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Abstract: We have developed a high-speed vision chip using 3D stacking technology to address
the increasing demand for high-speed vision chips in diverse applications. The chip comprises
a 1/3.2-inch, 1.27 Mpixel, 500 fps (0.31 Mpixel, 1000 fps, 2 × 2 binning) vision chip with 3D-stacked
column-parallel Analog-to-Digital Converters (ADCs) and 140 Giga Operation per Second (GOPS)
programmable Single Instruction Multiple Data (SIMD) column-parallel PEs for new sensing
applications. The 3D-stacked structure and column parallel processing architecture achieve high
sensitivity, high resolution, and high-accuracy object positioning.

Keywords: vision chip; high-speed image sensor; detection; tracking

1. Introduction

High-speed vision systems that combine high frame-rate imaging and highly parallel signal
processing enable extremely high-speed visual feedback to more rapidly control machines as compared
to human-visual-recognition speeds. Such systems enable a reduction in circuit scale by using a fast
and simple algorithm optimized for high frame-rate processing [1]. Previous works on such vision
systems and chips [1–4] have yielded low imaging performance due to large matrix-based processing
elements (PE) [1–3] and low functionality of the limited-purpose column-parallel PE architecture [4],
constraining vision-chip applications. Dynamic Vision Sensors (DVSs) [5–8] also enable remarkably
high-speed detection of intensity changes by using event-based operation. However, a large pixel size
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for event-based operations limits the spatial resolution and the external processor and memory for
complex data reconstruction and recognition processing create a large-scale system.

CMOS Image Sensors (CISs) have rapidly replaced CCD image sensors in most commercial
camera applications due to their superiority in power consumption and higher flexibility of signal
readout architecture. CIS technology has improved its image quality along with shrinking pixel
size, increasing sensor resolution, enabling sophisticated signal processing, and allowing new CIS
architectures such as Back-Illuminated (BI)-CIS and imager plus logic stack technologies [9–13].

However, there has not been a vision chip realized that achieved high sensitivity, high resolution,
and high-accuracy object positioning. This paper presents a 1/3.2-inch, 1.27 Mpixel, 500 fps
(0.31 Mpixel, 1000 fps, 2 × 2 binning) vision chip with a 3D-stacked column parallel Analog-to-Digital
Converter (ADC) [14] and 140 GOPS programmable SIMD column parallel PEs for diverse sensing
applications [15]. The architecture of the parallel signal processor was developed as an image
processing Digital Signal Processor (DSP) [16–18] and the technology of the processor is applied
to the vision chip to realize high-speed sensing. The architecture of the parallel signal processor is like
the column-based readout sensor architecture.

This paper explains the details of the high-speed vision chip based on the IISW paper [19].

2. Materials and Methods

Our approach to the high-speed vision chip is to adopt a 3D-stacked structure. We use a stacked
column ADC/PE structure to realize good imaging capability and two-column PEs with memory and
a serial sensing processor to realize fast and flexible functionality. Our approach is shown in Figure 1.
There are three benefits of the 3D stacked structure: (a) high resolution, (b) high sensitivity, and (c)
high functionality.

The 3D-stacked structure uses separate logic and pixel processes for implementing the two
chips. The upper chip consists of only pixels. It can achieve high resolution and high sensitivity
with back-illuminated pixels [20]. The lower chip, using an advanced logic process, contains large
amounts of logic. The 3D stack structure realizes high imaging capability along with fast and
flexible functionality.
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Figure 1. 3D stack vision chip.

The block diagram of the chip is shown in Figure 2. This sensor consists of the pixel array, the
column parallel single-slope ADCs, the column parallel 4b/1b PEs, a 1b frame memory, a 4b/1b serial
image processor, a 12b/10b/4b image data transmitter, MIPI interface, and a CPU connected with
a sensor controller. The ADCs operate in 4b mode for high-speed vision sensing and in 12b/10b
mode for viewing the output. The architecture, composed of column parallel ADCs, PEs, and frame
memory, solves the constraint of the process-able high pixel count due to the number of PEs and
enables 140 GOPS 4b inter-pixel and 1b inter-frame operations. The serial image processor aggregates
the data from column PEs to realize various sensing functions. The image data transmitter embeds the
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results of vision sensing into the image data and outputs images. The speed of the MIPI interface is
864 Mbps/lane using 4 lanes. The CPU performs high-speed Auto Exposure (AE) and Auto White
Balance (AWB) and feeds back to the sensor controller to improve the robustness of the imager to
address lighting variations for full vision sensing.
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Figure 2. Block diagram of the chip.

