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Development of protein 3-D structural comparison methods is important in

understanding protein functions. At the same time, developing such a method is

very challenging. In the last 40 years, ever since the development of the first automated

structural method, ∼200 papers were published using different representations of

structures. The existing methods can be divided into five categories: sequence-,

distance-, secondary structure-, geometry-based, and network-based structural

comparisons. Each has its uniqueness, but also limitations. We have developed a novel

method where the 3-D structure of a protein is modeled using the concept of Triangular

Spatial Relationship (TSR), where triangles are constructed with the Cα atoms of a protein

as vertices. Every triangle is represented using an integer, which we denote as “key,”

A key is computed using the length, angle, and vertex labels based on a rule-based

formula, which ensures assignment of the same key to identical TSRs across proteins. A

structure is thereby represented by a vector of integers. Our method is able to accurately

quantify similarity of structure or substructure by matching numbers of identical keys

between two proteins. The uniqueness of our method includes: (i) a unique way to

represent structures to avoid performing structural superimposition; (ii) use of triangles

to represent substructures as it is the simplest primitive to capture shape; (iii) complex

structure comparison is achieved by matching integers corresponding to multiple TSRs.

Every substructure of one protein is compared to every other substructure in a different

protein. The method is used in the studies of proteases and kinases because they play

essential roles in cell signaling, and a majority of these constitute drug targets. The new

motifs or substructures we identified specifically for proteases and kinases provide a

deeper insight into their structural relations. Furthermore, the method provides a unique

way to study protein conformational changes. In addition, the results from CATH and

SCOP data sets clearly demonstrate that our method can distinguish alpha helices from
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beta pleated sheets and vice versa. Our method has the potential to be developed into

a powerful tool for efficient structure-BLAST search and comparison, just as BLAST is

for sequence search and alignment.

Keywords: protein structure comparison, triangular spatial relationship, structure motifs, protein classification,

protein structure and function relation, protein secondary structure, molecular dynamics simulation, protein

conformational change

INTRODUCTION

Availability of protein sequences and structures has been
rapidly increasing. Both play fundamental roles in understanding
protein functions. It is well-accepted that protein structures
are more conserved than sequences. Understanding the 3-D
structure, rather than pure 1-D relationships, provides deeper
insights into protein functions. To accelerate discovery in
all areas of biological and chemical sciences, efforts have
been made in three directions: (1) constructing 3-D structure
database, e.g., PDB (Berman et al., 2000) and structure-based
protein classification database, e.g., CATH (Greene et al., 2007),
FSSP (Holm and Sander, 1996), SCOP (Murzin et al., 1995);
(2) developing computational methods, e.g., MD simulations,
QM/MM calculations, beyond the resources of experimental
data, for generating and optimizing theoretical structures;
(3) developing algorithms for 3-D structural comparison or
alignment. Efforts have also been made in combining structure
comparison algorithms with sequences analysis to achieve better
understanding of sequence, structure, and function relationships.

There is a considerable amount of ambiguity in how the
existing approaches describe the 3-D relationships between
proteins. The general idea of structural alignment can be
considered to start from 1960 when myoglobin and hemoglobin
structures were compared (Perutz et al., 1960). Systematic
structural alignment began with the analysis of heme binding
proteins and dehydrogenases by Rossmann et al. (Rossmann
and Argos, 1975). The first structural comparison program on
the basis of automation was developed in 1980 (Remington
and Matthews, 1980). Challenges in quantifying structural
similarity led to the large number of methods to address this
problem described in the literature over the last 40 years. The
common schema of those methods can be summarized into
three steps. The first step is to extract features from the atomic
coordinates of the 3-D structures. In other words, coordinates
can be used for representations by distance, topology, and/or
geometry. Based on how the structural features are extracted,
the existing protein structural comparison/alignment methods
can be divided into five categories: sequence-based, distance-
based, secondary structure-based, geometry-based, and network-
based at either local or global structure levels. Some of the
methods belong strictly to one category, while others use a
combination of the methods from two or more categories. The
second step is to convert those features into scores using specific
algorithms for quantifying similarity between two structures.
The last step is to employ statistical analysis, e.g., Z-score and
p-value, to provide confidence for the structural similarity. A
number of algorithms have been developed and/or employed for

structural comparisons: Maximal common subgraph detection
(Bron and Kerbosch, 1973), Ullmann subgraph isomorphism
algorithm (Ullmann, 1976), and geometric hashing (Nussinov
and Wolfson, 1991) in geometry-based; Monte Carlo (Holm and
Sander, 1993), Combinatorial Extension (CE) (Shindyalov and
Bourne, 1998), and Comparative Structural Alignment (CSA)
(Wohlers et al., 2012) algorithms in distance-based, a genetic
algorithm (Szustakowski and Weng, 2000) and Dictionary of
Secondary Structure of Proteins (DSSP) (Kabsch and Sander,
1983) in secondary structure-based comparisons, and amino
acid network (AAN) (Alves and Martinez, 2007; Bartoli et al.,
2008) including Cα network (CAN) and atom distance network
(ADN) and interaction selective network (ISN) (Konno et al.,
2019) in network-based comparisons. Dynamic programming
algorithms have been used in both distance- (Blundell et al., 1988;
Taylor and Orengo, 1989; Lackner et al., 2000) and secondary
structure-based (Taylor and Orengo, 1989; Yang and Honig,
2000) comparisons.

Results generated from the existingmethods vary considerably
(Kolodny et al., 2005; Mayr et al., 2007). Studies indicated
that different methods should be combined for gaining
meaningful structural relationships (Kolodny et al., 2005;
Wohlers et al., 2012). Many established comparison techniques
evaluate structural similarity by maximizing the number of
equivalent residues through either sequence or structural
alignment, and minimizing global differences in distance. A
major challenge with such an approach is in the identification
of equivalent residues. Earlier methods for homologous proteins
used sequence string matching techniques to aid in finding
the initial structural equivalence (Bron and Kerbosch, 1973).
Nonetheless, the alignment tends to be error prone when the
sequence similarity is low. Thus, newer approaches are mostly
structure-based and they derive the initial equivalences by
detecting similarities in the local structural regions, e.g., CE
(Shindyalov and Bourne, 1998) or by using secondary structures,
e.g., SSM (Krissinel andHenrick, 2004), Vector Alignment Search
Tool (VAST) (Madej et al., 1995), or both, e.g., LOCK (Singh
and Brutlag, 1997), LOCK 2 (Shapiro and Brutlag, 2004a). It is
difficult to simultaneously optimize the number of equivalent
residues and the global differences in distance since onemay have
to be optimized at the expense of the other (Zemla, 2003). An
additional challenge can arise when structures are similar in small
local regions. These regions of similarity can be overlooked when
a single global superposition is applied (Zemla, 2003).

Protein structural alignment, unlike the counter part for
protein sequences, has not yet enjoyed a widely accepted
comparison or search method. Depending on how they represent
structures and how they handle challenges, different methods
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have their strengths and weaknesses. There has not been a
method to obtain the “best” structural comparison. While there
are limitations in the existing methods, the limitations also leave
much room for exciting new research work to be done. TSR
(Triangular Spatial Relationship) was originally designed for 2-
D symbolic images (Guru and Nagabhushan, 2001). We have
extending the concept of TSR to a new method, designated
as TSR-based 3-D structural comparison where the (x, y, z)
coordinates associated with Cα atoms of amino acids are first
converted to all possible triangles represented by vertices, edge
lengths and angles, and then the vertices, edge lengths, and angles
of each triangle are combined to be represented by an integer
through a set of rule-based formulae. We refer to the integer
representing a triangle as a key. As a result, the 3-D structure
of a protein is represented by a vector of keys. Our approach
has several unique features: (i) A unique way to represent
structures to avoid performing structural superimposition. It
avoids structural rotation and translation, and most importantly,
it overcomes the need to compromise between maximizing
number of equivalent residues and minimizing the RMSD; (ii)
Inter-chain residue distances (intra-chain residue distances) are
based on the distance between two Cα atoms (respectively, pairs
of atoms within a protein). Since a distance computation does
not capture the underlying shape information and the respective
amino acids are not included in the distance matrix calculations,
motif discovery cannot be easily accomplished by searching for
similar distance values. In contrast, triangles are probably the
simplest primitives to capture the shape. We have included
amino acid information in the formula of the key calculations
to avoid assigning two triangles with only similar geometries
the same key if any of three amino acids is different between
those two triangles. Our method allows an effective and accurate
identification of similar local structures even when two structures
are different at a global level. In addition, our approach can
establish whether two or more triangles are connected by a
vertex or an edge, thus enabling discovery of more complex
shared substructures. Only a few programs [e.g., ASSAM/SPRITE
(Nadzirin et al., 2012), IMAAAGINE (Nadzirin et al., 2013),
Recursive Automatic Search of MOTif in 3D structures of
PROteins (RASMOT-3D PRO) (Debret et al., 2009), SPASM
(Kleywegt, 1999), and MSDmotif (Golovin and Henrick, 2008)]
were developed with the specific goal of protein motif search.
Such motif search is limited to about 12 residues. Triangles
were used for alignment-based motif discovery (Nussinov and
Wolfson, 1991), identification of similar surface geometries and
electrostatic potentials (Kinoshita and Nakamura, 2003) and
description of enzyme active sites (Dodson and Wlodawer,
1998). Libraries of multiple fragments, through breaking protein
structures down to their constituent parts, have been developed
for a precise and complete description of protein backbone
conformation (Vetrivel et al., 2017). They differ in the number
of fragments, the length of the fragments, the methods used
for clustering and the criteria used for clustering. Structural
alphabets (SAs) is a library of N structural prototypes (the letters).
Each prototype is representative of a backbone local structure
of l-residues length. Depending on the targeted accuracy, the
length l and the number N can vary significantly. The length l

typically ranges between 4 and 9 and the most frequent value
of N is close to 20 (Offmann et al., 2007). The first fragment
library was developed by Unger et al. (Unger et al., 1989), and
subsequent different fragment libraries can found in (Karchin
et al., 2004; Offmann et al., 2007). In (Pandini et al., 2010) a simple
and explicit description of four-residue long fragments, where
the conformation of each was defined by three internal angles,
was devised. One of the most developed and comprehensive
SA is the Protein Blocks (PBs) approach (de Brevern et al.,
2000). This SA is composed by 16 local structure prototypes
each representing backbone conformation of a fragment of five
contiguous residues (de Brevern et al., 2000; Joseph et al., 2010).
It was shown to efficiently approximate every part of the protein
structure; (iii) Our method enables the computation of similarity
values as function of the numbers of identical and different keys
representing two proteins, to show structure relationships. Other
methods use RMSD or Z-score. Inter-chain distance methods,
e.g., STAMP (Russell and Barton, 1992) that uses the procedure
developed by Rossmann and Argos (Rossmann and Argos, 1976),
require superimposition for calculating RMSD for structure
evaluations. Intra-chain distance methods, e.g., DALI (Holm and
Sander, 1993) where superimposition is not needed, generate 2-D
distance matrices. Z-scores are calculated by comparing distance
matrices and the calculated scores are used for ranking structures.
Our approach enables the identification of common keys present
in all proteins of a given class, and specific keys belonging to
only a given class, providing a deeper insight into (sub)structural
relationships. A solely structure-based hierarchical organization
can be constructed for both homologous and non-homologous
proteins and the specific keys identified can be used to distinguish
one subclass from others.

