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Significance

The United Nations Paris 
Agreement aims to hold global 
warming well below 2 °C and 
pursue 1.5 °C. Given the clear 
evidence for accelerating climate 
impacts, the time remaining until 
these global thresholds are 
reached is a topic of considerable 
interest. We use machine 
learning methods to make truly 
out-of-sample predictions of that 
timing, based on the spatial 
pattern of historical temperature 
observations. Our results confirm 
that global warming is already on 
the verge of crossing the 1.5 °C 
threshold, even if the climate 
forcing pathway is substantially 
reduced in the near-term. Our 
predictions also suggest that 
even with substantial greenhouse 
gas mitigation, there is still a 
possibility of failing to hold global 
warming below the 2 °C 
threshold.
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Leveraging artificial neural networks (ANNs) trained on climate model output, we use 
the spatial pattern of historical temperature observations to predict the time until critical 
global warming thresholds are reached. Although no observations are used during the 
training, validation, or testing, the ANNs accurately predict the timing of historical 
global warming from maps of historical annual temperature. The central estimate for 
the 1.5 °C global warming threshold is between 2033 and 2035, including a ±1σ range 
of 2028 to 2039 in the Intermediate (SSP2-4.5) climate forcing scenario, consistent 
with previous assessments. However, our data-driven approach also suggests a substan-
tial probability of exceeding the 2 °C threshold even in the Low (SSP1-2.6) climate 
forcing scenario. While there are limitations to our approach, our results suggest a 
higher likelihood of reaching 2 °C in the Low scenario than indicated in some previ-
ous assessments—though the possibility that 2 °C could be avoided is not ruled out. 
Explainable AI methods reveal that the ANNs focus on particular geographic regions 
to predict the time until the global threshold is reached. Our framework provides a 
unique, data-driven approach for quantifying the signal of climate change in historical 
observations and for constraining the uncertainty in climate model projections. Given 
the substantial existing evidence of accelerating risks to natural and human systems at 
1.5 °C and 2 °C, our results provide further evidence for high-impact climate change 
over the next three decades.

global warming | UN Paris agreement | machine learning | AI for climate | CMIP6

The United Nations Paris Agreement articulates the goal of “holding the increase in the 
global average temperature to well below 2 °C above preindustrial levels and pursuing 
efforts to limit the temperature increase to 1.5 °C above preindustrial levels” (1). While 
these global temperatures may not represent absolute physical thresholds, they are relevant 
for a broad range of climate risks (e.g., refs. 2–6), including impacts on human health 
(e.g., refs. 2, 6, and 7), economic growth (e.g., ref. 8), crop yields (e.g., refs. 2 and 9), 
coastal and small island communities (e.g., refs. 2, 5, and 10), terrestrial and marine 
ecosystems (e.g., refs. 2, 6, and 11), and the frequency, intensity, and cost of extreme 
climate events (e.g., refs. 12–16).

Given their policy relevance, and the strong scientific evidence for accelerating impacts, 
the time remaining until these global warming thresholds are reached has generated con-
siderable interest in the scientific literature (e.g., refs.2 and 17), the policy community 
(e.g., ref. 18), and the public discourse (e.g., ref. 19). The uncertainty of this timing is 
particularly important, both for understanding the response of the climate system to 
external forcing and for a suite of climate risk management decisions—including mitiga-
tion decisions that depend on the pace of climate stabilization in response to decarboni-
zation, and adaptation decisions that depend on the rate and magnitude of change in the 
regional and local climate.

There has already been substantial analysis of the likely timing of the 1.5 °C and 2 °C 
thresholds (e.g., refs. 2, 17, and 20). For example, the Intergovernmental Panel on Climate 
Change (IPCC) Special Report on 1.5 °C (SR1.5) concluded that “Global warming is 
likely to reach 1.5 °C between 2030 and 2052 if it continues to increase at the current 
rate” (2). More recently, the IPCC Sixth Assessment Report (AR6) concluded that “In all 
scenarios assessed here except SSP5-8.5, the central estimate of crossing the 1.5 °C 
threshold lies in the early 2030s, about 10 years earlier than the midpoint of the likely 
range (2030 to 2052) assessed in the SR1.5, which assumed continuation of the then-cur-
rent warming rate.” (17). The “early 2030s” timescale for crossing 1.5 °C is consistent 
with current estimates based on linear extrapolation of the recent global temperature trend 
(21). Further, although the IPCC SR1.5 concluded that emissions to date have not been 
sufficient to cause warming of 1.5 °C on their own (2), the relationship between cumulative 
emissions and global temperature change implies that one additional decade at the current 
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rate of annual emissions would be sufficient to create a one-third 
likelihood of exceeding the 1.5 °C threshold (20).

There is greater uncertainty in the level of cumulative emissions 
that will cause 2 °C of global warming—and hence greater sensi-
tivity to the future forcing scenario and greater uncertainty in the 
time to reach the 2 °C threshold (20). However, the IPCC projects 
that high and extremely high forcing scenarios are likely and very 
likely, respectively, to cause 2 °C of global warming during the 
mid-21st century, while low and extremely low forcing scenarios 
are unlikely and extremely unlikely, respectively, to cause 2 °C of 
warming by the end of the 21st century (20).

