sor, through decreasing its methylation (Jili et al. 2016).

TET

Ten-eleven translocation (TET) family of enzymes are pivotal factors of epigenetic 
regulation machinery through demethylation process. This family of 5-mC hydroxy-
lases is composed of TET-1, TET-2, and TET-3 proteins, which catalyze the con-
version of 5-methylcytosine to 5-hydroxymethylcytosine (Tahiliani et  al. 2009). 
TET proteins are large enzymes of 180–230-kDa (Rasmussen and Helin 2016) and 
have a C-terminal catalytic domain with TET-1 and TET-3 containing also N-ter-
minal CXXC zinc finger domain (Zhao and Chen 2013). TET proteins are involved 
in many important processes during mammalian development such as embryonic 
development, but also may influence tumorigenesis (Tan and Shi 2012). The lower 
expression of TET proteins occurs in malignant and solid tumors (Rasmussen and 
Helin 2016). During tumorigenesis, the TET activity is reduced by tumor hypoxia. 
Hypoxia influences increased promoter methylation and leads to decreased activity 
of TET enzymes in many tumors, also in HNSCC (Thienpont et  al. 2016). Also, 
methyl donor depletion may influence expression of TET-1, what was confirmed by 
Hearnden et al. (2018). They showed that reduced methyl donor was associated with 
increased expression of TET-1 in HPV-positive HNSCC cell line.

The aberrantly methylated TET enzymes in HNSCC patients were studied 
by Misawa et  al. (2018a), who reported lower expression of TET-1 and TET-3 in 
HNSCC, while methylation level of these genes was higher in cancer cells, sug-
gesting that downregulation of TET-1 and TET-3 must have been associated with 
their promoter methylation. Moreover, the multivariate analysis revealed that TET-3 
methylation in OSCC and oropharyngeal cancer was connected with poor survival 
of HNSCC patients (Misawa et al. 2018a).

Decreased expression of TET-1 gene occurs also in laryngeal squamous cell 
carcinoma (LSCC) and is connected with a lower level of 5-hmC, suggesting 
that the level of 5-hmC is strongly correlated with the level of TET-1 and may 
be a poor prognostic factor of LSCC patients in an early stage of cancer (Zhang 
et al. 2016). However, Zhang et al. (2016) did not find any significant differences 
in the expression of TET-2 and TET-3 between LSCCs and normal tissues. On 
the other hand, downregulation of TET-2 was correlated with a lower level of 
5-hmC in OSCC patients (Jäwert et al. 2013). Wang et al. (2017) observed that 
the expression of 5-hmC was significantly reduced in oral cancer and the expres-
sion of TET-2 was significantly lower in OSCC patients, which may be contribut-
ing to cancer development. Moreover, increased level of 5-hmC was correlated 
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with decreased overall survival, suggesting its usability as a prognostic factor 
for OSCC (Wang et  al. 2017). TET enzyme may influence a response to chem-
otherapy in HNSCC. Song et  al. (2019) observed that TET-2 promoted 5-hmC 
formation after the administration of chemotherapeutic agents like doxorubicin. 
Moreover, PML (promyelocytic leukemia) recruited TET-2 to regulate DNA 
modification during chemotherapy of HNSCC, and as a result impaired cell pro-
liferation. Furthermore, higher levels of TET and PML were associated with bet-
ter overall survival of HNSCC patients (Song et  al. 2018). Wang et  al. (2018b) 
showed that a decreased expression of TET-1 in OSCC may lead to increased 
promoter methylation of MGMT, and enhanced the sensitivity of OSCC stem 
cells to chemotherapeutics like cisplatin.

Histone Modifications

Histone modifications play a key role in regulating chromatin structure and DNA 
transcriptional activity, and aberrations in histone modification are associated 
with cancer (Bannister and Kouzarides 2011).