This study can be roughly divided into two major parts:
TSR-based vectorization of protein 3-D structures, and
application/evaluation. Vectorization includes three main steps:
development of key generation formula, and determination and
evaluation of optimum parameters for key generation formula
(Supplementary Figure 1). The details of the parameters are
discussed in the Sections of Methods and Results. Application or
evaluation comprises five modules. They are protein clustering,
motif identification and discoveries, evaluation of our method
in studying protein dynamics, differentiation of secondary
structure, and comparison of our method with other popular
methods (Supplementary Figure 1). A number of protein
structure data sets were prepared to achieve the specific goals of
each type of application/evaluation (Supplementary Figure 1).
Visualization tools were employed in both vectorization
and application/evaluation (Supplementary Figure 1). In
our future work, a tool will be developed to achieve protein
structure-BLAST search analogous to sequence alignment and
sequence-BLAST search.

METHODS

Key Generation
For every protein, Cα atoms from its PDB file were selected.
All three lengths and angles of all possible triangles formed
by Cα were calculated. Each Cα of the 20 amino acids was
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FIGURE 1 | Determination of θ1, D, l1, l2, and l3 for key calculation. (A) The workflow from Cα atoms to key calculations; (B) A graphic presentation of the rule-based

label determination, and definition of θ1.

assigned a unique integer identifier in the range (4, 5, . . . ,
23). We transform the integer IDs to li1, li2, and li3 for
vertices of triangle i based on the rule-based label-determination
(Guru and Nagabhushan, 2001). This transformation ensures
that corresponding triangles occurring in two different proteins
receive the same integer IDs. Once li1, li2, and li3 are determined
for triangle i, we calculate θ1 using Equation 1 and θ1 based on θ1
values (Figure 1).

θ1 = cos−1((d13
2
− (

d12

2
)
2

− d3
2)/(2× (

d12

2
)× d3)) (1)

θ1 =

{

θ1 if θ ≤ 90◦

180◦ − θ1 otherwise

Where

d13: distance between li1 and li3 for triangle i
d12: distance between li1 and li2 for triangle i
d3: distance between li3 andmidpoint of li1 and li2, for triangle i

Once labels: li1, li2, li3,D, and θ1 are determined, we use Equation
2 to calculate the key for each triangle.

k = θTdT
(

li1 − 1
)

m2
+ θTdT

(

li2 − 1
)

m+ θTdT
(

li3 − 1
)

+ θT
(

d − 1
)

+ (θ − 1) (2)

where

m: the total number of distinct labels
θ : the bin value for the class in which, the angle representative,
falls to achieve discretization we use the Adaptive
Unsupervised Iterative Discretization algorithm:
θT : the total number of distinct discretization levels (or
number of bins) for angle representative
d: the bin value for the class in which D, the length
representative, falls; to achieve discretization we use the
Adaptive Unsupervised Iterative Discretization algorithm
dT : the total number of distinct discretization levels (or
number of bins) for length representative

The determination of bin boundary values and numbers of bins
will be discussed in the Results section. We refer to the value
of θ1 as Theta and D as MaxDist. Theta is calculated based
on θ1 and it is defined as the angle that is <90◦ between the
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line from the midpoint of the longest edge to the vertex which
other two edges intersect and half of the longest edge (Figure 1).
MaxDist is defined as the distance of the longest edge of a triangle
(Figure 1). In summary, the key value assigned to a triangle is
a function of five parameters: li1, li2, li3, Theta, and MaxDist
(Supplementary Figure 1). In the context of protein structures,
the use of MaxDist is a scale factor, since, without MaxDist,
two triangles of the same shape, but of different size (similar
triangles), could not be distinguished; that is, they will be assigned
the same key value.

The key calculation is performed by a function that is one-
to-one and onto. The function’s inputs are treated as digits in a
number system. Integers associated with Theta intervals form the
lowest order digit, followed by integers associated with MaxDist
intervals. Then the integers associated with amino acids are given
the next three positions by giving a special rule-based ordering of
the integers denoting the three amino acids of a triangle. This
guarantees that if only the lowest order input differs by one, the
function output also differs by one. If only second order input
differs by one, then output differs by θT . By the same argument,
variations by one in 3rd, 4th and highest order positions will
cause output to differ, respectively, by the product of θT and dT ,
the product of θT , dT , and m, and the product of θT , dT, and m2.
This ensures that changes to any of the digits in the input will
change the output (i.e., one-to-one). The onto property can be
guaranteed by understanding that given any output value, each
of the function inputs can be uniquely recovered. For example,
the output value modulo θT gives lowest order input. Taking the
previous quotient value’s modulo with the product of θT and dT
intervals gives the second order digit of the input and so on. For
any output, digits of the input are unique (i.e., onto). If there are
q amino acids in the protein data set, the time complexity of our
method in the worst case is O(nq3) where n is the number of
proteins in a given data set.

Protein Structure Similarity and Distance
Calculation
We apply the Generalized Jaccard coefficient measure (Jaccard,
1901), Equation 3, for the calculation of similarity between two
proteins (Supplementary Figure 1).

Jacgen =

n
∑

i=1

ǫi/

n
∑

i=1

zi (3)

where n is the total number of unique keys in proteins p1and p2
Equivalence ǫ for a given key ki in two different proteins p1

and p2 is defined as ǫi = k
p1
i ∩ k

p2
i where n is defined by the

minimum count of the corresponding keys.
Difference z for a given key ki in a pair of proteins is defined

as zi = k
p1
i ∪ k

p2
i

where ∪ is defined by the maximum count of the
corresponding keys. The count of a key is the number of times
that key occurs (occurrence frequency) within a protein.

We also use a variant of the Generalized Jaccard coefficient
measure, which we refer to as the modified Generalized Jaccard

coefficient measure, Equation 4, to calculate similarity.

mJacgen =

n
∑

i=1

ǫi/min(
n

∑

i=1

zi,max(Np1,Np2)) (4)

Where Np1is a total number of key in p1
Np2 is a total number of key in p2

If we do pairwise structural comparison, then the worst case run
time complexity is O(n2m3) where n is the number of proteins in
a data set and m is the number of amino acids. Once a similarity
matrix is generated, the distance matrix is generated simply by
taking each value in the similarity matrix and subtracting it
from 1.

Preparation of Protein Structure Data Sets
We have used seven data sets of varying sizes, from a range of 10–
20 structures to ∼4,500 structures, in this study. The PDB IDs,
chain information and functional classification of these seven
data sets are provided as Supplementary Files 1–7, for proteases,
theoretical structures (The details are in the following section of
molecular dynamics simulation), CDK2, CATH, SCOP, DD (DD
data set was selected based on literature), and a small data set with
101 protein structures, respectively (Supplementary Figure 1).
The data sets are prepared based on the specific questions
we want to address or specific hypotheses we want to test.
The main purposes of the protease data set are to test our
method on protein clustering and structural motif identification
and discovery (Supplementary Figure 1). CDK2 and the
theoretical structures are prepared to study small conformational
changes upon binding of a ligand or an interacting protein
or due to post-translational modifications or mutations
(Supplementary Figure 1). CATH, SCOP and DD data sets
are used for evaluating our method for distinguishing different
types of secondary structures (Supplementary Figure 1). The
101-protein data set is designed for direct comparison of our
method with other popular methods for structural comparison
(Supplementary Figure 1).

We selected nearly all available structures of proteases from
PDB. To demonstrate the accuracy of our method on protein
clustering, we chose proteases/hydrolases (1,872 structures) with
at least 50 structures with a few of exceptions, e.g., plasmin
because of the limited structures in PDB (Supplementary File 1).
Fourteen CDK2 structures were selected from PDB, and the
structures were trimmed from either N-terminus or C-terminus
to make sure that all structures have identical amino acid
sequences, except for the point mutations or deletions specified
(Supplementary File 3). The reason why we trimmed the CDK2
structures is to distinguish the effects of label changes on
structures from conformational changes. 4,520 structures were
selected from CATH database (Greene et al., 2007) based on
the criterion that every structure has 151 to 200 amino acids
in the secondary structures (Supplementary File 4). Similarly,
1,400 structure were chosen from SCOP database (Murzin et al.,
1995) and every structure has 201–300 amino acids in either
alpha helices or beta pleated sheets (Supplementary File 5).
To directly compare our method with other protein structural
comparison methods, we randomly selected 101 proteins from a
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total of 3,604 proteins with roughly similar amino acid numbers
(from 217 to 281 aa) because this smaller data set allows
us to examine each structure in great detail for interpreting
the results from comparison of our method with popular
methods (Supplementary File 7). We also purposely included as
many protein subclasses as possible to increase the structural
diversities. The proteins of this small data set are from 10 protein
subclasses: serine proteases (chymotrypsin, trypsin, elastase,
subtilisin, plasmin, prothrombin), kinases (SRC and CDK) and
phosphatases (Ser/Thr phosphatase and Tyr phosphatase). CE
(Shindyalov and Bourne, 1998) and TM-align (Zhang and
Skolnick, 2005) servers allow pairwise sequence alignment and
pairwise protein 3-D structural comparison. We have automated
the all-against-all structural comparisons and were able to extract
RMSD and Z-scores from the analyses using CE (Shindyalov
and Bourne, 1998) and TM-align (Zhang and Skolnick, 2005).
Sequence alignment and phylogenetic analysis were done using
MEGA7 (Kumar et al., 2016). Artificial protein structures were
generated using MODELER (Šali and Blundell, 1993).