The high-speed vision chip realizes two sensing functions: (a) target detection using color or
a condition of the brightness of each pixel, (b) target tracking using centroid movement of target object.
The sensing functions are realized in the lower chip as a large logic function. The data flow of the chip
for sensing is shown in Figure 3. There are three important blocks for sensing. The 4b column PEs
perform pre-filtering for spatial processing to extract targets based on luminance and color information.
The binary block in column 1b PEs binarizes pixels according to the binarizing parameter. The Column
1b PEs performs noise reduction for temporal processing. Two columns PEs perform column parallel
processing that is suitable for column parallel data conversion. The 4b PEs and the 1b PEs execute
parallel to serial data transfer, and output to a serial sensing processor. The Serial Sensing Processor
aggregates 4b/1b data from column PEs to generate sensing output information.
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Figure 3. Data flow for sensing.

Low spatial resolution causes low accuracy in acquiring the target’s centroid. High resolution
improves the accuracy of centroid position. The improvement of sensing accuracy is shown in Figure 4.
Ground truth means the true position of the centroid.
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The schematic diagram of the 4b programmable PE is shown in Figure 5. This circuit performs
“1 ms (1000 frames per second)” high-speed 4b readout and processing. The first 4b column PEs
perform spatial processing with the five-line memories. The 4b PE consists of a compact, bit-serial
Arithmetic Logic Unit (ALU), 32 bits of local memory, an ALU operand selector, and an output
register. This 4b PE can be controlled by eight instructions and the bit-serial ALU supports arithmetic
operations, a shift operation, and logical operations. To achieve processing within only a few cycles,
all selection signals to the PE are fixed in one instruction. The 4b PEs achieve 140 GOPS at a 108 MHz
peak frequency because a 1b primitive operation takes one cycle and 1304 PE × 108 MHz = 140 GOPS.
The PE inputs can be selected from three data sources; neighboring pixel data, processed data in the
neighboring PEs, and data in its own work FF. The PE is connected to the neighboring left and right
PEs. The PE receives horizontal data over two neighboring pixels, repeating the copy function using
work FF. The PEs can also access vertical data in five line memories. The PE achieves various functions
within only a few cycles using a carry register and ALU performing arithmetic operations. These data
allow for flexible spatial operations.
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Figure 5. Schematic of the 4b PE.

The schematic diagram of the 4b PE SIMD controller is shown in Figure 6. A 1000 word memory
is implemented for instruction memory. The controller connects all 1304 4b PEs and reads out one
instruction from the memory and issues it to all PEs in parallel. The controller executes an instruction
each cycle with pipelined operation. All PEs can be operated simultaneously at 108 MHz. The controller
can store a maximum of four different programs in 1000 word instruction memory. The programs
can be configured simultaneously and an effective operation program can be selected for each frame
or line. It enables spatial processing by color and dynamic program selection that adapts sensing
operations to improve the accuracy of processing.
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The basic operations and their steps of the 4b PEs are shown in Table 1. The basic operations are
arithmetic operations, a shift operation, logical operations, as well as combinations of some instructions.
The instructions have 55-bit length including ALU setting, carry in setting, selected input data, and
selected output data. The operation code is stored by the 1000 word memory, and are executed
sequentially. The processor includes a jump operation. These are reset horizontal sync timing, and
carry out from a beginning code, or code specified by jump operation. These processor steps have
different timings based on the number of bits of data.

These operations are fully pipelined. The vision chip can take a maximum of 2 µs as processing
period of line.

Table 1. Steps for calculation.

Function Steps (for Column)

addition length + 1
subtraction length + 1

absolute value length + 1
comparison length × 2 + 3

select length + 1
maximum(minimum)value select length × 2 + 2

logical operation (and/or/xor/xnor/not) length
swap length + 3

increment(decrement) length + 1
move length

length = bit length of the larger data.