A nucleosome, the primary unit of chromatin, is composed of four histone pro-
teins (two copies of H2A, H2B, H3, and H4) which make a histone octamer, and 
147 base pairs of DNA wrapped around it (Hatziapostolou and Iliopoulos 2011; 
Osorio and Castillo 2016). Histones are basic proteins which consist of a globular 
C-terminal domain and N-terminal tails. The tails undergo many different post-
translational modifications (PTMs) including acetylation, methylation, phospho-
rylation, ubiquitination, and ADP-ribosylation (Park et al. 2011; Hatziapostolou 
and Iliopoulos 2011) which modulate interactions between DNA and the histone 
octamer and in consequence the accessibility of the DNA (Bowman and Poirier 
2015). PTMs are carried out by enzymes that add or remove the chemical group 
on the amino acids arginine, serine, or lysine (Fig.  3) (Hatziapostolou and Ili-
opoulos 2011; Bowman and Poirier 2015; Castilho et al. 2017).
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Fig. 3  Posttranslational modifications of histones (updated from Bannister and Kouzarides 2011; Osorio 
and Castillo 2016)
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Histone Acetylation

Acetylation and deacetylation influence the conformation of nucleosomes and are 
catalyzed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), 
respectively. Lysine acetylation results in relaxation of the chromatin structure, facil-
itating gene transcription (Momparler 2003; Castilho et al. 2017), while deacetyla-
tion silences genes by decreasing the accessibility of DNA to transcription factors 
(Momparler 2003). Deregulation of histone acetylation may cause increased tran-
scription of various genes, and in consequence can lead to malignant transformation 
(Mancuso et  al. 2009; Webber et  al. 2017). Giudice et  al. (2013) showed that in 
HNSCC cells, chromatin hypoacetylation occurs, which is evidenced by low level 
of histone H3 acetylated on lysine 9 (H3K9) in comparison to normal oral keratino-
cytes. In HNSCC patients, the level (expression) of histone H4 acetylated on lysine 
16 (H4K16ac) is connected with early clinical stages of cancer, whereas histone H3 
acetylated on lysine 9 (H3K9ac) is connected not only with the early clinical stages 
but also with increasing levels of differentiation and absence of lymph nodes (Nogu-
chi et al. 2013). OSCC patients have hypoacetylated H3K9ac, and in addition this 
modification of chromatin condensation is connected with lower survival rate (Web-
ber et  al. 2017). Moreover, histone H3 acetylated on lysine 27 (H3K27ac) at the 
promoter of lncRNA PLAC2 leads to upregulation of PLAC2, and in results influ-
ences on OSCC progression via activating Wnt/β-catenin signaling pathway (Chen 
et al. 2019). A connection between tumor progression and histone acetylation was 
also found by Chen et  al. (2013c), who showed that high expression of H3K18ac 
and a low level of H3K4a were associated with an advanced stage and a T status of 
oral cancer, while H3K4as additionally was associated with nodal invasion and poor 
survival. The level of expression of histone deacetylases has an influence on tumor 
progression; for instance, the overexpression of HDAC9 stimulates the development 
of OSCC by alterations of the cell cycle, cell proliferation, and apoptosis (Rastogi 
et  al. 2016). These studies show that in oral cancer cases, the overexpression of 
HDAC2 is frequent and univariate analysis shows that higher HDAC2 expression 
is associated with shorter overall survival, suggesting that its level can be a useful 
prognostic marker for patients with oral cancer (Chang et al. 2009). Furthermore, in 
OSCC, increased expressions of mRNA and HDAC6 protein are detected. Interest-
ingly, HDAC6 expression is associated with tumor aggressiveness (Sakuma et  al. 
2006). Almeida et al. (2014) found that HDAC inhibitors effectively protect against 
cisplatin resistance caused by NFκB signaling, which affects tumor resistance by 
histone deacetylation. Moreover, chemical inhibition of histone deacetylase classes I 
and II impairs HNSCC proliferation and decreases the fraction of cancer stem cells 
(Giudice et al. 2013; Castilho et al. 2017).