Molecular Dynamics Simulations of ERK1
and CDK8 Were Performed Using the
Amber Package
Molecular dynamic (MD) simulations were based on the
procedure described by Simmerling et al. (Simmerling et al.,
2002). We have followed the procedure of our previous work
to study molecular dynamics of ERK1 (Xu et al., 2019),
CDK8 (Xu et al., 2014), and CDK8-CycC complex (Xu et al.,
2014; Odoux et al., 2016). The prmtop and inpcrd files of
phosphotyrosine 204 (Ptr204) of human ERK1 were generated
based on literature (Homeyer et al., 2006; Steinbrecher et al.,
2012). The initial structure of the unphosphorylated human
ERK1 was built through MODELER (Šali and Blundell, 1993)
using the phosphorylated ERK1 (PDB ID: 2ZOQ) (Kinoshita
et al., 2008) as the template. We have built nitrotyrosine prmtop
and inpcrd files of ERK1 using the Gaussian 09 and Amber
software packages (Xu et al., 2019). The prmtop and inpcrd
files of human CDK8 were generated based on the crystal
structure of CDK8 (PDB ID: 3RGF) (Schneider et al., 2011).
All calculations used Amber’s all-atom force field (ff14SB) as
implemented in Amber 16 software (Case et al., 2005). The
SANDER and CPPTRAJ modules (Roe and Cheatham, 2013) of
Amber were used, respectively, for computation and analysis.
Specially, a total of 1,000 steps of initial energy minimization,
including 500 steepest descent steps (ncyc = 500) followed
by 500 conjugate gradient steps (maxcyc-ncyc) using a large
cutoff (cut = 999 angstroms) and non-periodic simulation (ntb
= 0), were performed to adjust the structures of CDK8 or
ERK1. To give the system time to adjust as temperature is
raised to the production temperature, the minimized system was
slowly heated from 0 to 325 Kelvin (K) in seven increments
of 50K over 50 ps (5 ps for the first six steps and 20 ps
for the seventh step). The equilibration MD simulations were
conducted for a total of 5 ns at a constant 325K. For CDK8-CycC
simulations, the solvated CDK8-CycC complex was equilibrated
by carrying out a short minimization, 50 ps of heating and 50
ps of density equilibration with weak restraints on the complex

followed by 500 ps of constant pressure equilibration at 300K.
Finally, a total of 2 ns production simulation was performed.
A representative 66 frames (structures) of CDK8 and ERK1
were extracted from the uniformed steps of the entire MD
simulations (Supplementary File 2). We also built a different set
by extracting representative frames from all ranges of RMSD to
increase structure diversity.

Visualization
Visualization of our protein structure clustering is based
on Average Linkage (Ackerman and Ben-David, 2016) and
k-means (Lloyd, 1982) clustering (Supplementary Figure 1).
The complexity of multiple dimensional relations among 3-D
structures is reduced and represented by Multidimensional
Scaling (MDS) method (Kruskal and Wish, 1978)
(Supplementary Figure 1). Clustal W module built in
Vector NTI (Lu and Moriyama, 2004) was applied to conduct
pairwise sequence alignments (Supplementary Figure 1).
Structural images were prepared using the Visual Molecular
Dynamics (VMD) package (Humphrey et al., 1996)
(Supplementary Figure 1).

RESULTS

Determining the Numbers of Bins for Theta
and MaxDist for Key Generation
Calculate the Bin Boundaries Using Adaptive

Unsupervised Iterative Discretization Algorithm
In our algorithm, we first select all Cα atoms and find all possible
triangles formed by Cα atoms (Figures 2A,B). Second, we
calculate keys using Equation 2 and key occurrence frequencies.
Third, we quantify similarity or dissimilarity of two structures
using the Generalized Jaccard similarity through computing
identical and non-identical keys, and their frequencies (Figure 2)
or the modified Generalized Jaccard similarity methods. Our
approach does not require prior superimposition of 3-D protein
structures and is customized to be sensitive to size of the triangles.
Themain objectives of our work are to do structure-based protein
classification, andmotif identification and discovery (Figure 2A).

To calculate meaningful keys, the foundation is to design an
experiment to determine numbers of bins for Theta andMaxDist.
To do so, we randomly selected 12 different non-overlapping
sample sets from PDB, each containing 30–50 proteins. For
each sample set, we calculated all angles and lengths. Theta-
count plots show that count of triangles generally increases with
the increase in the value of Theta (Supplementary Figure 2).
The trend is the same, if we plot either all three angles against
count or MaxDist against count (Supplementary Figure 3). Both
the plots show skewed distributions. Based on the plots of
Theta-count and MaxDist-count, we observed sample variations.
We also learned that an equal width binning method will end
up with a different number of triangles falling in each bin
depending on whether the specified interval of values is for Theta
or for MaxDist. To maximize the possibility of the same or
similar number of triangles in each bin and to ensure that all
occurrences of the same value are placed in the same bin, we used
the Adaptive Unsupervised Iterative Discretization algorithm to
calculate the bin boundaries (Liu et al., 2002; Witten et al., 2016).
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FIGURE 2 | The overview of our TSR-based method for protein 3-D structural comparison at global and local levels. (A) It shows the steps involved in converting 3-D

structures to keys, and objectives of our work; (B) All Cα atoms were selected from each of the representative 3-D structures, and lengths and angles of all possible

triangles (Cn
3) were calculated. Each triangle is converted to an integer (a key) based on its lengths, angles, and amino acids. Consequently, each protein 3-D structure

is represented by a vector of integers with their frequencies. A similarity matrix is calculated for clustering proteins, and identical keys with low frequencies in a certain

class are found to be the candidates for motifs.

Within-bin variances of Theta and MaxDist for each sample
set were calculated for different choices of total numbers of
bins (Supplementary Figures 4, 5). The top five numbers of
bins with the smallest variances were chosen for each sample
set. The two with the greatest numbers of bins were selected
from the top five numbers of bins (Supplementary Figure 6a),
and then minimum, medium, and maximum numbers of bins
and the numbers of bins with the highest frequencies were
calculated (Supplementary Figure 6b). We identified the top
three binning results for MaxDist as having numbers of bins: 12,
26, and 35 (Supplementary Figure 6c), and the top four binning
results for Theta as having numbers of bins: 7, 15, 21, and 29
(Supplementary Figure 6d). Therefore, we have a total of 12
candidates of bin combinations.

Determine the Optimum Numbers of Bins From the

12 Candidate Bins Using the Small Testing Data Sets

Selected From the Proteins With Their Functional

Classifications as the Ground Truth
To further determine optimum numbers of bins for key
generation, we came up with six small protein sample sets, each

set containing 16–24 proteins in four different protein families
with 4–6 members per family. We used all combinations of the
four numbers of Theta bins and the three numbers of MaxDist
bins to determine the best choice for combination of numbers
of bins. If two or more combinations for the numbers of bins
generate clustering that matches their functional classification,
we chose the combination having higher numbers of the bins,
since the latter allows us to distinguish small differences between
the structures. It should be pointed that we also made minor
changes on the final numbers of MaxDist and Theta bins mainly
based on the fact that the physical interactions between two
amino acids are generally stronger if they are closer. Our data
shows that the combination, 29 bins for Theta and 35 bins for
MaxDist produced the best result, in most cases, for clustering
these six protein sample sets (Supplementary Figures 7–10).
We found that the other combinations of Theta and MaxDist
we tested can also correctly cluster these protein data sets (data
not shown). To further verify that Theta 29 and MaxDist 35
are the optimum numbers of bin, we examined whether our
method can cluster a large sample set correctly, and the result
shows that the clustering of a total 178 proteins, from six
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families of about 30 proteins from each family, perfectly matches
their functional classifications (Supplementary Figure 11,
Supplementary Files 8,8A). The combination, Theta 29 and
MaxDist 35, was used for majority of the analyses in the
following sections. We have provided alternative bin boundaries,
of three for MaxDist and four for Theta, as the choices for the
investigators to test their own samples. Proteases, kinases, and
phosphatases play essential roles in signal transduction (Hunter,
2000; Salvesen et al., 2016). Mutations of these enzymes are
often associated with diseases, and they offer valuable targets
in many therapeutic settings (Cohen, 2002; Tonks, 2006; Bond,
2019). In addition, the catalytic mechanism of serine proteases
has been well-established (Carter and Wells, 1988; Dodson
and Wlodawer, 1998). Therefore, we decided to employ our
method in the study of proteases and kinases/phosphatases
aimed for structure-based protein classification, as well as motif
identification and discovery.

Our TSR-Based Structural Comparison
Method Can Be Used for Protein
Clustering and Motif Discoveries
Application of Our Method in Clustering Proteases
Proteases hydrolyze peptide bonds of proteins, and were
classified into four major classes: serine, cysteine, aspartate, and
metal proteases (Rawlings and Barrett, 1993) before 1970; Now
proteases extend to six distinct classes (López-Otín and Bond,
2008). Glutamate and threonine proteases are the two new
classes. We found nearly all available structures of serine (986),
aspartate (517), cysteine (131), and metal (105 carboxypeptidase
and 133 thermolysin) proteases from PDB. We want to use
this data set containing a total 1,872 structures as one of
the case studies for demonstrating potential applications of
our method in the area of protein structural comparison.
More specifically, to evaluate performance of our method on
protein structure-based clustering, we want to examine whether
similar structures are clustered together while structures with
low sequence and/or structure similarity are separated into
different clusters. Our results show a nearly perfect clustering for
aspartate, and cysteine proteases and thermolysins (Figure 3A)
(Supplementary File 1A). Serine proteases were clustered into
two subgroups, and carboxypeptidases were also clustered into
two subgroups (Figure 3A). To find common keys belonging to
all protease classes, specific keys for each class, and for two or
more classes, we generated a Venn diagram (Figure 3B). The
largest is the common key section, a total 828,696 distinct keys
common to all classes, ranging from 59.5% (828,696/1,393,400) of
total distinct keys for serine proteases to 92.9% (828,696/892,401)
for thermolysins. The percentage of the keys specific to each
class is small, ranging from 0.051% (456 out of 892,401)
for thermolysins to 5.3% (73,611 out of 1,393,400) for serine
proteases. This observation indicates that different classes share
a large fraction of identical or similar triangles, and only
small fraction of triangles is needed to distinguish one class
from another.

Serine proteases can be divided into two types based on
their functions: digestive system (chymotrypsin, elastase, trypsin,

subtilisin), and regulatory system (thrombin, plasmin). We
included acetylcholine and choline esterases in the study of serine
proteases because of their nearly identical catalytic mechanism
to serine proteases. Additionally, both acetylcholine and choline
esterases, and serine proteases belong to the hydrolase family.
They are 500–600 aa in size and larger than digestive and
regulatory serine proteases (200–300 aa). We performed a
deeper analysis on serine proteases. Our method shows eight
clusters of serine proteases that agree with their functional
classifications (Figure 3C). Our result shows the structures of
chymotrypsin, trypsin and elastase are more similar. Serine
proteases (or hydrolases) were separated into two groups in
previous protease clustering. One of these two groups includes
acetylcholine and choline esterases, and the other group contains
digestive and regulatory serine proteases. Not surprisingly, the
subclasses of serine proteases share a large fraction of common
keys, and the number of the keys specific for each subgroup,
except the group of acetylcholine and choline esterases, is
small (Figure 3D). The exception for acetylcholine and choline
esterases is probably due to their larger protein size. If we
search for Common keys belonging to every protein of serine
protease subclasses, except acetylcholine and choline esterases,
only a very small fractions are Common keys regardless of
whether we consider key frequency (2.4% out of total keys by
average) or not (0.65% out of total different keys by average)
(Supplementary Figure 12a). Those Common key have greater
average Theta (Supplementary Figure 12b) and smaller average
MaxDist (Supplementary Figure 12c) than the Uncommon
keys. On an average, the frequency of those Common keys
is two to three times higher than that of the Uncommon
keys (Supplementary Figure 12d). In conclusion, our method
is able to perform accurate clustering of serine proteases, and
different subclasses share a high percent (59.5–92.9%) of the
common keys. In contrast, only a small portion of the keys,
called Common keys, are present in every protein, demonstrating
high structural variations among proteins. The substructures
corresponding to the Common keys have distinct features, e.g.,
Theta, MaxDist, and frequency, from those corresponding to the
Uncommon keys.