In this study, we develop a data-driven approach to predict the 
time until the 1.5 °C and 2 °C thresholds (“time-to-threshold”). 
Our predictions use the spatial pattern of historical temperature 
observations as input to artificial neural networks (ANNs) that 
have been trained only on climate model simulations. Setting up 
the problem as a machine learning prediction task provides the 
opportunity to make truly out-of-sample predictions on the obser-
vations and to directly incorporate uncertainties into the predic-
tion—providing a unique, data-driven approach to constraining 
climate model uncertainty. In addition, as discussed by Barnes 
et al. (22), this ANN framework is able to separate signal from 
noise without having to assume stationarity, detrend the observa-
tions, or rely on long control simulations to calculate the internal 
variability, thereby providing a unique and independent pathway 
for quantifying the signal of climate change in historical observa-
tions. Finally, to perform well, the ANN identifies nonlinear, 
regional temperature patterns that serve as the most reliable indi-
cators of the time-to-threshold across climate models. We use 
explainable AI methods (XAI) to visualize these indicator patterns 
and assess the prediction process of the ANN (23–27).

Results

Our analysis combines global climate models, machine learning, 
and historical climate observations to predict the expected time 
until specific global warming thresholds will be reached under 
different climate forcing scenarios. Our framework consists of four 
elements: i) identifying the time at which the ensemble-mean 
forced response reaches the global warming threshold for each 
climate model in each forcing scenario; ii) training, validating, 
and testing an ANN for each global warming threshold in each 
forcing scenario using only the simulated maps of annual temper-
ature anomalies and the simulated time until the global warming 
threshold is reached; iii) using the observed maps of historical 
annual temperature anomalies to predict the number of years until 
each global warming threshold will be reached in each forcing 
scenario; and iv) using explainable artificial intelligence (XAI) 
methods to understand the areas of the globe that are most impor-
tant for the ANN’s prediction. (See Materials and Methods for 
further details.)

Like the broader Coupled Model Intercomparison Project 
(CMIP6) ensemble (17), the subset of climate models that archive 
at least 10 realizations (SI Appendix, Table S1) exhibits a wide 
range of warming rates in the “High” (SSP3-7.0), “Intermediate” 
(SSP2-4.5), and “Low” (SSP1-2.6) climate forcing scenarios 
(Fig. 1A). However, although the rate of global-scale warming 
varies across the climate models, the magnitude and spatial pattern 
of temperature change is generally consistent for the different 
climate models at the time that a given global threshold is reached 
(e.g., Fig. 1B and ref. 20). As a result, while the threshold year 
varies substantially (e.g., 2011 to 2038 and 2021 to 2055 for 
1.5 °C and 2 °C, respectively, in the High scenario; Fig. 1C and 
SI Appendix, Fig. S1), the ANNs are able to accurately predict the 

time-to-threshold consistently across the climate models (Fig. 1C 
and SI Appendix, Figs. S1–S3).

The ANN training, validation, and testing yield a machine learn-
ing prediction model with which we can use observed maps of 
annual temperature anomalies to predict the time-to-threshold for 
different global temperatures under different climate forcing sce-
narios. We begin by using the observed temperature maps to predict 
the time to the 1.1 °C threshold, which is the approximate current 
level of global warming (20). In the High scenario, we find that the 
predicted time-to-threshold for the 2021 observed temperature map 
is 1 y (with a ± 1σ range of −5 to +5 y), meaning that the predicted 
year for reaching a forced global temperature response of 1.1 °C is 
the year 2022 (2017 to 2027) (Fig. 2). Our central estimates for 
the time to the 1.1 °C threshold are also 0 to 1 y in the Low and 
Intermediate scenarios (SI Appendix, Figs. S4 and S5). In addition, 
we find that the slope of predicted time to 1.1 °C over the past 15 y 
has been very close to –1 y/year (Fig. 2 and SI Appendix, Figs. S4 
and S5), documenting a steady march toward 1.1 °C consistent 
with the patterns learned by the ANN under the historical forcing 
simulations. The most prominent periods of variability in the 1.1 °C 
time-to-threshold time series are the period following the eruption 
of Mt. Pinatubo in 1991 and the 2010 to 2016 period that encom-
passed the so-called “global warming hiatus” (28) followed by the 
warmest year on record (Fig. 2).

Given the high fidelity of the out-of-sample, observations-based 
prediction of the time to the current level of global warming, we 
use our framework to predict the time to the 1.5 °C and 2 °C 
thresholds. For 1.5 °C, the observed pattern of annual temperature 
anomalies in 2021 leads to a predicted time-to-threshold of 2035 
(2030 to 2040) in the High scenario, 2033 (2028 to 2039) in the 
Intermediate scenario, and 2033 (2026 to 2041) in the Low sce-
nario (Fig. 3). For 2 °C, the observed pattern of annual tempera-
ture anomalies in 2021 leads to a predicted time-to-threshold of 
2050 (2043 to 2058) in the High scenario, 2049 (2043 to 2055) 
in the Intermediate scenario, and 2054 (2044 to 2065) in the Low 
scenario. The slope over the past 15 y has been close to –1 y/year 
for both the 1.5 °C and 2 °C thresholds in the High scenario 
(Fig. 3), with steeper slopes in the Intermediate and Low scenarios 
(SI Appendix, Figs. S4 and S5). The Low scenario exhibits the 
greatest uncertainty in the time-to-threshold (Fig. 3), consistent 
with its lower signal-to-noise ratio. (These comparisons of tem-
perature thresholds and forcing scenarios are generally robust 
across a range of random seeds, model realizations, and observa-
tional products; SI Appendix, Figs. S6–S8.)