The 1b PEs is the second block in the sensing function. First, this block binarizes 4b input data
from the 4b PEs. Each pixel is binarized with a threshold of the brightness or the color. The pixel
within threshold is recognized as the target object. For example, the binary calculation image is shown
in Figure 7. The left image is input data and the right image is binarized data. There are two balls,
red and blue. In the image in this example, the red ball is detected. The threshold of binarization is
color. The binarized block extracts only the red ball.
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The color mode needs a specified target color (red, green, or blue) and four parameters,
Threshold_Min, Threshold_Max, Color1_Weight, and Color2_Weight. Based on the settings, binarized data
are given by the following conditions:

Threshold_Min ≤ Target_Color ≤ Threshold_Max (1)

(1 + Color1_Weight) × Comparison_Color1 ≤ Target_Color, (2)

(1 + Color2_Weight) × Comparison_Color2 ≤ Target_Color. (3)

Target_Color is each pixel value of specified color. Once the target color is selected, comparison
colors are decided automatically. Comparison_Color1 and Comparison_Color2 are each pixel value of
comparison colors. Based on threshold parameters (Threshold_Max and Threshold_Min), the binarized
range of the target color is determined. Weighting parameters (Color1_Weight, Color2_Weight) are used
for color gamut specification. A coefficient Color1_Weight/Color2_Weight is a ratio between comparison
colors. Binarizing in comparison colors is performed by the equations, which use the ratio between
target color value and comparison color value.

The schematic diagram of the 1b PE with frame memory is shown in Figure 8. The ALU in the
1b PE consists of primitive logic gates for 1b inter-frame operations such as self-window method [1],
or inter-frame difference method to extract moving objects. The 1b PEs enable chroma-based
binarization by thresholds for each color or hue threshold and target detection using the temporal
variation between a current frame and the previous frame buffered in the 1b frame memory. 4b spatial
processing such as smoothing filtering improves the accuracy of target extraction by reducing the
spatial random noise. The AE function also helps binarization to adapt dynamic luminance change.
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The functions of the 1b PE are shown in Table 2. The PE can perform three temporal functions:
Self-Window method [21], Frame difference, and Background difference target extraction methods.

Table 2. Functions of the 1b PE.

Functionality Data in Frame Memory

Self-Window [21] Instructed target extraction Dilated target image
Frame difference Motion region extraction Previous image

Background difference method Foreground target extraction Background image

The block diagram of the serial image processor is shown in Figure 9. The sensing processor is
a ladder circuit of two column parallel PEs and includes a target moment calculator, a centroid
calculator, and a motion vector calculator. The processor aggregates 4b/1b data from the column PEs
to generate sensing information. This data aggregation does not require parallel processing. We chose
this serial architecture to achieve a small circuit size.
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Figure 9. Block diagram of the serial image processor.

The serial processor calculates target information such as moment, centroid, and motion-vector
with a maximum of six Regions of Interest (ROIs) and RGB histogram calculation to process the
sensing information. The size (height and width) of ROI window is not configured automatically
and can be configured from external system via writing sensor’s registers. The accuracy of moments
suffers from spatial noise. 4-bit filtering, such as smoothing, can improve the accuracy of moments by
temporal noise reduction. The target’s 0th moment m00, and 1st moments m10, m01 are given by the
following equations:

m00 = ∑x ∑y Ibin, (4)

m10 = ∑x ∑y xIbin, (5)

m01 = ∑x ∑y yIbin. (6)

Here, x and y are the horizontal and vertical pixel positions, respectively, and Ibin is the binarized
pixel value (0 or 1) in the 1b PE. The centroid (Cx, Cy) is given by the following equations using
the moments:

Cx =
m10

m00
, (7)

Cy =
m01

m00
. (8)

RGB histogram calculation is shown in Figure 10. The serial processor calculates an RGB histogram
for each ROI. The RGB histogram has 16 bins as the pixel is 4 bits in length.
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Figure 10. RGB histogram calculation.

Sensing information such as the moments and centroids is embedded into the image data,
and transmitted to the output interface. Output information is shown in Figure 11. A high-speed
vision system includes the vision chip, flash memory for program code, and an external controller.
The external controller is connected to the chip and gets sensing information from the chip using
MIPI or SPI. The MIPI interface transfers image data and sensing information is transferred by the
SPI interface. The external controller such as a micro controller calculates the threshold parameter
for binarizing using the RGB histogram, calculates the search area for detection using target state,
and calculates ROI window size for tracking moment and centroid. The chip outputs sensing
information for each frame (2 ms@500 fps, 1 ms@1000 fps).