Histone Methylation

Methylation of lysine, histidine, and arginine in histones is involved in changes 
of the chromatin structure and gene regulation but without altering the charge of 
histones. The methyl group is added to amino acid residues by histone methylases 
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(HMT) while histone demethylases reverse this process. Lysine may occur in the 
mono-, di-, or tri-methylated form (Bannister and Kouzarides 2011; Castilho et al. 
2017). The epigenetic effects of methylation depend on the location where the 
methyl group is added. Histone H3 has a few different lysine sites for methylation 
like K4, K9, K27, K36, or K79. An open chromatin structure results from methyla-
tion of H3K4, in contrast to methylation of H3K9 that causes the condensation of 
chromatin (Lachner and Jenuwein 2002; Momparler 2003; Le et al. 2014). Further-
more, histone methylation is a marker for both transcriptionally active (H3K4me3, 
H3K79me3 or H3K36me3) or silenced (H3K9me2, H3K9me3 or H3K27me3) 
genes (Bedi et al. 2014; Castilho et al. 2017). In OSCCC, a high level of H3K27me3 
is associated with tumor progression (advanced T and N status, and stage of tumor), 
and also with disease-free survival as well as cancer-specific survival (Chen et al. 
2013c). Furthermore, the level of H3K4me3 is decreased, whereas that of H3K4me2 
is higher in OSCCC cases (Mancuso et al. 2009).

Histone modifications are also associated with the Polycomb protein com-
plex which plays a key role in chromatin remodeling and transcription regulation 
(Sauvageau and Sauvageau 2010). One member of the Polycomb group is EZH2 
(enhancer of zeste homologue 2) which regulates gene silencing by methylation at 
H3K27, whose expression is upregulated in OSCCC cell lines in comparison to cells 
from dysplasia or normal mucosae. In addition, overexpression is associated with 
clinical stage and tumor size and negatively correlated with the histological differen-
tiation, leading Kidani et al. (2009) to suggest that the overexpression of that meth-
yltransferase may be used as a prognostic marker for OSCC patients. On the other 
hand, EZH2 is overexpressed in HNSCC cell lines although this is not associated 
with an aberrant H3K27me3 status. Gannon et  al. (2013) reported that inhibition 
of EZH2 may decrease the methylation level of H3K27 and in consequences may 
stimulate expression of differentiation genes in differentiation-refractory HNSCC 
cell lines. Additionally, higher expression of EZH2 mRNA was confirmed in 
HNSCC patients and is correlated with overexpression of DNMT3A, as well as with 
stage of cancer and recurrence, which suggests a role of EZH2 in tumor progres-
sion (Mochizuki et al. 2018). In OSCC, Chen et al. (2013b) found overexpression 
of methyltransferases for H3K9 and H3K27 (SUV39H1 and EZH2, respectively), 
which has consequences for prognostics; methyltransferase for H3K9 is associated 
with advanced tumor stage, while higher expression of EZH2 is positively corre-
lated with LN metastasis. In TSCC cell lines and TSCC patient samples, mRNA for 
another member of the Polycomb complex, Bmi1 (B lymphoma Mo-MLV insertion 
region 1 homolog), is upregulated and associated with shorter survival, suggesting 
the possible use of Bmi1 expression as a prognostic marker (Li et al. 2014c).

Histone Phosphorylation

Phosphorylation by adding a phosphate group from ATP is a modification occur-
ring primarily on threonine, serine, and tyrosine located in N-terminal histone tails 
and is regulated by kinases and phosphatases. As a consequence, the histones have 
a lower positive charge which may influence chromatin organization (Bannister and 
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Kouzarides 2011). The threonine protein kinase of H3S10 (ARK2) is overexpressed 
in oral cancer cases in the Taiwanese population and this upregulation in nuclei is 
connected with poor survival, while the cytosolic overexpression is correlated with 
the T status and stage of cancer. ARK2 may therefore be useful as a prognostic bio-
marker (Chen et al. 2013b). Furthermore, the overexpression of ARK2 in HNSCC 
patients was confirmed by Qi et al. (2007), who reported that higher expression of 
that enzyme is correlated with histological differentiation, cell proliferation, and 
metastasis in oral cancer, which indicates a role in OSCC progression.

Histone Sumoylation

Sumoylation is a modification similar to ubiquitination in which three enzymes, E1, 
E2, and E3, add molecules of the small ubiquitin-like modifier (SUMO) to histone 
lysines (Bannister and Kouzarides 2011). There are also sumo-specific proteases 
(SENPs) which can reverse sumoylation, seven of which are known in humans 
(Ding et al. 2008). One of these is SNEP5, whose expression level has been reported 
to be higher in oral cancer specimens compared to normal epithelia, suggesting that 
SNEP5 expression is associated with differentiation of OSCC (Ding et  al. 2008). 
On the other hand, Katayama et al. (2007) found that SUMO-1 is overexpressed in 
human OSCC cell lines and OSCC tissues from patients, and might be connected 
with tumor cell proliferation.