Application of Our Method in Structure Motif

Identification and Discoveries
Before applying our method for new motif discovery, we want to
see whether our method can successfully identify known motifs.
The active site, triad, of serine proteases has been well-studied
(Rawlings and Barrett, 1994; Blow, 1997; Dodson andWlodawer,
1998). It contains three amino acids: His57, Asp102, and Ser195
for human chymotrypsin (PDB ID: 4H4F) (Batra et al., 2013).
Trypsin and elastase have corresponding His, Asp and Ser
residues that can be aligned well with chymotrypsin (Figure 4A).
However, subtilisin (PDB ID: 1SUP) (Gallagher et al., 1996) has
an identical triad (Asp32, His64, and Ser221), but different order
and positions at the amino acid sequence level (Figure 4B). We
calculated the keys for the triad of chymotrypsin, trypsin, elastase
and subtilisin, and they all have identical or nearly identical keys,
demonstrating the success of our method in the identification
of triad. If we use fewer numbers of bins for either Theta or
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FIGURE 3 | The clustering of proteases by our TSR-based structural comparison method. (A) The heatmap shows the cluster of proteases. The dissimilarity values

are indicated in the upper left corner in all clustering heatmaps. The PDB IDs, and chain and class information can be found in Supplementary File 1. The complete

list of the clustering result in the same order as the clustering map are provided in Supplementary File 1A; (B) The Venn diagram shows counts of the keys that are

specific to each class of proteases, and all possibly overlapped regions among protease classes; (C) The dendrogram shows the clustering of the serine proteases.

Number of the proteins in each subclass is indicated; (D) Total numbers of the keys and numbers of the specific keys to each class of serine proteases were

calculated. Number of the common keys belonging to all classes of serine proteases were calculated. b and d, Key frequencies are not included for calculating the

number of the keys corresponding to each class of proteases (B), and each subclass of serine proteases (D). Total distinct keys of a class were calculated from all the

proteins in that class. These specific calculations are applied for (sub)classes of kinases and phosphatases. We designate the common keys at (sub)class levels.

MaxDist, the key for triad of serine proteases may not be unique.
Next, we asked a question “What are the unique features of the
triad triangle compared with all other triangles formed from His,
Asp and Ser?” To answer it, we calculated Theta and MaxDist
for the triad and for all possible His-Asp-Ser triangles. Our
calculations show that the triad has a much shorter MaxDist
and larger Theta than the average of all possible His-Asp-Ser
triangles of serine proteins, and a similar relationship is noticed
with respect to three protein samples randomly selected from
PDB (p < 0.001, ANOVA) (Figure 4C).

We are more interested in demonstrating the ability of
our method in discovering new motifs. The success of our
study on triad provides a foundation for the next step of new
motif discovery. Amino acid sequences of digestive, regulatory

serine proteases and (acetyl)choline esterases are diverse and no
amino acids are conserved (Supplementary Figure 13a). At the
structural level, we found four distinct keys, and one of them
appearing twice: one key of 7,04,9286 (Trp-Leu-Gln), one key
of 7,17,4130 (Trp-Asp-His), one key of 5,44,4573 (Asp-His-Cys),
and two keys of 5,49,1202 (Asp-Gly-Gly). A representative of
these keys of a serine protease (PDB ID: 4H4F) (Batra et al., 2013)
is shown is Figure 4D, and the amino acids corresponding to
these five keys are between two β pleated sheets and not at the
protein surface. These five keys are present in a high percentage
of digestive serine proteases (p < 0.001 for Chymotrypsin-
Elastase-Trypsin and Plasmin, and p < 0.0267 for prothrombin,
ANOVA) (Figure 4E). Specifically, they have a high frequency
for 7,04,9286 (390 digestive serine proteases out of a total 393),
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FIGURE 4 | An impact of our method in motif identification and discovery of serine proteases. (A) The sequence alignment of the representative digestive serine

proteases: chymotrypsin, trypsin and elastase, and a representative triad of chymotrypsin; (B) The sequence alignment of the representative subtilisins, and a

representative triad of subtilisin; (C) The Theta and MaxDist for triad of serine proteases, and all the triangles formed by Asp, His, and Ser of the serine proteases and

three sample sets randomly selected from PDB were calculated. Average, standard deviation and the number of proteins are indicated; (D) The representative

triangles corresponding to the keys: 7049286 (green), 7174130 (red), 5444573 (pink), and 5491202 (light blue) are shown (PDB ID: 4H4F). Numbers of

chymotrypsin-elastase-trypsin out of a total 393 having the keys are shown; (E) The percentage of occurrence of the keys: 7049286, 7174130 5444573, and

5491202 were calculated. Average, standard deviation and number of proteins are indicated. Key value difference by 1 (±1) allows minor flexibility for Theta to be

considered as presence of the given key. This applies for all other figures where ±1 is specified.

7,17,4130 (359/393), and 5,49,1202 (390/393), and a relative
low frequency for 5,44,4573 (264/393) (Figure 4D). Plasmins
also have a fairly high likelihood of containing these five keys;
∼60% of prothrombins, and ∼40% of acetylcholine and choline
esterases have these five keys. In contrast, most subtilisins do
not have them (Figure 4E). To demonstrate that those keys are
specific for digestive serine proteases, we came up with four
sample sets randomly selected from PDB, and found that ∼20%
or less of the proteins from the random samples have them
(Figure 4E). Next, we looked at individual keys; the majority of
prothrombins, plasmins, and (acetyl)choline esterases have the
keys: 7,04,9286 and 5,49,1202 (Supplementary Figures 13b–e).
About 30–60% of the prothrombins, plasmins, and acetylcholine
esterases have 7,17,4130, while nearly all choline esterases do

not have it. For the key 5,44,4573, ∼80% of plasmins have
it, but a majority of the prothrombins, and acetylcholine and
choline esterases do not have it. Taken together, we conclude
that the five keys are specific for digestive serine proteases. Their
presence and the percentage of occurrence of the individual
keys can distinguish subclasses of serine proteases. Because
these five keys have the potential to be used as one of the
features specific for serine proteases, we want to understand
if structural relations exist among them. Based on our limited
structural analysis (PDB ID: 4H4F) (Batra et al., 2013), we
show a hydrogen bond between 5,44,4573 and 5,49,1202,
and two hydrogen bonds between 7,04,9286 and 5,49,1202
(Supplementary Figure 13f), suggesting hydrogen bonds can
bring the keys close.
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Our TSR-Based Structural Comparison
Method Can Detect Subtle Conformational
Changes Upon Binding of a Ligand or an
Interacting Protein or Due to
Post-translational Modifications or Point
Mutations
We have demonstrated, using our protease data set, that our
method can be used to identify known structural motifs and
to discover new motifs. The unique key for the known motif,
triad, is essential for the catalytic activity of serine proteases
(Rawlings and Barrett, 1994; Blow, 1997; Dodson andWlodawer,
1998). However, we are not able to directly tie the new motifs of
proteases to their functions. The main objective of this section is
to explore our method in understanding subtle conformational
changes due to post-translational modifications, point mutations
or binding of a ligand or a partner with the focus on interpreting
the conformational changes in the context of biological functions.
This section is organized as follows. First, we evaluate stability
of our method in studying protein dynamics using theoretical
structures built fromMD simulations. Second, we reinforce what
we have found from theoretical structures using experimentally
solved protein structures. Third, we evaluate our method based
on the clinical success of Gleevec, a drug therapy of chronic
myeloid leukemia, that specifically inhibits BCR-ABL, but not
c-Src which is a structurally similar kinase (Deininger et al.,
2005).

Evaluate Stability of Our Method in Studying Protein

Dynamics
To evaluate our method in studying dynamics of protein
structures, we have built theoretical structures using the
experimentally determined structures as the templates. We will
focus on the discuss of two proteins: ERK1 and CDK8. ERK1
is an important kinase in Ras-Raf-MEK signaling (Lewis et al.,
1998). We have recently demonstrated that Tyr210 of ERK1
can be nitrated by mass spectrometry (Zhang et al., 2019). The
nitration induces a formation of a tyrosine nitration-dependent
intra-residue hydrogen bond (Xu et al., 2019) and this post-
translational modification leads to a novel CHIP-dependent
ERK1 degradation pathway (Zhang et al., 2019). CDK8 and its
partner CycC are the essential regulators of cell cycle (Xu and Ji,
2011; Poss et al., 2013). We have systematically investigated the
effect of point mutations of CDK8 on local structures using MD
simulation (Xu et al., 2014). We have previously reported that
CDK8-CycC serves as a regulator linking dietary perturbations
to lipid metabolism (Xie et al., 2015; Gao et al., 2018). Here, we
will present clustering results, identify the structural motifs, and
explain the dynamics of the structural motifs in the context of
biological functions of the proteins.

Our clustering result shows ERK1 and CDK8 are grouped
into two major clusters (Figure 5). If we look closer at
ERK1 and CDK8, ERK1 has three subclusters: ERK1 without
phosphorylation and nitration (ERK1), phosphorylated ERK1
(ERK1-P), and phosphorylated and nitrated ERK1 (ERK1-P-
N), whereas CDK8 has two subclusters: CDK8 with CycC and
CDK8 alone (Figure 5). We have also noticed that the very early

∼300 frames of ERK1-P during the simulation are separated
from the early to late frames (from ∼900 to ∼5,000) of ERK1-
P and are grouped with ERK1 together (data not shown). This
could be due to the fact that the initial structure of ERK1
was built using ERK1-P as the template. The frames (from
∼900 to ∼5,000) of ERK1-P are well-separated from ERK1 and
ERK1-P-N. Taken together, the results reveal that our method
can detect subtle conformational changes due to the post-
translational modification or binding of an interacting protein.
Next, we asked a question “What unique local structures are
exclusively belonging to ERK1, ERK1-P, or ERK-P-N?” Similarly,
we want to know what the structural changes of CDK8 are
caused by the binding of CycC. We will discuss ERK1 first
and then CDK8. Tyr210 of ERK1 is hydrogen bonded to
Glu237 (Kinoshita et al., 2008) (Figure 6A). Nitration of Tyr210
broke the hydrogen bond between Tyr210 and Glu237 due to
a formation of intra-hydrogen bond after nitration occurred
at Tyr210 (Xu et al., 2019; Zhang et al., 2019) (Figure 6B).
Arg242 is close to Glu237 after the hydrogen bond between
Tyr210 and Glu237 is broken (Xu et al., 2019) (Figure 6B).
Therefore, we decided to study the substructure formed from
Tyr/Tyn(nitrated Tyr)210, Glu237 and Arg242. We found that
phosphorylation of Tyr204 and nitration of Tyr210 do not alter
MaxDist, but increase Theta (Figure 6C). Very interestingly,
phosphorylation at Tyr204 of ERK1 has an impact on the
geometry of the triangle of Tyr/Tyn210-Glu237-Arg242. The
dynamics of the triangle of Tyn210-Glu237-Arg242 of ERK1-
P-N is shown in Figure 6D. All the representative structures
have the same bin of MaxDist (5), but different bins of Theta
(13, 16, 17, 18, 19, 20) (Figure 6D). It indicates that the
triangle of Tyn210-Glu237-Arg242 of ERK1-P-N has larger or
smaller bin labels of Theta depending on time points during the
simulations (Figure 6D) although it has larger Theta on average
than that of ERK1 and ERK1-P (Figure 6C). Figure 6E shows
conformational changes in RMSD during the simulations using
the frame with the lowest potential energy as the reference.
To achieve a similar goal using a different representation
from RMSD, our method illustrates conformational changes by
calculating number of triangles exclusively for a particular frame
over the period of the simulations (Figure 6F). We can also
identify those triangles and map them in the 3-D structures.
When we attempted to find triangles exclusively belonging to
the rest of 10 frames, we nearly cannot find such triangles
(Figure 6F), indicating high degree of conformational changes
during the simulations.