In this experiment, the MIPI interface output from the vision chip is converted to USB interface
and processed by a Windows PC. In the processing on the PC side, vision chip control (designation
of ROI window size, from detection to tracking switching) is performed using sensing information
redundant in MIPI interface data. Only the UI for displaying the experiment results is executed.
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3. Results

The specifications of the vision chip are summarized in Table 3. The upper chip is fabricated using
a 90 nm, 1P4M MOS process. The lower chip is fabricated using a 40 nm 1P7M logic process. The chip
performance achieves 1.27 Mpixel, 500 fps operation at 4b resolution, and 0.31 Mpixel, 1000 fps at
4b resolution. Power dissipation of one PE is 0.23 mW/GOPS. Power consumption is 230 mW at
1.27 Mpixel 12b 60 fps without sensing or 363 mW at 0.31 Mpixel 4b 1000 fps with sensing. The column
PEs consumes only 32 mW. Processor count is one CPU for sensor control and 1304 column parallel
PEs. Instruction cycle is one cycle using 1b primitive operations. Memories include the instruction
memory of 7 KByte (KB), a line memory of 3 KB, and a frame memory of 165 KB. Instruction memory
is used for the 4b PE and stored SIMD Instructions. Line memories are used for previous line data and
current line data for the 4b PEs. Frame memory and template are used by the 1b PEs.

The 12b/10b ADC mode is used for conventional viewing without sensing operation. Switching
between sensing operation and viewing operation is disabled.
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Table 3. Chip specifications.

Fabrication process 90 nm 1P4M CIS/40 nm 1P7M Logic

Supply voltage 3.3 V/2.9 V/1.8 V/1.1 V

Image size Diagonal 5.678 mm (Type 1/3.2)

Number of effective pixel 1296 (H) × 976 (V) 1.27 Mpixels

Pixel size 3.50 µm (H) × 3.50 µm (V)

Frame rate

Full
60 fps at 1.27 Mpix 12b
120 fps at 1.27 Mpix 10b
500 fps at 1.27 Mpix 4b

1/2 sub sampling
120 fps at 0.31Mpix 12b
240 fps at 0.31Mpix 10b
1000 fps at 0.31 Mpix 4b

Power consumption
230 mW at 1.27 Mpixel 12b 60 fps
363 mW at 0.31 Mpixel 4b 1000 fps with sensing
(32 mW at only column PEs)

Saturation signal 19,849 e− at 60 ◦C

Sensitivity
54,396 e−/lx·s
(Green pixel, 3200 K light source with IR cut filter
of 650 nm cut off)

RMS random noise 2.1 e− (AnalogGain:30 dB)

Dynamic range 80 dB at 12b

Maximum operating frequency 108 MHz

Processor count 1 (CP) + 1304 (Column 4b/1bPE)

Instruction cycle 1 cycle

Memory

Instruction memory 7 KByte
Line memory 3 KByte
Frame memory 165 Kbyte
Template memory 12 KByte

The chip photomicrograph is shown in Figure 12. The chip size is 9.31 mm (H) × 6.84 mm (V).
The pixel array is located in the upper chip. The lower chip contains the column ADCs, memory, and
logic circuits including column parallel PEs and MIPI interface.
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Figure 12. Photomicrograph of the chip. (a)The upper chip consists of only pixels; (b) the lower chip,
using an advanced logic process, contains large amounts of logic.
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A performance comparison between three vision chips is summarized in Table 4. From left to
right, PE structures are pixel-parallel PEs, matrix-PEs with column ADCs, and this work; two column
PEs with column ADC and Memory. This work achieves superior performance in all figures of merit;
pixel size, pixel fill factor, array efficiency, processing operations, and power consumption. The solution
has high resolution and sensitivity because of the 3D-stacked structure and BI pixel and achieves
low power consumption because of the column PE architecture. This results in superior centroid
calculation and tracking of faster and smaller objects than conventional vision chips.

Table 4. Comparison of vision chips.