Non‑coding RNAs

One of the epigenetic mechanisms is regulation of non-coding RNAs (ncRNAs), 
which play important role in cellular homeostasis, development, and differentiation, 
as well as it may cause disease development, including cancer (Wang and Chang 
2011; Esteller and Pandolfi 2017). ncRNAs are not translated into proteins and may 
be divided into classes based on their transcript size: small ncRNAs (including miR-
NAs, siRNAs, and piRNAs) and long ncRNAs (lncRNAs) such as long intergenic 
ncRNAs, circular RNAs, and pseudogene transcripts (Wang and Chang 2011; Oso-
rio and Castillo 2016; Esteller and Pandolfi 2017; Wei et al. 2017). Below we will 
present some miRNAs and lncRNAs associated with HNSCC.

miRNAs

MicroRNAs (miRNAs), one of the classes of small non-coding RNA, are short 
(17–25 nucleotides) single-stranded RNAs that are partially complementary to the 
3′-untranslated region of messenger RNAs. Through binding to mRNAs they cause 
their degradation or inhibit their translation, and as a result they modulate expres-
sion of nearly 30% of human genes (Lee and Dutta 2009; Shiiba et al. 2010; Osorio 
and Castillo 2016). miRNAs participate in many cellular processes like prolifera-
tion, differentiation, development, and apoptosis (Bartel 2004; Kimura et al. 2010; 
Osorio and Castillo 2016). Furthermore, miRNAs may be classified as oncogenes or 
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suppressor genes based on their cancer-related expression. A subgroup of miRNAs, 
epi-miRNAs, is associated with epigenetic factors like HDACs or DNMTs, suggest-
ing that they may affect members of the epigenetic machinery and in consequence 
may influence gene expression. The level of miRNA expression is deregulated in 
cancer initiation and progression (Hatziapostolou and Iliopoulos 2011; Castilho 
et al. 2017) and recent studies find that miRNAs may be used as biomarkers for can-
cers (Shiiba et al. 2010; Irani 2016). Recent results concerning associations between 
miRNAs and HNSCC are presented below.

Oncogenic miRNAs

One of the best-known oncogenic miRNAs is miR-21, which has many targets genes 
of which most are suppressor genes like PTEN, TPM1, TIMP3, and PDCD4 (Li 
et al. 2009; Selcuklu et al. 2009; Scapoli et al. 2010), suggesting that miR-21 plays a 
role in cancer invasion and metastasis (Zhu et al. 2008). In HNSCC, most of the tar-
get genes for miR-21 are tumor suppressors (Chen et al. 2013a), and meta-analysis 
shows that in HNSCC miR-21 is upregulated (Chen et al. 2012; Kumarasamy et al. 
2019). Overexpression of miR-21 is associated with decreased 5-year survival in 
HNSCC patients (Avissar et al. 2009b). Li et al. (2009) revealed that overexpression 
of miR-21 is negatively correlated with expression of PTEN and TPM1, as well as 
associated with advanced clinical stage of TSCC, LN metastasis, and poor differen-
tiation, suggesting that miR-21 may be a useful prognostic marker for patients with 
tongue cancer. Singh et al. (2018) observed that expression of mir-21 is significantly 
positively correlated with clinical stages I-IV of oral cancer.

miR-155-5p is another well-known oncogenic miRNA. In OSCC patients with 
metastasis to neck lymph nodes this miRNA is overexpressed, and is therefore sug-
gested to be a poor prognostic factor, but also may be used as a novel target in oral 
cancer therapy (Baba et  al. 2016). Overexpression of miR-155-5p was associated 
with TMN stage, LN metastasis, and poor differentiation also in LSCC (Cui et al. 
2019). On the other hand, Rather et al. (2013) found that miR-155 targets CDC73, 
which is a tumor suppressor gene. In OSCC patients, overexpression of miR-155 
decreases expression of CDC73 and in consequence promotes cell proliferation as 
well as inhibiting apoptosis. It has been proposed that miR-155 plays an important 
role in regulation of cell growth through its target genes CDC73 (Rather et al. 2013) 
and SOX10 (Cui et al. 2019), although it is upregulated in nasopharyngeal cancer 
(Chen et al. 2009).