We use an XAI attribution method [gradient multiplied by 
input; (29, 30)] to identify the most important regions of the 
globe for the ANN’s prediction. This analysis reveals a number of 
areas that contributed to a shorter predicted time-to-threshold in 
both the ANN training and out-of-sample prediction (Fig. 4). 
These include continental regions such as areas of the Tibetan 
Plateau, western North America, and the Mediterranean region 
and northern Africa. They also include oceanic regions such as 
areas off the coast of southwestern Africa, southeastern Australia, 
and the Maritime Continent, along with areas of the Indian Ocean 
and the Southern Ocean. In addition, there are a number of areas 
that contributed to a longer predicted time-to-threshold in both 
the ANN training and out-of-sample prediction, such as areas of 
the Indian Peninsula, the Gulf of Guinea, and northern Australia.

Discussion

Our framework offers a number of unique and independent 
perspectives relative to previous estimates of the timing of global 
warming thresholds. First and foremost, our data-driven 
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approach predicts the time-to-threshold (including uncertainty) 
using the observed pattern of annual temperature anomalies as 
input to an ANN trained only on simulated temperatures. Our 
approach is thus distinct from extrapolating the recent observed 
global warming trend or quantifying the time at which different 
thresholds are reached across ensembles of climate model 
scenarios.

Despite these distinctions, our central estimates of the time 
until the 1.5 °C threshold (2033 to 2035, depending on the sce-
nario; Fig. 3) are consistent with the IPCC’s assessment [central 
estimate “in the early 2030s”; (20)]. Our estimates for 1.5 °C are 
also consistent with both extrapolation from the recent global 
temperature trend [central estimate of 2034; (21)] and more 
sophisticated filtering methods [which yield an estimate of 0.24 °C 
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Number of years until 1.5˚C is reached under SSP3-7.0

Global temperature anomaly in different climate forcing scenarios

CanESM5 (2011) MIROC-ES2L (2038)

Temperature anomalies for the 1.5˚C threshold year in SSP3-7.0

Fig. 1. Time to global warming thresholds in global climate model ensembles. (A) Global temperature change relative to the preindustrial baseline (1850 to 1899) 
for 10-member global climate model ensembles in the High (SSP3-7.0),Intermediate (SSP2-4.5) and Low (SSP1-2.6) climate forcing scenarios. Gray lines show 
individual realizations; colors show the mean of the respective 10 realizations for each global climate model. See SI Appendix, Table S1 for list of climate models 
used in each climate forcing scenario. (B) Maps of temperature anomalies for the “threshold year” (i.e., the year in which the ensemble-mean global warming 
reaches 1.5 °C) for the global climate models with the earliest and latest threshold years in SSP3-7.0. Anomalies are shown relative to the 1951 to 1980 baseline 
to match the baseline period of the temperature observations (see Materials and Methods). (C) Comparison of training, validation, and testing of the artificial 
neural network (ANN) trained on maps of annual temperature and a global warming threshold of 1.5 °C in SSP3-7.0. Left panel shows the predicted number 
of years until the 1.5 °C threshold for each annual temperature map in each global climate model. Right panel shows the comparison of training, validation, 
and testing for the predicted versus true number of years until the 1.5 °C threshold across the full global climate model ensemble (SI Appendix, Table S1). See 
SI Appendix, Figs. S1–S3 for additional temperature thresholds and scenarios.
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of warming in the past decade; (31)]. Because our prediction is 
focused on the forced response, on which the actual annual global 
temperature variability will be overlain, our central estimate for 
1.5 °C is also broadly consistent with the IPCC assessment that, 
by 2030, global temperature “in any individual year could exceed 
1.5 °C relative to 1850 to 1900 with a likelihood between 40% 
and 60%” (17). The fact that our predictions for the 1.5 °C thresh-
old are quite similar to these other approaches, and that the ANN 
is highly accurate in predicting the time to the current level of 
global warming (despite not being given any observations as input 
during training, validation, or testing) should increase confidence 
in our results—and the expectation that global warming will reach 
1.5 °C in the next 1 to 2 decades.

Agreement with the IPCC assessment is more equivocal for the 
2 °C threshold. On the one hand, our time-to-threshold estimates 
for 2 °C of 2050 (± 1σ: 2043 to 2058) in the High scenario and 
2054 ((± 1σ: 2044 to 2065) in the Low scenario (Fig. 3) are not 
inconsistent with the IPCC AR6’s evaluation of the CMIP6 
ensemble for 2041 to 2060 in the High scenario (mean: 2.3 °C; 
5 to 95%: 1.6 to 3.2 °C) and Low scenario (mean: 1.9 °C; 5 to 
95%: 1.2 to 2.7 °C), respectively (Table 4.2 in ref. 17). In addi-
tion, the IPCC reports the multimodel GCM average global 
warming for 2081 to 2100 to be 2 °C in the Low scenario (17), 
and a number of GCMs show peak warming prior to the end of 
the century in the Low scenario—including well above 2 °C 

(SI Appendix, Table S2 and ref. 17). However, the IPCC AR6 also 
concludes that 2 °C of global warming is “unlikely” to be crossed 
during the 21st century in the Low forcing scenario (17). This 
apparent difference results at least in part from the fact that the 
IPCC AR6 synthesis assessment is “explicitly constructed by com-
bining scenario-based projections with observational constraints 
based on past simulated warming, as well as an updated assessment 
of equilibrium climate sensitivity (ECS) and transient climate 
response (TCR)” (17).