Ref. No. ISSCC 1999 [1] ISSCC 2014 [2] This Work

PE Structure
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Resolution 16 × 16 256 × 256 1304 × 968
Pixel size 150 µm × 150 µm 10 µm × 10 µm 3.5 µm × 3.5 µm

Pixel fill factor 23% 60% 100%
Chip size 100 mm2 82.3 mm2 25.7 mm2

array efficiency 0.45% 3% 50%
Maximum centroid error 1 6.25% 0.39% 0.08%

Power N/A 630 mW 363 mW
Speed N/A 108 GOPS 140 GOPS

1 Maximum centroid error = 1/(Horizontal Resolution).

4. Experimental Results

4.1. Auto Adjusting Function Results

The results of imaging and sensing functions are presented in this section. The first result shows
the tracking ability of the chip with changes in lighting. The chip performs Auto Exposure (AE)
and Automatic White Balance (AWB). The results of target tracking with AE and AWB are shown in
Figure 13. This example uses a change in illuminance from 600 lux to 7000 lux. The top of Figure 13
shows a graph of luminance change over time. The horizontal axis is time and the vertical axis is
luminance. The left-hand images of (a) and (b) are results of the AE control under different lighting
conditions. In this image, the red car is tracked as a target. The right-hand images of (a) and (b) are
binarized images. The width and height are configured manually before tracking operations from
the external system to enclose the target. AE detects the change in luminance and keeps the image
brightness constant by adjusting “shutter time” and “gain” for each frame. Image (a) and image (b)
keep the same image brightness by adjusting the gain. Image (a) illustrates tracking an image at 600 lux,
whereas image (b) shows tracking an image at 7000 lux. The feedback time for the detection and the
controlling is a few frames. Illumination and color temperature change, such as this, can cause target
tracking failure because the tracking algorithm uses color information. The AE and AWB functions
enable robust target tracking under changing luminance.
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Figure 13. Target tracking with AE/AWB.

4.2. Programmable 4b Column Parallel PEs Spatial Processing Function

The next result shows the capability of the programmable 4b column parallel PEs. The PEs switch
between various filters by changing their programming. In high-speed processing, the processor
has two problems. First problem is the short-time processing is required, and the Second is that
there is very short-time to dynamically change the PE program due to the small instruction memory.
The vision chip can solve both problems because the column parallel processing can reduce the number
of steps for the spatial processing and the amount of program code for dynamical function switching.
An important process in sensing is to reduce noise and make object-detection easier.

The experimental results for spatial processing are shown in Figure 14. There are four images
under the larger image, which enhance a highlighted area of text under differing processing within the
PEs. Input image (a) is a 4b, 1.27 Mpixel image captured at 500 fps. The four smaller images show the
original area of interest and the results of three basic filtering operations: blurring (b), sharpening (c),
and edge extraction (d). These basic filters operate correctly for a high-resolution image within only
a few cycles. The processing period line by line of all three filters is less than 2 µs, thereby allowing
high-speed 500 fps spatial filtering for a 1.27 Mpixel image.
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Figure 14. Results of spatial filtering. This is the result of a filter in the yellow area. (a) Raw data;
(b) eight-neighbor Gaussian; (c) four-neighbor sharpness; (d) four-neighbor Sobel.
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Several spatial filtering algorithms are realized with the programmable ALU. Several example
operations and processing step counts are shown in Table 5. The line by line period is a minimum 2 µs
and all filters can be implemented in this amount of time. It is possible to execute more complicated
filters as well. The number of peripheral pixels used in an eight-neighbor Gaussian filter is twice that
of a four-neighbor Gaussian filter. However, the processing can be accomplished with only a slight
increase in the number of steps by using the 4b PEs.

Table 5. Steps of sample filtering.

Spatial Image Processing Steps (for Column) Time (108 MHz)

4-neighbor-Gaussian 21 190 ns
8-neighbor-Gaussian 26 241 ns
4-neighbor-Laplacian 42 389 ns
4-neibor-Sharpness 51 472 ns
4-neighbor-Sobel 79 732 ns