CDK8 interacts with CycC through hydrogen bond and van
der Waals interactions (Schneider et al., 2011). There are two
hydrogen bonds between CDK8-Glu72 and CycC-Ser9, one
hydrogen bond between CDK8-Arg71 and CycC-Gln13, and
van der Waals interaction between CDK8-Leu86 and CycC-
Phe140 (PDB ID: 3RGF) (Schneider et al., 2011) (Figure 7A). The
structure of CDK8 with the lowest potential energy during the 5-
ns simulation is shown in Figure 7B as the comparison with the
CDK8 structure in the complex of CDK8 and CycC (Figure 7A).
The triangle of Arg71-Glu72-Leu86 of CDK8 with CycC has
smaller MaxDist and larger Theta than that of CDK8 without
CycC (Figure 7C), indicating local conformational changes upon
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FIGURE 5 | The clusters of ERK1 and CDK8 structures extracted from the MD simulations using our TSR-based structural comparison method match with their

functional classifications. Phosphorylation site of ERK1 is at Tyr204, and phosphorylated Tyr204 is named as Ptr204. Nitration of ERK1 occurs at Tyr210, and nitrated

Tyr210 is named as Tyn210. The amino acids with and without post-translational modifications at positions 204 and 210 of ERK1 are shown. The representative

CDK8 structures with and without its partner CycC are shown. The dissimilarity values are indicated in the upper left corner in the clustering heatmaps.

binding of CycC to CDK8. The calculations ofMaxDist and Theta
show the dynamics of triangles of Arg71-Glu72-Leu86 of CDK8
in the complex of CDK8 and CycC (Figure 7D). The triangles
from frames 1–11 fall into the same bin (6) of MaxDist and two
different bins (1, 2) of Theta. Frames 7 and 8 have Theta bin
of 2 and the rest of the frames have 1 (Figure 7D). This subtle
conformational change may not be able to be detected if we use
fewer numbers of bins. The backbone RMSDplots show a gradual
decrease in RMSD in the beginning stages of simulation and a
gradual increase in the late simulation trajectories (Figure 7E).
In contrast to showing conformational changes using RMSD, our
method shows the number of specific keys for each frame. Our
specific key calculations reveal more conformational changes in
frames 6, 9 and 10 (Figure 7F).

Evaluate Stability of Our Method in Detecting Subtle

Conformational Changes Upon Binding of a Ligand

or an Interacting Protein or Due to Post-translational

Modifications or Point Mutations
Theoretical structures of ERK1 and CDK8 enable us to
demonstrate the effect of post-translational modifications and
binding of a partner on dynamics of local structures in the context
of protein biological functions. Can we see similar effect from

the experimentally determined structures? Point mutations often
change local structures. Some mutations may have biological
consequences while others may not. We assign each amino acid
a different integer. As the result, either conformational changes
or different labels will lead to a decrease in structure similarity.
For this reason, we want to estimate what percent of difference
between two structures is due to conformational changes caused
by point mutations and what percent of difference is due to
assignment of different labels. To achieve those goals, we have
built a small data set of CDK2 by searching the structures
in PDB. All the trimmed CDK2 structures have identical
amino acid sequences except for the specified point mutations
or deletion (Figure 8A). CDK2 structures can be divided
into two major groups: phosphorylated and unphosphorylated.
Our method clearly demonstrates two separated clusters of
CDK2: one for the phosphorylated and the other for the
unphosphorylated (Figure 8B). For unphosphorylated, there are
two subgroups: one with an interacting partner, CKS1B, and
the other without a partner, which can be distinguished by
our method (Figure 8B). For phosphorylated CDK2, there are
four major subgroups: without a ligand, with a ligand of ATP,
4SP, or 1RO. Each major subgroup can be further divided into
minor subgroups: with or without point mutation/deletion. The
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FIGURE 6 | Our method can detect fine structural changes of ERK1 due to the post-translational modifications. (A) Three amino acids, Tyr210, Glu237, and Arg242,

of the crystal structure (PDB ID: 2ZOQ) of ERK1 are shown. The hydrogen bond between Tyr210 and Glu237 is labeled; (B) The frame of ERK1-P-N having the lowest

potential energy was extracted from 5-ns MD simulation. The intra-residue hydrogen bond between Tyn210 and Glu237, and the inter-residue hydrogen bind between

Glu237 and Arg242 are labeled; (C) The MaxDist and Theta of the triangle of Tyr/Tyn/210-Glu237-Arg242 of ERK1, ERK1-P and ERK1-P-N were calculated. Mean ±

SD are indicated; (D) Ten frames from the uniformed steps of 5-ns simulations were extracted and they are named as frames 1–10. The frame of ERK1-P-N with the

lowest potential energy is labeled as frame 11; (E) RMSD values of ERK1, ERK1-P, and ERK1-P-N were calculated using their corresponding frames with the lowest

potential energy, during 5-ns MD simulations, as the reference, (F) The numbers of specific keys exclusively belonging to each of the 11 frames (1–11) of ERK1-P-N

were calculated and are presented. The numbers of specific keys exclusively belonging to all frames, except for the one frame indicated, were also calculated and are

presented. The frame with the lowest potential energy is labeled as 11.

result demonstrates a reasonably good clustering where the
clusters match their functional classification except a mismatch
for CDK2 with a ligand of 4SP (PDB ID: 4EOR) (Figure 8B).
Next, we asked a question “Can we identify the substructures
exclusively belonging to a given major group, a given major
subgroup, and a given minor subgroup?” We have organized
CDK2 data set in a hierarchical structure based on with or
without post-translational modification, binding of a ligand or
mutations/deletions (Figure 9A). Figure 9A shows the numbers
of the specific keys belonging to each (sub)group. We asked
a deeper question: “Can we link some of the specific keys
we identified to their biochemical functions?” To address this
question, we have focused on one structure: 4EOQ that is
phosphorylated CDK2 without a mutation (Echalier et al., 2012).

We found 12 out of 656 specific keys exclusively belonging to
4EOQ and the amino acids associated with these 12 keys are
close to ATP (Supplementary File 9). Those amino acids close
to ATP are shown in Figure 9B (PDB ID: 4EOQ). As expected,
these 12 keys as a unique key set are only present in 4EOQ,
CDK2 with CycA2 and ATP (Figure 9C). The rest 13 CDK2,
other kinases (n= 1,262) (Supplementary File 10), phosphatases
(n = 472) (Supplementary File 10), proteases (n = 1,872)
(Supplementary File 1), the structures from CATH database (n
= 4,520) (Supplementary File 4), and the structures from SCOP
database (n = 1,400) (Supplementary File 5) do not have such
12-key set. Interestingly, three mutations: H84S/Q85M/Q131E,
H84S/Q85M/K89D, and Q131E do not have this 12-key set
although CycA2 and ATP are found in all these mutated CDK2
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FIGURE 7 | Our method can detect fine structural changes of CDK8 upon binding of CycC. (A) The crystal structure of CDK8 and CycC complex is shown (PDB ID:

3RGF). The interface between CDK8 and CycC is labeled. The hydrogen bonds and van der Waals interactions between CDK8 and CycC are shown; (B) The frame of

CDK8 having the lowest potential energy was extracted from 5-ns MD simulation and is shown; (C) The MaxDist and Theta of the triangle of Arg71-Glu72-Leu86 of

CDK8 alone and CDK8 with CycC were calculated. Mean ± SD are indicated; (D) Ten frames from the uniformed steps of 200-ps simulations were extracted and they

are named as frames 1–10. The frame of CDK8 with the lowest potential energy is labeled as frame 11; (E) RMSD values of CDK8 in the complex of CDK8 and CycC

were calculated using its frames with the lowest potential energy during 200-ps MD simulations as the references, (F) The numbers of specific keys exclusively

belonging to each of the 11 frames (1–11) of CDK8 were calculated and are presented. The numbers of specific keys exclusively belonging to all frames, except for

the one frame indicated, were also calculated and are presented. The frame with the lowest potential energy is labeled as 11.

structures (Figure 9C). This result clearly demonstrates that
single or multiple point mutations alter the geometries of the
amino acids closely interacting with ATP. Now, we have learned
that ourmethod can detect local conformational changes induced
by mutations. To determine percent of dissimilarity in structural
comparisons caused by coordinate changes or label assignment
changes due to mutation, we first compare the structure
without mutations but with different ligands. They share 70–
75% structure similarity (Figure 9D). It indicates that binding of
different ligands induced 25–30% substructural changes. When
we compared the structures containing the mutation(s) with
their corresponding structures without the mutations, they share
73.06% similarity on an average (Figure 9E). It means that the
mutation(s) lead to 26.94% local structural changes. If we assign
the labels of the mutated amino acid(s) to the original one(s),

but keep all coordinates unchanged, the similarity increased to
74.57% as predicted. Hence, on an average of 1.49% (74.57–
73.06%) out of 26.94% structural changes is due to the label
changes and the rest of 25.45% are due to mutation-induced
actual structural changes.

Link the Subtle Conformational Changes Upon

Binding of a Drug to the Drug Binding Site
From CDK2 set, we have shown that our method can detect
conformational changes in the ligand bind site caused by the
mutations outside the ligand binding site. We have not directly
linked this finding to their functions. To more directly link the
local structure to the function, we investigated the interactions
between BCR-ABL and Gleevec, and between c-Src and Gleevec
using our method. The clinical success of Gleevec is partly due
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FIGURE 8 | Our structure-based protein comparison method can detect conformational changes of CDK2 with the same/similar amino acid sequences due to

post-translational modifications or upon binding of a ligand and a partner. (A) Fourteen CDK2 structures were found from PDB. The PDB structures were converted to

amino acid sequences using pdb2fasta developed by Yang Zhang’s lab. We trimmed the structures from N-terminus or C-terminus to make sure all CDK2 structures

have the same amino acid sequence except mutations specified. The CDK2s with the mutations are labeled as well. The phosphorylation site at Thr160 is indicated.