It is important to emphasize that not all of the climate models 
reach 2 °C in the Low forcing scenario (Fig. 1 and ref. 17). Hence, 
one concern about our prediction of a very high likelihood of 
crossing the 2 °C threshold in the Low scenario could be that for 
this particular prediction, the ANN is only trained on that subset 
of the climate model ensemble that reaches 2 °C (SI Appendix, 
Table S1). We therefore conduct multiple analyses to test the 
possibility that this limitation biases our results. First, we make 
out-of-sample predictions using the maps of annual temperature 
from climate models that do not reach 2 °C in the Low scenario 
(SI Appendix, Fig. S9). These out-of-sample tests suggest that even 
when trained only on climate models that do reach 2 °C in the 
Low scenario, the ANN is able to identify out-of-sample low-
er-warming climate trajectories. However, based on the simulated 
maps of annual temperature in the early 2020s, the ANN still 
incorrectly predicts that the 2 °C threshold will be reached by the 
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1.1˚C threshold

SSP3-7.0

1.1˚C threshold

prediction from 2021 observationsprediction from each year of observations

Fig. 2. Time to the current level of global warming predicted from observed maps of annual temperature anomalies. (A) Maps of observed annual temperature 
anomalies for selected individual years, including the first year of our observations-based prediction (1980), the year following the Pinatubo volcanic eruption 
(1992), the year with the highest global-mean temperature (2016), and the most recent year for which annual data are available (2021). (B) The time to 1.1 °C 
of global warming predicted from the observed map of annual temperature anomalies, using the artificial neural network (ANN) trained on a global warming 
threshold of 1.1 °C in the High climate forcing scenario (SSP3-7.0). Left panel shows the median prediction (and ±1σ range) for the observed map of annual 
temperature anomalies in each year from 1970 to 2021. The slope quantifies the rate of change of predicted time to 1.1 °C (with a perfect prediction exhibiting a 
slope of −1 y per year). The Right panel shows the distribution of predicted years in which 1.1 °C will be reached based on the observed map of annual temperature 
anomalies in 2021. Note that no historical temperature observations are used in training, validating, or testing the ANN.
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end of the 21st century in all three of these climate models. 
Therefore, while our main analysis suggests a higher likelihood 
that 2 °C will be reached under the Low scenario compared with 
the IPCC AR6 synthesis assessment, it does not rule out the pos-
sibility of avoiding 2 °C if the Low scenario is achieved.

The concern about only training on GCMs that reach the 
global temperature threshold is sharpened by the “hot model 
problem” (32), in which the CMIP6 ensemble contains a number 
of GCMs that are highly sensitive to external forcings. Therefore, 
as a second test, we quantify the sensitivity of our ANN predic-
tion to the removal of the “hottest” GCMs (as measured by the 
highest TCR reported in ref. 33). For this test, we use all climate 
models that have archived at least 5 realizations in the Low sce-
nario (SI Appendix, Table S2), yielding an ensemble that consists 
of more GCMs but fewer realizations of each GCM. The range 
of peak, forced global-mean warming in these climate models 
spans 1.6 °C to 3.0 °C in the 21st century of the Low scenario 
(SI Appendix, Fig. S10 and Table S2), allowing us to maximize 
the range of warming that is sampled while still capturing the 
effects of internal variability. To test the sensitivity of our results 
to the inclusion of “hot” GCMs, we repeat our analysis of the 
1.5 °C threshold using ANNs trained on subsets of this ensemble. 
First, we find that the ANN trained on this ensemble yields a 
similar prediction for the time to the 1.5 °C threshold as our 
main result for the Low scenario, though with a slightly earlier 
central estimate (2031) and greater likelihood of earlier time-to-
threshold (Fig. 2 and SI Appendix, Table S2). Second, we find 
that the exclusion of the 3 highest-TCR GCMs [which all have 
TCR of at least 2.3 (33)] delays the central estimate by 4 y, while 
the exclusion of the 5 highest-TCR GCMs [which all have TCR 
equal to or greater than the CMIP6 multimodel mean of 2.0 °C 
(33)] delays the central estimate by an additional 2 y (SI Appendix, 
Table S2). These results suggest that (i) the ANN predictions 
based on recent observed surface temperature maps are not highly 

sensitive to the inclusion of the hottest GCMs, and (ii) our 
estimate of a time-to-threshold of 2054 for the 2 °C threshold 
in the Low scenario (Fig. 2) is likely slightly earlier with the 
inclusion of high-TCR GCMs.