The eight-neighbor Gaussian filter data flow is shown in Figure 15. The eight-neighbor Gaussian
is the weighted average of nine pixels. The column parallel PE accomplishes this with four additions.
In the figure, the blue data indicate input data and the green data indicate output data. The table in the
upper right side shows the calculation of each step. The addition of upper data (pre-line) and lower
data (post-line) is shown in Figure 15a. This is followed by the addition of current data ×2, and upper
data and lower data are shown in Figure 15b. The PE executes three additions per code word (current
pixel and left pixel and right pixel). The addition of left and right data is shown in Figure 15c. The
result of filtering is stored in working memory. The addition of left data (L: a2) and right data (R: a2)
uses data from the left working memory and the right working memory. The result of the addition is
stored in current working memory (a3). The addition of left data and right data is shown in Figure 15d.
The PE reduces the number of operational steps by performing orthogonal processing earlier.
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Figure 15. The eight-neighbor Gaussian filter data flow. This is the data flow of ALU step by step. The 
ALU calculates from (a–d). Upper-left image is filter tap and coefficient. The filter is using red pixels. 

The next example shows the result of dynamic programming changes. The result of spatial 
filtering is shown in Figure 16. Column parallel PEs can hold and select four kinds of programs in 
the instruction memory. This PE cannot change programs on a per-pixel basis. However, this PE can 
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Figure 15. The eight-neighbor Gaussian filter data flow. This is the data flow of ALU step by step. The
ALU calculates from (a–d). Upper-left image is filter tap and coefficient. The filter is using red pixels.

The next example shows the result of dynamic programming changes. The result of spatial
filtering is shown in Figure 16. Column parallel PEs can hold and select four kinds of programs in
the instruction memory. This PE cannot change programs on a per-pixel basis. However, this PE can
dynamically switch between these four programs both in time and in screen area. The left side of
Figure 16 is the normal output image. In the right image, the upper part of the image is not processed
and the lower part of the image is subjected to Sobel filter processing, demonstrating the ability of the
system to dynamically switch processing between detection and tracking in the same frame.
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Figure 16. Results of spatial filtering (area selected). (a) without filtering; (b) with Sobel filtering
applied only to the lower half of the image.
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5. Applications

The vision sensing functions of the vision chip are: (a) 4b spatial processing, (b) target detection
and tracking using chroma and temporal information, (c) target feature extraction (moment, centroid,
motion vector) using up to six ROIs, and (d) luminance histogram calculation for each color. The vision
chip has several functions to improve the accuracy of centroid calculation despite spatiotemporal
noise by using 4b noise spatial reduction, 1b foreground extraction, 1b morphological processing,
and temporal low pass filtering of the centroid position. There are many applications using these
functions for target detection and tracking. Multiple ROIs enable various calculations such as distance
and size estimation. Multiple targets with different conditions can be tracked by changing the settings
for each ROI. It shows three applications: multi-target tracing, foreground extraction using temporal
filtering, and multi-target classification using moments.

5.1. Multi-Target Tracking

The experimental results of multi-target tracking are shown in Figure 17. This demonstrates
high-speed multi-target tracking. This is a slot car track with different colored cars. These are the
conditions: the frame rate is 500 fps; illuminance is 550 lux under only interior light (incandescent
light). The speed of these objects is 2.4 m/s, corresponding to a full-scale car moving at 371 km/h.
The left-hand images are arranged in time-series order and each color frame shows a different ROIs.
These images show the result of multi-target tracking with three ROIs in each frame. Rectangles
show the position, size, and target color of each ROI. The right-hand image shows centroids and
motion-vectors as vectors for the three ROI. These are correctly output from the chip as sensing
information. Centroids are described for every four frames, and motion vectors are described for
every eight frames. High-speed tracking of fast-moving targets is achieved under non-optimal
lighting conditions.
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5.2. Foreground Extraction

The next application is temporal filtering using the 1b PEs and frame memory. The detection
method extracts the foreground targets by subtracting the 1b background data stored in the frame
memory of the captured image.