Note: phosphorylated Thr, TPO, is not shown in the amino acid sequence alignment; (B) The CDK2 structures are clustered using our method. p160 represents

phosphorylation at Thr160 and t160 means Thr at the position of 160 (unphosphorylated). The CDK2 interacting proteins: cks1b and cyca2 are indicated. aa1xx(x)aa2

means aa1 at position of xx(x) was mutated to aa2, e.g., k89d means lysine at position 89 was mutated to aspartate. a95 indicates a deletion of alanine at position 95.

Three ligands, ATP, 4SP, and 1RO, are labeled. a-b, Unphosphorylated CDK2 sequences are labeled in brown and phosphorylated CDK2s are labeled in blue.

to the restricted specificity of the drug that blocks BCR-ABL
(Deininger et al., 2005). BCR-ABL and c-Src have similarity
structures. The Gleevec binding sites of BCR-ABL and c-Src
are similar, however subtle conformational changes can have
a huge impact on drug binding. The abnormal fusion protein
BCL-ABL is found in almost all patients with chronic myeloid
leukemia. The IC50 value of Gleevec is 0.025–0.2mM for BCR-
ABL compared with > 100mM for c-Src, indicating that Gleevec
binds BCR-ABL 500–4,000 times stronger than c-Src (Deininger
et al., 2005). This is the main reason why we have investigated
BCL-ABL, c-Src, and Gleevec. Figure 10A shows the binding
site of Gleevec of BCR-ABL and c-Src. The amino acids that
interact with Gleevec are shown in Figure 10A and they are
conserved in BCR-ABL and c-Src (Figure 10B). We identified
that 12 keys as the key set from Gleevec-interacting amino
acids are exclusively belonging to BCR-ABL (PDB ID: 3GVU)
(Figure 10C). The identities of these 12 keys including amino

acids and their positions, MaxDist, and Theta are included in
Supplementary File 11. The 12-key set are not found in 1,263
kinases (BCR-ABL was excluded) (Supplementary File 10), 472
phosphatases (Supplementary File 10), 4,520 proteins from
CATH (Supplementary File 4), and 1,400 proteins from SCOP
(Supplementary File 5) (Figure 10C). Six of 12 keys are also
found in c-Src [PDB ID: 2OIQ (Seeliger et al., 2007)]. The
amino acids in the Gleevec binding site and their positions
for 12 keys of BCR-ABL and 6 keys of c-Src are shown in
Figures 10D,E, respectively.

Our TSR-Based Structural Comparison
Method Can Distinguish Alpha Helices
From Beta Pleated Sheets
Secondary structure underpins the architectural organization
in proteins (Lesk and Hardman, 1982; Konagurthu et al.,
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FIGURE 9 | The results from the crystal structures of CDK2 reinforce that our structure-based protein comparison method can detect conformational changes of

CDK2 with the same/similar amino acid sequences due to post-translational modifications or upon binding of a ligand and a partner. (A) It shows a hierarchical

organization of CDK2 structures based on post-translational modifications, binding of a ligand or a partner, and with or without mutation(s). The total number of the

distinct keys and numbers of specific keys for each (sub)group are identified and shown; (B) It shows ATP binding site of CDK2 (PDB ID: 4EOQ). Some of the amino

acids associated with 12 specific keys for 4EOQ are shown; (C) The 12 keys specific to 4EOQ are shown. The identities of these 12 keys from 4EOQ can be found in

Supplementary File 9. The PDB IDs, and chain and class information for kinases and phosphatases can be found in Supplementary File 10; (D) It shows pairwise

percent similarity of CDK2 structures with identical amino acid sequence and without a mutation, but with different ligands: ATP, 4SP and 1RO; (E) It shows pairwise

percent similarity of CDK2 structures with mutation(s) compared with their corresponding structures without mutations. WT, wild type means no mutation.

Conformation_Only means structural comparison with a different label for each mutation and Conformation_Mutation means structural comparison with changing

mutated label(s) back to their original one(s) for distinguishing the sources of dissimilarity.

2012). In 1951, Pauling and Corey first defined two main
secondary structural elements, alpha helix and beta sheet, based
on the intra-backbone hydrogen bond patterns in proteins
(Pauling et al., 1951). Based on structures in PDB, residues in
known protein structures are ∼30% in helices, 20% in strands
and 50% in neither. To date, secondary structures have been
extensively employed in structure visualization (Humphrey et al.,
1996), classification (Murzin et al., 1995; Orengo et al., 1997;
Sillitoe et al., 2015), comparison (Krissinel and Henrick, 2004;
Shapiro and Brutlag, 2004a), and prediction (Holm and Sander,
1996). SCOP (The Structural Classification of Proteins) (Murzin
et al., 1995; Brenner et al., 1996; Lo Conte et al., 2000) and
CATH (Class, Architecture, Topology, Homologous superfamily)
(Orengo et al., 1997; Greene et al., 2007) are two popular

databases of domain structure-based hierarchical classification of
proteins. Structure-based protein classification, compared with
sequence-based approach, is able to detect distant relationships,
because most protein folds are well-conserved (Tseng and Li,
2012) although domain folds cannot guarantee the identification
of biological functions (Orengo et al., 1999). We will evaluate our
method on clustering proteins with the focus on their secondary
structures in this section.

Our TSR-Based Structural Comparison Method Can

Distinguish Alpha Helices From Beta Pleated Sheets

of the CATH Data Set
Four classes: mainly alpha, mainly beta, alpha beta, and few
secondary structures are defined in the CATH database. With
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FIGURE 10 | The example of interactions between BCR-ABL and Gleevec, and between c-Src and Gleevec reveals that our method can detect subtle structural

differences associated with drug binding affinity. (A) It shows the Gleevec binding sites of BCR-ABL (PDB ID: 3GVU) and c-Src (PDB ID: 2OIQ). Some of the amino

acids that have close interactions with Gleevec are shown; (B) It shows part of sequence alignment of BCR-ABL and c-Src. The amino acids in the Gleevec binding

site are labeled; (C) The 12-key set shown is specific for BCR-ABL (PDB ID: 3GVU); (D,E) The identities of 12 keys specific for BCR-ABL (D) and 6 out of these 12

keys found in c-Src (E) are shown. The x (pos0), y (pos1), and z (pos2) are positions of three amino acids constituting triangles. pos0, pos1, and pos2 are determined

by our rule-based formula.

staying focus on secondary structures, we have chosen the
structures from three out of four classes: mainly alpha (alpha),
mainly beta (beta), and alpha beta (alpha-beta). We have selected
1,529 structures from the class of alpha that have a range of 151–
200 amino acids in alpha helices. Similarly, we found 396 and
2,595 structures from the classes of beta and alpha-beta and those
structures have 151–200 amino acids in beta pleated sheets, and
either in alpha helices or beta pleated sheets, respectively. The
MDS analysis shows that our method cannot distinguish alpha,
alpha-beta, and beta (Supplementary Figure 14a). Because we
cluster structures based on their shapes (secondary structures)
not based on their functional classifications, we hypothesize
fewer bins for MaxDist and Theta or assigning the same
integer for structurally similar amino acids, e.g., serine vs.
threonine, called amino acid grouping in this paper will
improve clustering. To test these two hypotheses, we have

chosen the fewest bins of MaxDist and Theta: 7 and 12,
respectively from the 12 combinations of Theta and MaxDist
bins discussed earlier (Supplementary Figure 6). We did not
observe an improvement of clustering using Theta 7 andMaxDist
12 (Supplementary Figure 14b) compared with Theta 29 and
MaxDist 35 (Supplementary Figure 14a), nor using amino acid
grouping (Supplementary Figures 14c–e). We have also used
hierarchical and k-means clusteringmethods and did not observe
an obvious improvement by using fewer bins or applying
amino acid grouping (data not shown). To understand why
our method cannot distinguish alpha, alpha-beta, and beta, we
generated Venn diagrams. The largest is the overlapped section
of all three classes. This section has a total of 1,412,096 and
104,647 distinct keys, and occupies 96.6 and 98.5% of the total
distinct keys (1,412,096/1,462,148) (Supplementary Figure 13f)
and (104,647/106,267) (Supplementary Figure 14g) for Theta
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29/MaxDist 35 and Theta 7/MaxDist 12, respectively. Small
percentages of the keys were found to exclusively belong to
alpha (2,725/1,462,148= 0.19%), beta (4,961/1,462,148= 0.34%)
and alpha-beta (4,713/1,462,148 = 0.32%) classes for Theta 29
and MaxDist 35 (Supplementary Figure 14f). Using fewer bins
dramatically decreases the number of total distinct keys from
1,462,148 of Theta 29/MaxDist 35 (Supplementary Figure 14f)
to 106,267 of Theta 7/MaxDist 12 (Supplementary Figure 14g),
indicating the difference in discretizing triangles by varying
numbers of bins. We also observed the largest overlapped
sections of all three classes by employing amino acid grouping
(data not shown). Amino acid grouping also decreases the
number of total distinct keys as expected (data not shown). The
Venn diagrams explain why our method cannot discriminate
alpha, alpha-beta, and beta.

Majority of the structures share ∼20–40% similarity
using Theta 29/MaxDist 35 (Supplementary Figure 14h),
demonstrating structure diversity of the CATH proteins.
Applying amino acid grouping or using fewer numbers of
bins increases similarity (Supplementary Figure 14h) because
the numbers of common keys increase compared with Theta
29 and MaxDist 35 (Supplementary Figure 14i) even when
we did not account for decreases of total distinct keys. We
did not observe significant changes when PCA was employed
to analyze effect of applying amino acid grouping or using
fewer number of bins (Supplementary Figure 14j). Since the
structures in alpha-beta class contain helices and beta strands, we
suspected helices in alpha-beta class could not be distinguished
from helices in alpha class. This could be the similar situation
for beta strands in classes of beta and alpha-beta. Thus, we
came up with a more specific hypothesis that our method can
distinguish alpha from beta, or vice versa. To test it, we have
removed the structures in alpha-beta class from the CATH
data set. The results demonstrated that our method still cannot
distinguish the structures in alpha class from those in beta class
(Figure 11A).

To focus on the substructure containing only helices and
sheets, we decided to perform feature selections first and then
perform clustering study. We define two different types of keys:
intra-secondary structure (IASS) and inter-secondary structure
(IESS), to make the procedure of our feature selection clear. IASS
keys are defined as the keys from the triangles either within alpha
helices or beta strands. IESS keys are defined as the keys from
the triangles within and between secondary structure segments.
IASS keys are a subset of IESS keys. After the feature selection,
neither IASS nor IESS keys were able to distinguish three classes
(Supplementary Figures 15a–c) even though the Venn diagram
analyses clearly show gradual enrichment of α-, β-, αβ-specific
keys after feature selections (Supplementary Figures 15d–f).
However, alpha and beta classes are nicely separated if alpha-
beta class is removed from the study and feature selection is
applied (Figures 11A–C). The result from the CATH data set
demonstrates that our method can distinguish alpha from beta,
and vice versa. We observed the increase in the numbers of
specific keys belonging to either alpha or beta after applying
feature selections (Figures 11D–F). The Venn diagrams clearly

explain why the IASS or IESS keys can be used to distinguish two
major types of secondary structures (Figures 11D–F).