However, this second test is limited by the fact that it is—by 
necessity—focused on the time to the 1.5 °C threshold. Thus, as 
a third test, we train a separate ANN to ingest maps of annu-
al-mean surface temperature anomalies and predict the amount 
of additional warming until the peak forced global-mean temper-
ature is reached, again using all climate models that have archived 
at least 5 realizations in the Low scenario (SI Appendix, Fig. S10). 
Based on the map of observed annual temperature anomalies in 
2021, the mean prediction is >1 °C of additional global warming 
under the Low scenario (in addition to what has already occurred 
up until 2021). While it yields uncertainty in the predicted 
amount of peak warming, this independent analysis supports the 
conclusion of a substantial likelihood that 2 °C could be reached 
under the Low scenario.

Another distinct feature of our framework is that the ANN 
focuses on specific regions to predict the time-to-threshold (Fig. 4 
and SI Appendix, Figs. S11–S14). Some key regions appear to be 
the Indian Ocean, Tibetan Plateau, and western North America 
(Fig. 4). These regions can be interpreted as robust indicators of 
the time-to-threshold, as identified by the ANN, and are a com-
plex combination of where the signal-to-noise ratio is large, the 
climate models generally agree on the patterns of change, and the 
relationships across different regions (i.e., grid points) can be lev-
eraged. The Indian Ocean is a well-studied indicator of anthro-
pogenic change since the signal-to-noise ratio there is relatively 
large (34). The ANN appears to be leveraging this region in its 
time-to-threshold prediction for both the climate models (Fig. 4A) 
and the observations (Fig. 4B). The contrasting signs of the XAI 
explanation over southwestern Africa and the adjacent ocean sug-
gest that the ANN may be using land-sea contrast in this region 

1.5˚C threshold 1.5˚C threshold

2.0˚C threshold 2.0˚C threshold

Fig. 3. Time to future global warming thresholds predicted from observed maps of annual temperature anomalies. As in Fig. 2C, but for the 1.5 °C and 2 °C 
thresholds in the High (SSP3-7.0), Intermediate (SSP2-4.5), and Low (SSP1-2.6) climate forcing scenarios. The global climate models used for each scenario/
threshold combination are shown in SI Appendix, Table S1.
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when making its prediction. The lack of color over the eastern 
equatorial Pacific in Fig. 4 is equally notable, as it demonstrates 
that the ANN has learned to avoid using this region for its pre-
diction. This can be explained by the fact that this is a region with 
large internal variability driven in large part by the El Nino 
Southern Oscillation. Thus, the network learns that it is not a 
reliable region for assessing the time-to-threshold.

When considering the areas identified in the XAI results, it is 
important to emphasize that these are regions that are most rele-
vant for the ANN’s prediction of the time until the forced response 
is reached. As a result, the XAI pattern does not mirror the spatial 
pattern of the mean forced response (17) nor the spatial pattern 
of historical warming (20). The spatial pattern of warming is a 
critical influence on climate sensitivity (35, 36), and various cal-
culations of the climate sensitivity are generally reduced when 
using the pattern of observed historical warming (36–40). Some 
of this “pattern effect” is due to the spatial pattern of the response 
to the combination of historical forcings (37), including non-CO2 
forcings (38, 41). In addition, a substantial fraction of the pattern 
effect is likely “unforced” (i.e., due to internal climate variability) 
(37, 40). The combination of forced and unforced pattern effects 
results in reduced calculation of climate sensitivity from historical 
temperature observations (37).

Our ANN-based predictions using maps of historical temper-
ature observations suggest that the 1.5 °C and 2 °C thresholds will 
arrive later than projected by the highest sensitivity climate models 
but sooner than projected by the lowest sensitivity climate models 
(Figs. 1–3 and SI Appendix, Fig. S10 and Table S2). In the case of 
our analysis, the ANN is “learning” which regions matter most 
for accurately predicting the time until a given forced response is 
reached, based on the patterns across multiple climate models. 

This ANN approach is distinct from learning the climate sensi-
tivity via the pattern of warming. Hence, while our predictions 
use the observed maps of annual temperature anomalies as out-
of-sample inputs, the observed pattern of long-term historical 
temperature change is not the indicator of the time-to-threshold. 
The relatively short time-to-thresholds predicted from recent 
annual temperature observations (e.g., Fig. 3) are a reflection of 
the regions the ANN has identified as being critical for the time 
until the forced response is reached (e.g., Fig. 4), even if the full 
spatial pattern of observed warming implies lower climate sensi-
tivity (e.g., ref. 37).

With that said, a data-driven approach that learns from climate 
models necessarily requires that the models have some truth in 
their representation of the real world. Clearly, the ANN is only 
capable of learning from the data it is trained on and therefore 
may learn errors and biases present in the climate model simula-
tions. We partially alleviate this issue by training over multiple 
climate models such that the ANN must learn reliable indicators 
of the time-to-threshold that apply across the climate models. 
Thus, it is not necessary that all of the patterns of variability and 
forced response are well-represented across the entire ensemble of 
climate models in order for the ANN to learn the reliable indica-
tors, as long as biases are not common across all the climate 
models.