The experimental results of background difference using the frame memory are shown in Figure 18.
Even if the same color is contained in the background, the PEs can extract the background by using
the frame memory. Image (a) is the background image. Image (b) is the input image. There is a target
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object of the same color as the object in image (b). The target is the moving car of the same color as
the one in the background. In this situation, the chip cannot correctly determine the centroid of the
target object. Image (c) is the binarized data of image (a) stored in the frame memory. This operation is
executed before detection of the target object. Image (d) is the sorted input image. In detection mode,
there is an input image with noise. The background difference is that image (d) is subtracted from
image (c). The result of the sorted data is image (e). Using this background difference image (e), the
foreground target object is detected and tracked. Although there are some outlier pixels, they do not
have a big influence on the calculation of the centroid.
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5.3. Multi-Target Classification

The next application is target classification with multiple windows and target moments. The
experimental results of multi-target classification are shown in Figure 19. Each symbol in the right-hand
table “range of moments” indicates the value of a zero-order moment. For example, the zero-order
moment of one Yen (the coin on the left) is 20. The range can be configured as from 15 to 25 in (1) to
classify the coin with some fluctuation of light intensity. This application uses color-sorted information
and the target moments to sort coins. There are five types of coins with different sizes in the image
(vertical center of image). These five types of coins are target objects to be classified. Coins fall through
the right lane in the application system and the application classifies them using stored target moments.
This application fixes the position of the detection in five ROIs. Each ROI is selected by a threshold of
the moment. Image (a) is awaiting the falling coins. There are counters under each coin type to show
the number of fallen coins of each type that have been detected. All counters are zero at first. Image (b)
shows the detection of a single coin. The ROIs classify the falling coins using the sensing information
(target detect). The vision chip then compares the moment of the detected coin with the stored moment
table and classifies the coins by matching the moments. The coin classification is executed when the
centroid coordinate of the coin reaches the center coordinate in the Y axis direction of the ROI area.
The centroid information is output from the vision chip and the judgment of whether to count the
coin is handled by the external processor. The vision chip outputs the results of the classifications as
sensing information to an external processor.
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6. Conclusions 

This paper presents a high-speed vision chip with 3D-stacked column parallel ADCs and 140 
GOPS programmable SIMD column parallel 4b/1b PEs. The upper chip can achieve high resolution 
and high sensitivity with back-illuminated pixels and the lower chip, using an advanced logic process, 
realizes fast and flexible functionality. The vision chip improves the robustness of the imager to 
lighting variations using high-speed AE and AWB. The 4b PEs realizes highly flexible spatial 
processing operations. The 4b PEs realizes various filters, each using fewer than 200 cycle steps. These 
PEs have four kinds of programs and can dynamically switch among them by time or screen area. 
This dynamic program change function is useful for changing the sensing mode from detection to 
tracking. The 1b PEs realize highly temporal operations such as noise reduction and extraction. The 
serial processor calculates target information such as moment, centroid, motion-vector with a 
maximum of six ROIs, and RGB histogram calculation to process sensing information. Sensing 
information, such as the moments and centroids, is embedded into the image data and transmitted 
to the output interface. The external processor can implement various high-speed applications by 
using sensing information from the vision chip. The chip achieves high speed and functional vision 
sensing with high sensitivity, high resolution, and high accuracy of target information extraction.  

High-speed multi-target tracking and classification can be applied to factory automation, human 
interfaces, and gesture control. It can also be applied to a wide variety of sensing applications in real-
world situations including general-purpose, low-cost sensors. 
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6. Conclusions

This paper presents a high-speed vision chip with 3D-stacked column parallel ADCs and
140 GOPS programmable SIMD column parallel 4b/1b PEs. The upper chip can achieve high resolution
and high sensitivity with back-illuminated pixels and the lower chip, using an advanced logic process,
realizes fast and flexible functionality. The vision chip improves the robustness of the imager to lighting
variations using high-speed AE and AWB. The 4b PEs realizes highly flexible spatial processing
operations. The 4b PEs realizes various filters, each using fewer than 200 cycle steps. These PEs have
four kinds of programs and can dynamically switch among them by time or screen area. This dynamic
program change function is useful for changing the sensing mode from detection to tracking. The 1b
PEs realize highly temporal operations such as noise reduction and extraction. The serial processor
calculates target information such as moment, centroid, motion-vector with a maximum of six ROIs,
and RGB histogram calculation to process sensing information. Sensing information, such as the
moments and centroids, is embedded into the image data and transmitted to the output interface.
The external processor can implement various high-speed applications by using sensing information
from the vision chip. The chip achieves high speed and functional vision sensing with high sensitivity,
high resolution, and high accuracy of target information extraction.

High-speed multi-target tracking and classification can be applied to factory automation, human
interfaces, and gesture control. It can also be applied to a wide variety of sensing applications in
real-world situations including general-purpose, low-cost sensors.
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