Our TSR-Based Structural Comparison Method Can

Distinguish Alpha Helices From Beta Pleated Sheets

of the SCOP Data Set
To make sure the observations we found from CATH data
set are generalizable, we decided to verify it using SCOP data
set. Since we used the structures with 151–200 amino acids
in the secondary structures from CATH data set, we decided
to use different sizes of secondary structures for SCOP data
set. We have chosen the structures from SCOP database that
have 201–300 amino acids in alpha helices (926 structures)
or in beta pleated sheet (474 structures). The result shows
that our method can distinguish the structures from classes of
alpha and beta if feature selections are applied prior to MDS
analysis (Figures 12A–C). We also used hierarchical (data not
shown) and k-means (Figures 12D–F) clustering methods and
PCA (data not shown) on the SCOP data set. Clustering using
k-means algorithm shows a gradual decrease in numbers of
mismatched structures and an increase in Adjusted Rand Index
(ARI) (Hubert and Arabie, 1985) (Figures 12D–F). ARI is used
to evaluate the quality of the clustering by the different methods.
Similarly, the Venn diagrams explain why the selected feature
set works for SCOP data set as well (Figures 12G–I). The SCOP
data set contains structures with diverse amino acid sequence
similarity. To further determine effect of amino acid sequence
similarity on clustering, we have performed k-means clustering
and PCA to compare the structures having low sequence
similarity (<40%) (Supplementary File 12) with those having
high sequence similarity (40–95%) (Supplementary File 13).
The k-means analysis (Supplementary Figures 16a–f) and PCA
(Supplementary Figures 17a–f) show no obvious differences
between the data sets having structures with low and high
sequence similarities.

Our TSR-Based Structural Comparison Method Can

Distinguish Alpha Helices From Beta Pleated Sheets

of the DD Data Set
To further confirm the conclusions based on from CATH
and SCOP data sets, we decided to choose a data set from
literature. DD data set was proposed by Ding and Dubchak (Ding
and Dubchak, 2001) and modified by Shen and Chou (Shen
and Chou, 2006). Since then, DD data set has been used in
many protein fold classification studies. There are 311 protein
sequences in the training set and 386 protein sequences in the
testing set with no two proteins having more than 35% of
sequence identity. The structures in DD data set were selected
from different structural classes containing α, β, α/β, and α

+ β. We have used a subset of DD data set by choosing the
structures only from α and β classes (Supplementary File 6).
We obtained the same conclusion. Taken together, we conclude
that our method can distinguish between two main types of
secondary structures and a feature selection is needed for
such purpose.

Frontiers in Chemistry | www.frontiersin.org 18 January 2021 | Volume 8 | Article 602291

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Kondra et al. TSR-based Protein 3-D Structural Comparison

FIGURE 11 | The results from the CATH data set show that our method can distinguish two main types of secondary structures: alpha and beta after applying feature

selections. (A–C) The MDS analyses were used to show separation of structures from the CATH classes of alpha and beta that have 151–200 amino acids in alpha

helices for alpha class or in beta pleated sheets for beta class without (A) and with feature selections (B, IESS; C, IASS). The detailed information, e.g., PDB IDs, chain

and class information can be found in Supplementary File 4; (D–F) The Venn diagrams using Theta 29/MaxDist 35 show counts of the keys that are specific to each

class, and are in the intersection of alpha and beta classes of the CATH data set prior to (D) and after feature selections (E, IESS keys; F, IASS keys). The numbers of

total distinct keys, the specific keys for α and β, and the keys in the intersection are indicated.

DISCUSSIONS

Comparison of Our TSR-Based Method
With Other Methods
Approximately 200 papers have been published on structural
comparison/alignment since 1980. Among these algorithms,
DALI (Holm and Sander, 1993), SSAP (Orengo and Taylor,
1996), CE (Shindyalov and Bourne, 1998), TM-align (Zhang and
Skolnick, 2005; Xu and Zhang, 2010), VAST (Gibrat et al., 1996),
PrlSM (Yang and Honig, 2000), SSM (Krissinel and Henrick,
2004) LOCK (Singh and Brutlag, 1997)/LOCK 2 (Shapiro
and Brutlag, 2004b), ASSAM/SPRITE (Nadzirin et al., 2012),
IMAAAGINE (Nadzirin et al., 2013), RASMOT-3D PRO (Debret
et al., 2009), and SPASM (Kleywegt, 1999) have been widely
used. We have compared our method with other methods in
two different ways: one way is to study the data sets from the
published papers, and the other way is to study the data sets we
have generated using our and the published methods.

Comparison of Our TSR-Based Method With Other

Methods Using the Data Sets From the Published

Papers
Hou and his colleagues constructed a map of the “Protein
Structure Space” by using the pairwise structural similarity scores
and found that Prdx2 (PDB ID: 1QMV, Chain A) and ArsC
(PDB ID: 1J9B, Chain A) have similar structures (Hou et al.,
2005), and both belong to the GO 0016491 (oxidoreductase).
Hou et al. stated that the DALI algorithm will assign them
as structurally different proteins (similarity score: 242.3, Z-
score:1.7, RMSD: 3.5 Å) (Hou et al., 2005). The sequence
alignment shows that Prdx2 and ArsC have low amino acid
identity and high similarity (Supplementary Figure 19a). The
clustering result generated using our method agrees with their
functional classification (Supplementary Figure 19b). These
two types of oxidoreductases share a large fraction of the
common keys at Prdx2-ArsC level (Supplementary Figure 19c)
and a smaller fraction of the Common keys at the individual
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FIGURE 12 | The results from the SCOP data set show that our method can distinguish two main types of secondary structures: alpha and beta after applying feature

selections. (A–C) The MDS analyses were used to show separation of structures from the SCOP classes of alpha and beta that have 201–300 amino acids in alpha

helices for alpha class or in beta pleated sheets for beta class without (A) and with feature selections (B, IESS; C, IASS). The detailed information, e.g., PDB IDs, chain

and class information can be found in Supplementary File 5; (D–F) The structures studied in a-c were also investigated by k-means clustering method without (D)

and with feature selections (E, IESS; F, IASS). The numbers of the mismatched structures and Adjusted Rand Index (ARI) are indicated; (G–I) The Venn diagrams

using Theta 29/MaxDist 35 show counts of the keys that are specific to each class, and are in the intersection of alpha and beta classes of the SCOP data set prior to

(D) and after feature selections (E, IESS keys; F, IASS keys). The numbers of total distinct keys, the specific keys for α and β, the keys in the intersection are indicated.

protein level (Supplementary Figure 19d). The Common keys
have shorter MaxDist and higher Theta and key frequency
values compared to all keys and to the Uncommon keys
(Supplementary Figure 19e). Holmes and her colleagues found
that Actin (PDB ID: 1ATN) and Hsp70 (PDB ID: 3HSC)
have similar structures although there is very little sequence
identity between the two proteins (Flaherty et al., 1991). Our
method shows these two classes share a very large section of
the common keys at the class level (Supplementary Figure 20a)
and a small fraction of the Common keys at the
individual protein level (Supplementary Figure 20b). The
cluster obtained matches their classifications by function
(Supplementary Figure 20c) and sequence. It is not surprising
that they have high amino acid similarity in contrast with
a low identity (Supplementary Figure 20d). The Common

keys have higher frequency than the Uncommon keys
(Supplementary Figure 20e). Our method clearly shows
four distinct clusters when we combined Arsc and Prdx2 with
Actin and Hsp70. 65, 444, 521, and 5,371 distinct keys can be
used to distinguish Prdx2, Arsc, Hsp70, and Actin, respectively
from the rest of the classes (Supplementary Figure 21). “Protein
Structure Space” and DALI methods consider α helices similar.
In contrast, our method will show that α helices are different
even though they have similar topology if they have different
amino acid compositions. “Protein Structure Space” and DALI
methods are designed to classify proteins based on their topology
while our method is based on geometry and function. The
specific keys we identified allow us to distinguish one sub(class)
from others in a structure-based hierarchical organization of
proteases. Even for the proteins with low amino acid similarity,
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we found a high percentage of the common keys at the (sub)class
levels (Figures 3B,D). It suggests that the total variety of protein
structures is considerably smaller than the variety of protein
sequences, in agreement with the prediction from the literature
(Hasegawa and Holm, 2009). It also indicates there is room
for us to increase our numbers of MaxDist and Theta bins. In
contrast to the high percentages of the common keys at the
class level, we found low percentages of the Common keys
at the individual protein levels (Supplementary Figure 12a),
demonstrating diversity of protein structures. The unique key
calculation, comparison and search features of our method allow
not only building of hierarchical protein structure relations, but
also provide crucial insights into the nature of protein structure
relations at global and local levels. Additionally, identification
of the keys specific to a certain (subclass) of proteins will
help to achieve a specific therapeutic outcome by minimizing
off-target toxicity.

Direct Comparison of Our TSR-Based Method With

the Selected Popular Methods for Clustering Proteins
We created a small data set (101 protein structures) for
the purpose of directly comparing our method with other
popular methods of protein structural comparison [DALI
(Holm and Sander, 1993), CE (Shindyalov and Bourne,
1998), and TM-align (Zhang and Skolnick, 2005)]. The
clusters of the protein structures using DALI method
nearly perfectly agree with their functional classifications
except two separated clusters observed for elastases
(Supplementary Figure 22). Interestingly, two clusters of
elastase are also found in CE (Supplementary Figure 23),
TM-align (Supplementary Figure 24) and our
(Supplementary Figure 25) methods. Our method groups one
Tyr phosphatase (PDB ID: 3ZMQ) with Ser/Thr phosphatase
(PDB ID: 2DFJ) together (Supplementary Figure 25).
Two separated clusters of plasmins are found in
both CE (Supplementary Figure 23) and TM-align
(Supplementary Figure 24) methods. An additional two
separated clusters of chymotrypsin are found in TM-align
method (Supplementary Figure 24). The RMSD matrices of
this small data set were obtained from CE (Shindyalov and
Bourne, 1998) and TM-align (Zhang and Skolnick, 2005)
while RMSD matrix was not generated by DALI server (Holm,
2019). When we compared chymotrypsin (PDB ID: 1P2O)
with subtilisin (PDB ID: 2ST1) using DALI server, we cannot
obtain the output of RMSD or Z-score. It was said that a
similarity value with Z-score lower than 2 is spurious. This
prevents us from further comparison of our method with
DALI method. Two separated elastase clusters found in all
four structural comparison methods motivated us to perform
multiple sequence alignment of these proteins. The Clustal
W sequence alignment also shows two separated elastase
clusters (data not shown). After sequence alignment using
Clustal W, we used Neighbor-Joining algorithm to build a
phylogenetic tree. The phylogenetic tree perfectly matches their
functional classifications (Supplementary Figure 26). Two
separated clusters of elastases are grouped together. Minor