miR-93 is overexpressed in HNSCC tissues and cell lines. Overexpression is 
associated with clinical stage, tumor progression, and LN metastasis, as well as 
inversely correlated with poor overall survival, suggesting that miR-93 might be an 
important factor in the progression of head and neck cancer (Li et al. 2015).

miR-211 has been recognized as targeting transforming growth factor-β type II 
receptor (TGFβRII) and thus promoting tumor progression. In HNSCC samples with 
metastasis, the expression of miR-211 is negatively correlated with expression of 
TGFβR2 protein, and in consequence is associated with poor prognosis for HNSCC 
patients (Chu et al. 2013). Zheng et al. (2018) also reported overexpression of miR-
211 in tissues and cell lines from oral cancer, and interestingly found that higher 
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miRNA expression is correlated with decreased expression of the tumor suppressor 
gene BIN1 (bridging integrator-1) which may be a target of miR-211. Overexpres-
sion of BIN1 protein in OSCC cell lines is associated with decreased proliferation 
and migration, suggesting that miR-211 may be a new target in treatment of oral 
cancer.

Overexpression of miR-134 occurs in HNSCC patients, and high expression is 
connected with nodal metastasis and poor survival (Liu et al. 2014). Although miR-
134 is upregulated in OSCC cell lines, its potential target gene PDCD7 has a lower 
expression, an effect enhancing OSCC progression (Peng et al. 2018).

miR-205-5p is overexpressed in tumoral and peritumoral HNSCC tissues, and 
targets RAD17 and BRCA1, DNA repair genes. Lower expression of RAD17 and 
BRCA1 may increase defects in DNA damage response and cause chromosomal 
instability (Valenti et al. 2019).

miR-31 is another oncogenic miRNA for HNSCC and is overexpressed in tis-
sues and serum from HNSCC patients; furthermore an increased level is associ-
ated with TNM status and node stage. In addition, upregulation of miR-31 is con-
nected with poor prognosis for HNSCC patients, suggesting its use as a prognostic 
marker (Wang et  al. 2018a). miR-31 down-regulates the tumor suppressor gene 
ARID1A (AT-rich interacting domain) and decreases expression of ARID1A pro-
tein, a member of the chromatin remodeling SWI/SNF complex, and may inhibit 
stemness and oncogenicity. HNSCC patients with increased miR-31 and decreased 
ARID1A expression have poor survival (Lu et al. 2016). However, miR-31 is down-
regulated in laryngeal cancer cases and a low level of expression is associated with 
an advanced stage of cancer (Yang et al. 2018).

Tumor Suppressor miRNAs

Recent studies show that HNSCC patients have a low expression of miR-9. Moreo-
ver, in HNSCC cell lines, knockdown of miR-9 causes an increased invasiveness, 
cell cycle progression, cellular proliferation, and colony formation, and targets 
the gene CXCR4, a discovery which may be useful in therapy (Hersi et al. 2018). 
In NPC patients mir-9-3p is down-regulated, while its targets genes fibronectin 1 
(FN1), β1 integrin (ITGB1), and α5 integrin (ITGAV) are upregulated. On the other 
hand, in NPC cell lines, higher expression of miR-9-3p decreases the proliferation, 
invasion, and migration of nasopharyngeal cancer cells (Ding et al. 2017).

Downregulation of miR-16 expression is observed in OSCC patients and cancer 
cell lines and its lower expression is negatively correlated with overexpression of its 
target gene Tousled-like kinase 1 (TLK1) and associated with positive LN metasta-
sis, as well as with higher TNM stage and poor prognosis (Hu et al. 2018a). Other 
targets genes for miR-16, the oncogenes AKT3 and BCL2L2, may promote cell pro-
liferation and inhibit apoptosis in OSCC cells; oral cancer cell lines show a negative 
correlation between expression of miR-16 and expression of AKT3 and BCL2L2, 
confirming a tumor-suppressing role of miR-16 in oral cancer (Wang and Li 2018).