The fact that the framework provides a reasonable estimate for 
reaching the 1.1˚C threshold (Fig. 2 and SI Appendix, Figs. S4 
and S5) across multiple observational products (SI Appendix, 
Fig. S7) and multiple forcing scenarios (and hence multiple cli-
mate model combinations; SI Appendix, Table S1) provides sup-
port that the ANN is learning relationships that are applicable 
and relevant to the real world. This is nicely illustrated in Fig. 3: 
On the one hand, the ANN is not sensitive to the observed strong 
El Nino event of 1997/1998 since it has apparently learned that 
specific patterns of internal climate variability are not reliable 
indicators of the time-to-threshold. In contrast, following the Mt. 
Pinatubo eruption in 1991, the ANN predicts that the time-to-
threshold is approximately 10 y later than in previous years; this 
reflects the cooling of the global surface temperatures due to vol-
canic aerosols (42), which the ANN incorrectly interprets as an 
indication of being further from the threshold temperature (see 
discussion in ref. 22). Note, however, that as the volcanic forcing 
weakens from 1991 to ~1995, the network readjusts its predictions 
to be more in-step with those prior to the eruption.

It is important to note that the specific resulting ANN for a 
given forcing scenario is a product of which ensemble members 
are used for training, the random initialization of the model 
weights, and the choices of the model architecture and hyperpa-
rameters. While justifications for our choices are provided in the 
Materials and Methods, here we note that model performance, 
time-to-threshold, and XAI results are very consistent across dif-
ferent observational products and a range of model choices and 
random seeds (SI Appendix, Figs. S6–S8, S14, S17, S18, and S20). 
The fact that the ANNs predict larger uncertainty ranges (and 
slightly larger sensitivity to random seed) under the Low scenario 
compared to the High and Intermediate scenarios is likely due to 
the smaller number of climate models included in the Low sce-
nario training set (SI Appendix, Table S1), as well as the compar-
atively smaller forced response throughout the Low scenario 
simulation.

Finally, in comparing our results with previous assessments, it 
should be noted that the definition of the global warming thresh-
old may vary across studies. For example, while the IPCC AR6 
used a 20-y mean to define the global warming thresholds, we use 
the forced response across multiple climate model realizations. 

A

B

Fig. 4. Attribution heatmap of the most relevant regions for the artificial 
neural network (ANN) prediction of the time-to-threshold. (A) Global climate 
model ensemble. (B) Historical temperature observations for 2018 to 2021. 
Warm colors indicate shorter time to global warming threshold; cool colors 
indicate longer time to global warming threshold. Maps show results for the 
1.5 °C threshold in the High (SSP3-7.0) climate forcing scenario. See Materials 
and Methods for additional details of the heatmap calculation and SI Appendix, 
Figs. S12 and S13 for additional scenarios.
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Using the forced response enables us to most clearly distinguish 
the signal of global warming from the noise of internal climate 
variability. However, although we have included 10 realizations 
of each climate model in our main analysis (SI Appendix, Table S1), 
our results are still limited by the number of models and realiza-
tions that are available. This is especially true for lower forcing 
scenarios. For example, only 4 of the climate models that archived 
at least 10 realizations in SSP3-7.0 also archived at least 10 reali-
zations in SSP1-2.6 (SI Appendix, Table S1), and the availability 
of at least 10 realizations in the very low SSP1-1.9 scenario was 
prohibitively limited. In addition, expanding the number of cli-
mate models in SSP1-2.6 to test the sensitivity to climate model 
TCR requires expanding the analysis to models with only 5 real-
izations (SI Appendix, Table S2). Further refinement of our results 
will require multiple large single-model ensembles in multiple 
scenarios, particularly for low and very low forcing trajectories.

Conclusions

The UN Paris Agreement aims to limit the impacts of climate 
change on natural and human systems by holding global warming 
below specific temperature thresholds (1). While there have been 
a number of assessments of the time until those thresholds are 
likely to be reached, ours uses machine learning methods to make 
truly out-of-sample predictions based on maps of historical tem-
perature observations. Our results thus provide unique and largely 
independent predictions (with uncertainty) in different climate 
forcing scenarios. More generally, this framework also provides a 
unique, data-driven approach for quantifying the signal of climate 
change in historical observations and for using observations to 
constrain the uncertainty of future climate projections.

The fact that our central estimate for the time until 1.5 °C lies 
between 2033 and 2035 in the High, Intermediate, and Low 
forcing scenarios confirms that global warming is already on the 
verge of crossing the 1.5 °C threshold, even if the climate forcing 
pathway is substantially reduced in the near term. Our predictions 
also show a high probability of reaching the 2 °C threshold by 
mid-century in the High, Intermediate, and Low scenarios, sug-
gesting that even with substantial greenhouse gas mitigation, there 
is still a possibility of failing to achieve the UN Paris goal of 
holding global warming well below the 2 °C threshold. Given the 
substantial literature quantifying accelerating risks for natural and 
human systems at 1.5 °C and 2 °C, our results suggest a high 
likelihood of high-impact climate change over the next three 
decades.