A bioinformatics-based study showed that miR-99a-5p is downregulated in 
HNSCC and is negatively associated with expression of PIK3CD (phosphatidylin-
ositol-4,5-bisphosphate 3-kinase catalytic subunit delta), which takes part in the 
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PI3K-Akt signaling pathway, suggesting that it may be a tumor suppressor in head 
and neck cancer (Chen et  al. 2018). miR-99a is also down-regulated in oral can-
cer and cell lines, but lower expression is not connected with the clinical stage; 
moreover, decreased expression of miR-99a promotes migration, proliferation, and 
cell invasion which are connected with higher expression of the MTMR3 gene, a 
miR-99a target (Kuo et al. 2014). Yan et al. (2012) confirmed decreased expression 
of miR-99a in patients with oral cancer, and studies of TSCC cell lines show that 
higher expression of miR-99a inhibits cell growth and starts apoptosis. The mTOR 
gene (mammalian target of rapamycin), a serine/threonine protein kinase which 
plays an important role in regulating many pathways such as cell growth, cell sur-
vival, and differentiation is a potential target of miR- 99a (Watanabe et  al. 2011; 
Yan et al. 2012). Wei et al. (2019) also reported reduced expression of miR99a-3p 
among HNSCC patients.

miR-34a is downregulated in HNSCC and reduced expression is characteristic for 
samples with LN metastasis; its target gene AREG (ligand of epidermal growth fac-
tor) takes part in tumor development, suggesting that miR-34a may play a key role 
in the suppression of invasion and metastasis in HNSCC (Zhang et al. 2015a). Other 
studies also observed downregulation of miR-34a (Scapoli et al. 2010; Kumar et al. 
2012), and miR-34a expression is low in HNSCC cell lines (Kumar et  al. 2012). 
Ectopic expression of miR-34a using in vitro and in vivo models caused inhibition 
of cell migration and proliferation of HNSCC cell lines. Moreover, miR-34a regu-
lates tumor angiogenesis in head and neck cancer (Kumar et al. 2012).

Downregulation of miR-638 occurs in OSCC and is negatively correlated with 
TMN stages and LN metastasis. Besides, Tang et al. (2019) reported that restored 
expression of miR-638 inhibited migration, invasion, and proliferation of OSCC 
cells, and suggested that miR-638 might be a tumor suppressor by miR-638/wnt/ 
b-catenin axis.

miR-375 is downregulated nearly 22-fold in HNSCC tissues compared to normal 
tissues (Avissar et al. 2009a), suggesting that it may play a role in the transcriptional 
repression of an oncogene. Additionally, the expression ratio of miR-221 to miR-375 
may serve as a cancer prognostic tool due to its high specific and sensitivity.

miR-625 may be a tumor suppressor miRNAs, because its level is lower in laryn-
geal squamous cell carcinoma (LSCC) and low expression is correlated with an 
advanced clinical stage of cancer and LN metastasis (Li et al. 2019b). On the other 
hand, miR-625 could be used in therapy because its overexpression decreases the 
invasion, proliferation, and migration of LSCC cells by targeting the gene SOX4.

Other studies and meta-analyses show that in HNSCC patients some miRNAs 
are upregulated, such as miR-126 and miR-223 in OSCC (Tachibana et al. 2016), 
miR-196b (Luo et al. 2019), miR-31 (Kao et al. 2019), miR-1275 in HNSCC (Liu 
et al. 2018), miR-212 and miR-129 in OSCC (Scapoli et al. 2010), and miR-130b in 
HNSCC (Chen et al. 2012), while others are down-regulated, such as miR-145-5p 
in LSCC (Gao et  al. 2019), miR-29a in OSCC (Huang et  al. 2019), miR-200b in 
HNSCC (Kumarasamy et al. 2019), miR-125a-5p in HNSCC (Vo et al. 2019), miR-
486-3p and miR-337-3p in OSCC (Chou et al. 2019), miR-224 in OSCC (Lu et al. 
2019), miR-135b, miR-197, miR-378, miR224, and miR-34a in OSCC (Scapoli 
et al. 2010), miR-100 and miR-375 in HNSCC (Chen et al. 2012).
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lncRNAs

lncRNAs are transcribed RNA molecules, which have a length of more than 200 
nucleotides, do not encode proteins, and participate in positive and negative regu-
lation of gene expression in the transcriptional, as well as the post-transcriptional 
level (Wang and Chang 2011; Chen 2016; Wei et al. 2017). Moreover, they regulate 
the transcription via modulation of chromatin structure and in consequence, are piv-
otal regulators of diverse biological processes, such as apoptosis, cell proliferation, 
metabolism, cell cycle, etc. (Akhade et al. 2017). lncRNAs may contribute to cancer 
development as oncogenes or tumor suppressors (Momen-Heravi and Bala 2018), 
thus might be used as biomarkers in diagnostics and target in therapy (Yang and 
Deng 2014).

An example of lncRNA associated with HNSCC development is HOXA11 anti-
sense RNA (HOXA11-AS), which was found to be overexpressed in LSCC (Qu et al. 
2018) and OSCC (Li et al. 2019a; Wang et al. 2019b). Upregulation of HOXA11-AS 
is significantly associated with poor prognosis of LSCC patients, while downregula-
tion in LSCC cell lines is connected with inhibition of the invasion and migration of 
cancer cells, suggesting an oncogenic role of HOXA11-AS (Qu et al. 2018). Simi-
larly, Li et al. (2019a) observed that higher expression detected in OSCC patients 
was correlated with lymph node metastasis, grade and clinical stage of oral can-
cer, while in OSCC cells in vitro it promoted proliferation. Moreover, bioinformatic 
analysis suggested that miR-518a-3p may be a target of HOXA11-AS, and in con-
sequence a promoter of PDK1 expression in OSCC (Li et al. 2019a). On the other 
hand, Wang et  al. (2019b) revealed another target of HOXA11-AS, miR-214-3p, 
which negatively regulated the proto-oncogene PIM1. Importantly, HOXA11-AS/
miR-214-3p/PIM1 axis may be a potential target for oral cancer chemotherapy 
improvement. lncRNA RHPN1-AS1 acts as an oncogene, which was confirmed by 
Qiu et al. (2019), who showed that RHPN1-AS1 had a higher expression in HNSCC 
patients. Its knockdown was associated with significant inhibition of migration and 
invasion of HNSCC cell lines. Moreover, downregulation of RHPN1-AS1 promoted 
apoptosis of cancer cells. In oral cancer, Guo et  al. (2018) reported that lncRNA 
CEBPA-AS1 was upregulated in OSCC tissues and Tca8113 and Cal27 cell lines, 
suggesting that lncRNA CEBPA-AS1 may promote OSCC development. Moreover, 
the increased expression correlated with lymph node metastasis, poor differentia-
tion, and high clinical stage of OSCC. The results indicated that lncRNA CEBPA-
AS1 might be a novel prognostic biomarker and therapeutic target for patients with 
oral cancer. The lncRNA ST7-AS1 is the antisense transcript for ST7 (suppressor of 
tumorigenicity 7 protein) and plays an oncogenic role in LSCC. The ST7-AS1 over-
expression in LSCC tissues and cell lines is associated with poor overall survival of 
LSCC patients. Qin et al. (2019) showed that interacting partner for ST7-AS1 was 
CARM1, which promoted metastasis and cancer development throughout its meth-
yltransferase activity. In results, they showed a novel ST7-AS1/CARM1/Sox-2 sign-
aling axis occurring in LSCC progression. lncRNAs may also inhibit HNSCC devel-
opment, such as lncRNA LINC01133, which is downregulated in OSCC. However, 
the increased expression is associated with decreased metastasis and longer survival 
of OSCC patients, suggesting that LINC01133 may play a role of tumor suppressor 
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gene (Kong et  al. 2018). Downregulation of lncRNA AC026166.2-001 occurs in 
LSCC patients. Shen et al. (2018) reported that higher expression of AC026166.2-
001 suppressed cell proliferation and migration in LSCC cells, inhibited cells cycle, 
and supported cell apoptosis in laryngeal cancer. Also other lncRNAs are upregu-
lated in HNSCC and may display oncogenic properties, such as ZFAS1 (Kolenda 
et al. 2019), PVT1 (Yu et al. 2018), CASC9 (Sassenberg et al. 2019), TUG1 (Zhang 
et al. 2018b), MIAT (Zhong et al. 2019), SNHG20 (Wu et al. 2019), or RGMB-AS 
(Xu and Xi 2019), or downregulated and may act as tumor suppressor genes, such 
as STR5-AS (Wang et al. 2019a), C5orf66-AS1 (Lu et al. 2018), AC012456.4 (Hu 
et  al. 2018b), LINC01133 (Kong et  al. 2018), ZNF667, and ZNF667-AS1 (Meng 
et al. 2019).