Materials and Methods

Datasets. We predict the time until various global warming thresholds are 
reached (“time-to-threshold”) using ANNs trained on temperature anomalies 
simulated by multiple realizations of multiple global climate models. To do 
so, we draw on Phase 6 of CMIP6, which archives a large suite of coordinated 
global climate model simulations from modeling groups around the world (43). 
We compare the predicted time-to-threshold in three future climate forcing 
scenarios: SSP3-7.0, SSP2-4.5, and SSP1-2.6. These scenarios are identified as 
High, Intermediate, and Low forcing scenarios, respectively, by the IPCC (20) 
and include the two core scenarios used by the IPCC in projecting future climate 
change (17) and synthesizing climate-related risks (4).

To ensure a substantial sampling of internal climate variability for each cli-
mate model, we include CMIP6 models that have archived at least 10 realizations 
in a given scenario (SI Appendix, Table S1). In addition, to ensure equal model 
weighting within each scenario, we only include 10 realizations of each climate 
model (even though some have archived more than 10 realizations). Further, to 
maximize the number of 10-member ensembles in our analysis, we also include 
10 realizations of SSP3-7.0 from the NCAR CESM2 large ensemble project (44, 45). 

(For CESM2, we use the smoothed biomass burning experiments, which we label 
as “CESM2-LE2-smbb”.)

We use observed maps of annual temperature anomalies to make 
out-of-sample predictions of the time-to-threshold (see below). Our primary obser-
vational dataset is the Berkeley Earth Surface Temperature (“Berkeley”) dataset 
(46). Berkeley provides monthly temperature anomalies from the 1951 to 1980 
climatology on a 1° × 1° geographical grid. For both the climate models and 
observational data, we calculate annual-mean anomalies relative to the 1951 to 
1980 climatology at each grid point. We then regrid the annual-mean anomalies 
to the common 2.5° × 2.5° geographical grid used by the IPCC (47).

To test the robustness to observational uncertainty, we repeat the time-to-
threshold predictions using the NASA GISTEMP global gridded temperature data-
set (48), along with the ERA5 (49) and NCEP/NCAR R1 (50) reanalysis products. 
These datasets exhibit similar global-scale temperature anomalies relative to the 
1951 to 1980 baseline (SI Appendix, Fig. S15). We find that the results are robust 
for Berkeley, GISTEMP, and ERA5, with NCEP/NCAR R1 a clear outlier (SI Appendix, 
Figs. S7 and S8).

Global Warming Thresholds. There are a variety of possible definitions of a 
global temperature “threshold”, including the time at which the multidecadal 
mean exceeds a temperature value (e.g., the IPCC uses a 20-y mean; ref. 17) or the 
first/last year that the annual temperature rises above/dips below a temperature 
value (e.g., the IPCC assesses the probability of individual years exceeding 1.5 °C; 
ref. 17). Therefore, the time to reach a particular threshold can vary substantially 
depending on which definition is used. In order to clearly distinguish the temper-
ature response to external forcing from the noise of internal climate variability, 
we define the temperature threshold as the year in which the forced response 
(represented by the climate model ensemble mean) reaches the global warming 
threshold. We calculate the respective forced response for each climate model in 
a given climate forcing scenario. Note that the forced response in observations is 
much harder to quantify, given that we only have one realization of the real world. 
However, our machine learning approach circumvents this issue by learning reli-
able indicators across a range of climate models and thus does not require the 
observed forced response to be directly computed (23, 24).

To test the sensitivity of our predicted time-to-threshold to the definition of 
the temperature threshold, we repeat our analysis replacing the forced response 
with a 15-y smoothing of the ensemble-mean time series (using the scipy.signal.
savgol_filter with a window length of 15 y and polynomial of order 3). We find 
that the results obtained using the ensemble-mean smoothing (SI Appendix, 
Fig. S16) are nearly identical to those obtained using the forced response (Fig. 3).

We predict the time-to-threshold for global warming of 1.1 °C, 1.5 °C, and 2 °C 
above the preindustrial baseline (1850 to 1899). The 1.5 °C and 2 °C thresholds 
are derived from the goals stated in the UN Paris Agreement (1). In addition, we 
use the 1.1 °C threshold to evaluate whether our framework is able to accurately 
predict the timing of the global warming that has already occurred (based on the 
IPCC’s recent assessment; ref. 20).

ANNs. We train a feed-forward artificial neural network (ANN) to ingest maps of 
annual-mean temperature anomalies and predict the time-to-threshold (includ-
ing quantification of uncertainty). The input to the network is a flattened map 
of 72 latitude by 144 longitude grid points, which results in an input vector of 
10,368 units in length. The neural network is composed of two hidden layers 
with 25 units each and an output layer of two units. These two units represent 
the mean and SD of a conditional Gaussian distribution, where the network is 
trained to optimize its weights and biases to minimize the negative log-likeli-
hood (51–53). SI Appendix, Fig. S19 shows the probability integral transform 
of the validation and testing predictions (e.g., refs. 54–56), demonstrating that 
the uncertainties (SDs) learned by the network are meaningful. We train via 
backpropagation using an Adam optimizer with a learning rate of 0.00001 and a 
batch size of 64 and apply early stopping on the validation loss using a patience 
of 50 epochs. We combat overfitting by applying L2 regularization (regularization 
parameter of 10) between the input layer and the first layer. A ReLU activation 
function is applied throughout the network, except in connection to the output 
layer, which is linear. The model is coded and trained using Tensorflow 2.7.0, 
and Tensorflow-Probability 0.15.0.