Chromatin Remodeling

Chromatin remodeling describes the dynamic changes of chromatin organiza-
tion which influence regulation of gene transcription, replication of DNA, apopto-
sis, DNA repair, and also chromosome condensation and segregation (Wang et al. 
2007a). Chromatin remodeling is undertaken by mechanism such as covalent his-
tone modifications and DNA methylation which were described above, and also 
uses histone variants and ATP-dependent complexes of chromatin remodeling 
enzymes. Deregulation of chromatin remodeling may contribute to many dis-
eases, including cancer (Wang et  al. 2007b). ATP-dependent enzymes engaged in 
chromatin remodeling play important roles in regulation of gene transcription by 
modifying the organization of nucleosomes (Hatziapostolou and Iliopoulos 2011). 
Importantly, to remodel nucleosome organization, these ATPases utilize the energy 
from ATP hydrolysis. Chromatin remodeling ATPases are composed of four fami-
lies, SWI/SNF, ISWI, NuRD/Mi-2/CHD, and INO80 (Bao and Shen 2007; Wang 
et al. 2007b). The SWI/SNF (switching/sucrose nonfermenting) family consists of 
two subfamilies, PBAF (polybromo-associated factor) and BAF (BRG1 or BRM-
associated factor) (Halliday et al. 2009). SWI/SNF is essential in regulation of tran-
scription, repair, recombination, and cell cycle progression as well as in the immune 
pathway and organ development, and in consequence nonfunctional complexes may 
influence carcinogenesis (Bao and Shen 2007; Halliday et al. 2009). The SWI/SNF 
complex also contains bromodomain units (Halliday et  al. 2009). BRD7 (bromo-
domain-containing protein 7), a subunit of the PBAF complex, is hypermethylated 
in 74% of OSCC cases examined (Balasubramanian et al. 2015). Immunoreactivity 
of BAF250a, another subunit of SWI/SNF, is reduced to various levels in invasive 
OSCC cells compared to normal oral epithelial cells and is connected with poor out-
come in OSCC patients with early pathological T-stage (T1/T2) without lymph node 
metastasis. However, no association is found between lower BAF250a immunore-
activity and smoking or alcohol abuse, gender, age, or LN metastasis (Inoue et al. 
2018).

RSF1 is one subunit of ISWI remodeling factors, and its expression is upregu-
lated in OSCC. Moreover, higher expression is correlated with poor overall survival 
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in patients with oral cancer and is also associated with LN metastasis, as well as 
with advanced clinical stage of tumor and recurrent disease (Fang et al. 2011).

The Mi-2/NuRD (Nucleosome Remodeling Deacetylase) complex is also an 
important complex for chromatin remodeling. One of its subunits is DOC1 (Deleted 
in Oral Cancer 1) (Bao and Shen 2007; Wang et al. 2007b) whose loss is connected 
with OSCC; in OSCC cell lines, re-expression of DOC1 decreases cell proliferation 
or migration and induces a mesenchymal–epithelial transition (Mohd-Sarip et  al. 
2017).

The chromatin remodeling complex INO80 is also required for correct regulation 
of transcription and organization of nucleosomes, and incorrect function of its subu-
nits may influence carcinogenesis (Bao and Shen 2007; Wang et al. 2007b).

Conclusions

Recent studies show clearly that epigenetic mechanisms play important roles in head 
and neck carcinogenesis. Aberrant methylation of repeat sequences like LINE1 or 
tumor suppressors such as DAPK, RASSF1 and, ECAD is undoubtedly crucial in 
tumor progression. Moreover, epigenetic alteration connected with histone modi-
fication and chromatin remodeling may cause open chromatin structure and facili-
tate transcriptions of factors involved in human malignancies. Also expression of 
microRNAs may influence tumor progression and in consequence the prognosis for 
patients. On the other hand, knowledge about dysregulated microRNAs and their 
target genes may improve therapeutic strategies. Importantly, utilizing informa-
tion about hypo- or hypermethylation markers may be useful and reliable for early 
detection and prognosis. Because epigenetic changes are reversible, further research 
about aberrant patterns of epigenetic events is important to provide better and more 
effective therapies for patients with head and neck cancer.
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