We conduct a number of analyses to test the sensitivity of our predictions to var-
ious methodological choices. The network architecture and hyperparameters were 
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chosen as those that performed well on the validation data across multiple metrics 
(SI Appendix, Figs. S17 and S18). The specific networks shown in the paper are those 
with random seed 2247, which sets both the specific ensemble members used for 
training/validation/testing as well as the random ANN initialization. Although ANN 
performance varied slightly for different architectures and hyperparameter choices, 
the observations-based predictions are very consistent, providing further confi-
dence in our results (SI Appendix, Fig. S20). In addition, the observations-based 
predictions are robust across varying random initializations of the network and 
which ensemble members were used for training (SI Appendix, Fig. S6).

Prediction of Time to Global Warming Thresholds Using Observed Maps 
of Annual Temperature Anomalies as Input to the ANNs. Once an ANN is 
trained, validated, and tested for a global warming threshold and climate forcing 
scenario, we can use any map of annual temperature anomalies to make out-of-
sample predictions of the time-to-threshold. Therefore, we first train, validate, and 
test a separate ANN for each warming threshold in each scenario (SI Appendix, 
Figs. S1–S3). We then use the observed maps of annual temperature anomalies 
for each year from 1980 to 2021 as input to each of those ANNs. This yields a time 
series of predictions (with uncertainty) of the time-to-threshold for the 1.1 °C, 
1.5 °C, and 2 °C thresholds in the High (SSP3-7.0), Intermediate (SSP2-4.5), and 
Low (SSP1-2.6) climate forcing scenarios (Figs. 2 and 3 and SI Appendix, Figs. S4 
and S5). We emphasize that the ANN has not been given any observed climate 
data as input prior to this observations-based prediction, meaning that these 
are truly out-of-sample predictions. Further, neither the training nor prediction 
includes the simulated or observed global-mean temperature time series.

We note that different observational products suggest a range of global warm-
ing since the preindustrial era, including a “likely” range as high as 1.3 °C (20). 
Given this uncertainty, we repeat our analysis for a global warming threshold of 
1.3 °C and find that the observational products again agree on the time-to-thresh-
old (with NCEP/NCAR R1 again a clear outlier) (SI Appendix, Fig. S7 and S8). There 
are multiple reasons for this close agreement between observational products. 
One is that our method quantifies the time until the forced response is reached 
and not the long-term mean of an individual realization of the climate system. 
Another is that our analysis is based on annual temperature anomalies from the 
1951 to 1980 baseline; while there are differences in the magnitude of global 
warming since the preindustrial between the datasets, there is a close agreement 
in the annual global temperature anomalies relative to the 1951 to 1980 baseline 
(which is well measured, especially relative to the preindustrial). NCEP/NCAR R1 
shows the greatest difference in regional temperatures from the other datasets 
(SI Appendix, Fig. S15), and hence is the greatest outlier in the predicted time-to-
threshold for both 1.1 °C and 1.3 °C (SI Appendix, Figs. S7 and S8).

Using XAI to Understand the Spatial Patterns that Are Most Relevant 
for the Prediction of the Time to Global Warming Thresholds. We apply 
multiple XAI methods to explore and visualize the spatial patterns in the input 
temperature maps that are most relevant for the network’s prediction of the 
time-to-threshold. These XAI methods are designed to help understand the 

decision-making process of the network in order to gauge the trustworthiness 
in the network’s prediction. For a more in-depth discussion of these methods and 
how they compare for geoscience applications, see refs. 26 and 57. We further 
use XAI here to explore particular regional patterns in the input maps that led 
to the network’s accurate prediction. SI Appendix, Fig. S11 shows the results of 
Gradient, Gradient*Input, and Integrated Gradients. The Gradient method (58) 
is a sensitivity method and approximates the local gradient of the output relative 
to the input and can be interpreted as how a unit increase in the temperatures at 
each grid point in the input map would impact the prediction. Gradient*Input 
(29, 30) is an attribution method and approximates the marginal contribution of 
the input grid point to the prediction. As its name implies, this is computed as the 
product of the Gradient multiplied by the input map. Integrated Gradients (59) 
is another attribution method that identifies the contribution of each input grid 
point to the output starting from a user-defined reference vector. Here, we use a 
reference vector of zeros. Integrated Gradients is very similar to Gradient*Input 
except that it attempts to account for nonlinearities in the learned function.

For each input sample of interest, we compute a heatmap for each XAI method 
which acts as the “explanation” for the network’s prediction. We then average the 
heatmaps together to produce the panels in Fig. 4 and SI Appendix, Figs. S11–S13. 
Our colormap convention is such that orange colors denote regions in the input 
maps that act to push the network to smaller time-to-threshold predictions (i.e., 
the input maps are closer to the threshold), while purple colors denote regions in 
the input maps that act to push the network to larger time-to-threshold predictions 
(i.e., the input maps are further from the threshold). We find that the regions that 
are emphasized by the network are very similar between the different observa-
tional products (SI Appendix, Fig. S14).

Data, Materials, and Software Availability. Code is available on GitHub at 
https://github.com/eabarnes1010/target_temp_detection (60) and is archived 
on Zenodo at the following DOI: https://doi.org/10.5281/zenodo.7510551 (61).
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