differences in clustering using different methods inspired us
to further study distance distributions. CE, TM-align and
sequence alignment exhibit two separated peaks in the plots of
distance distributions (Figure 13A). In contrast, our method has
only one major peak between 60–80% distance (Figure 13A).
Although all the methods clustered protein structures reasonably
well, our method (66.7%) has much larger percent weighted
distance than TM-align (47.6%), sequence alignment (38.4%)
and CE (33.2%) methods (Figure 13A). The larger weighted
distance value indicates that our method can identify finer
substructural differences from two or more similar structures
considered by other methods. We also noticed that significantly
different protein sequences have distance of zero (Figure 13A),
suggesting redundancy at the protein sequence level. However,
those proteins with distance of zero in sequences do not have
distance of zero in the structural comparison (Figure 13A)
(Supplementary File 14), suggesting more diversity in protein
structures than sequences. To gain better insights into the
comparisons among the methods, we used a manual cutoff,
for every method under test, that maximizes the ARI (Hubert
and Arabie, 1985; Yeung and Ruzzo, 2001) with respect to the
specified number of clusters. Based on the ARI values, our
method (0.92, the highest ARI) is better than CE (0.82, the
highest ARI) and TM-align (0.80, the highest ARI), and CE
performs slightly better than TM-align (Figure 13B). We also
noticed that our method has much the larger normalized cutoff
(0.57) than other methods (0.15, 0.12, 0.03) to achieve the best
ARI (Figure 13B). This reinforces the observation from the
distance distributions that our method generally exposes finer
distinctions in clustering structures than other methods. To
gain deeper understanding of cluster compactness between the
differentmethods, we performed a principle components analysis
(PCA) (Jolliffe, 1986) through reducing dimensionality of the
distance matrices. The first four principle components capture
most of the variation of the distance matrices of both CE (92.5%)
and TM-align (98.0%) methods (Supplementary Figure 27a).
In contrast, 92.5 and 62.4% of the variations require 10
principle components for our method and sequence alignment,
respectively (Supplementary Figure 27a). We found the serine
proteases except subtilisin are closely clustered together in
CE (Figure 13C), TM-align (Supplementary Figure 27b) and
sequence comparison (Supplementary Figure 27c). In contrast,
all the clusters of the serine proteases are well-separated in
our method (Figure 9D). Interestingly, the clusters of the
kinases and phosphatases are closer to each other in our
method (Figure 13D) than other methods (Figure 13C and
Supplementary Figures 27b,c). Kinases and phosphatases were
not clustered well by the PCA (Supplementary Figure 27c)
compared with the sequence analysis using Clustal W and
Neighbor-Joining algorithms (Supplementary Figure 26). Some
of the serine proteases share high sequence similarity while
kinases and phosphatases do not have high sequence similarity.
Taken together, clustering using CE and TM-align methods
appears to largely depend on sequence similarity while clustering
using our method depends more on similarity of substructures
than sequence similarity.
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FIGURE 13 | The studies of structure and sequence dissimilarity of proteases, kinases and phosphatases demonstrate differences between methods of structure and

sequence comparisons. (A) The distance distributions of the different methods of structure and sequence comparison. Our method uses percentage to show the

differences in structures while CE, TM-align use RMSD to show the structural differences. The sequence alignment uses genetic distance. The distance values were

normalized to the percentage of distance. The weighted percent distances are indicated. The distance values of pairwise comparison using our method are provided

in Supplementary File 14; (B) The plot shows relation between the cutoffs and ARI of different methods for the average linkage clustering method. The number of

the clusters was set to ten. The cut-off distances were normalized to 1.0. The cutoff values for the best ARI are indicated; (C) The diagram shows the separation of

the clusters using the first three principle components from the RMSD matrix generated by CE method. The protein structures clustered together are circled and

labeled; (D) The diagram shows the separation of the clusters using the first three principle components from the distance matrix generated by our method. The

protein structures clustered together are circled and labeled.

Applying Mirror Image in Our Key Calculation Formula

Improves the Ability to Identify Substructures

Specifically for a Certain sub(class) of Proteins
As stated earlier, our method compares every substructure of
one protein with every substructure in a different protein. This
feature allows us to calculate common and specific substructures
for deeper understanding of protein structure clusters. In
addition, two separated clusters of elastases observed in our
structural comparison inspired us to check whether we can
identify unique substructures specifically belonging to elastases.
We were able to identify unique substructures for each protein
subclass except for elastases (Supplementary Figure 28). This
observation indicates structure diversity of elastases. In our

original key calculation formula, the two angles will be assigned
to the same bin if Theta is equal to 180◦–Theta. Thus, the
two triangles are assigned to the same key if they are mirror
images. To further discretize keys, we assign two mirror-
image triangles two different keys. If Theta is <90, key is a
positive integer. Otherwise, key is a negative integer with the
same value as its mirror-image triangle (Figure 14A). After
applying mirror image in our key calculation formula, we
were able to identify one unique key (7,23,9125) exclusively
belonging to elastases (Figure 14A). The mirror-image triangles
are found in Ser/Thr and Tyr phosphatases and they have
the key of −7,23,9125 (Figure 14A). The three amino acids
(Met, Trp, and Thr) of ±7,23,9125 from a representative
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FIGURE 14 | The effect of the mirror-image keys on specific keys for elastases. (A) Two triangles are considered as mirror images if they meet the criteria: (i) the same

amino acids, (ii) having θ1 < 90◦ for one triangle and θ1 > 90◦ for another triangle, (iii) the bin is the same for θ of the triangle with θ1 < 90◦ and 180◦-θ of the triangle

with θ1 > 90◦. The specific keys are represented as percentage; (B–D) The representative keys are shown for Ser/Thr phosphatase, Tyr phosphatase and elastase,

respectively. The PDB IDs, θ1, and keys are indicated.

of Ser/Thr phosphatase, Tyr phosphatase, and elastase each
are shown in Figures 14B–D and those amino acids are at
the protein surfaces. Two hydrogen bonds are observed in
key of 7,23,9125 but no hydrogen bonds are found in key
of−7,23,9125.

Our TSR-Based Method Is Relatively Insensitive to

Substructure Rearrangement
One fundamental difference between our and other methods
is that our method is relatively insensitive to substructure
rearrangement of a protein. Other methods appear to be more
sensitive to such type of structure rearrangement. To show this
difference, we created artificial structures of chymotrypsin and
subtilisin by rearranging the first 100 amino acids at the N-
terminus to its original C-terminal end without changes of the
first 100 amino acid sequence. Our method can distinguish
the original and artificial structures of both chymotrypsin and
subtilisin (Figure 15A). We were able to show the unique
substructures belonging to the original structures, and also the

specific substructures found only in the artificial structures (data
not shown). Although the unique substructures are identified,
our method is able to group the original and artificial structures
together (Figure 15A). Interestingly, two originally separated
elastase clusters are grouped together after we introduce structure
diversity to chymotrypsin and subtilisin (Figure 15A). Other
methods will successfully find corresponding amino acids of
the same large portion between the original and artificial
structures, butmay have a challenge to identify the corresponding
amino acids from the portion that was rearranged (Figure 15B).
Figures 15C,D illustrates the fundamental difference between
our and other alignment-based methods. In conclusion, each
method has its advantages, and disadvantages. Our method
can accurately cluster protein structures in a reasonably good
way as other structural comparison methods. One important
contribution is that we can provide in depth interpretation
of our clustering results by thoroughly studying common and
specific keys (substructures). Since our method has successfully
shown that protein structure clusters match their functional
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FIGURE 15 | The clustering of the original and artificial structures demonstrates the difference of structural comparison methods. (A) The heatmap shows the

clustering output of the original and artificial structures of SRC, subtilisin, elastase, and chymotrypsin. The artificial structures were generated by cleaving the peptide

bond between 100th and 101th amino acids of the original structure and covalently rejoined the first 100 amino acids to the last amino acid. The representative

original and artificial structures of subtilisin and chymotrypsin are shown; (B) The superimposed original and its artificial structures from TM-align method are shown;

(C,D) The model shows the sensitivity of different methods to structural rearrangement. The dash lines indicate direct comparison of corresponding substructure.

classifications, our method depends more on substructures
and less on protein sequences, and is relatively insensitive
to structure rearrangement. These features represent a solid
foundation that makes our method attractive for structure
motif discovery.

Our TSR-Based Method Has Its Unique
Ways to Allow Structural Flexibility for
Motif Discoveries or Protein Clustering
Most structure comparison methods consider protein folds
as rigid bodies and quantify the structural similarity based
on an average of atomic distances calculated using backbone
coordinates. However, certain regions of a protein structure
can be prone to variations, which arise due to structural
flexibility for certain functions. In our approach, similar, but
not identical, triangles could have identical keys due to the

number of bin used in the key calculation. Additionally, we
have been using key ± 1 for motif identification or discovery
to allow structural flexibility. We can also adjust number of
bin to meet the criteria to achieve certain desired structural
flexibility. We present 12 combinations of bins from three
MaxDist and four Theta for clustering and motif discovery.
We recommend to use fewer bins from 12 candidates of bin
combinations, e.g., Theta 7 and MaxDist 12, if the goal is to
study structure topology and more bins, e.g., Theta 29 and
MaxDist 35, for functional study or clustering of structurally
similar proteins. One supporting evidence can be found in
Supplementary Figure 29a where k-means algorithm clusters
ERK1 and CDK8 structures that perfectly match with their
functional classifications using Theta 29 and MaxDist 35. It
agrees with the result using the hierarchical clustering method
(Figure 5). We found one mismatch (ERK1-P-N) when Theta 7
and MaxDist 12 were used (Supplementary Figure 29b).
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CONCLUSIONS AND FUTURE
DIRECTIONS

Conclusions
(i) We have developed a novel TSR-based structure comparison

method where labels and shapes of triangles constructed
with every three Cα atoms of a protein are formulated
into integers called “keys.” 3-D structure of a protein is
represented by a vector of integers.

(ii) The method successfully clusters proteins that agree with
their functional classifications in most cases. The clusters
of protein structures can be further interpreted by different
categories of keys.

(iii) It can be used for structural motif identification
and discovery.

(iv) It can detect subtle conformational changes upon binding of
a ligand or an interacting protein or due to post-translational
modifications or point mutations. It provides a unique way
to represent dynamic aspects of protein structures.

(v) It can distinguish alpha helices from beta pleated sheets and
vice versa.

(vi) Our method has its uniqueness compared with the
popular methods.

(vii) The new motifs or substructures we identified specifically
for proteases and kinases provide a deeper insight into their
structure and function relations.

We have provided PDB IDs and chain information for all the
data sets in this study as Supplementary Files. The key files, and
similarity/distance values will be available upon the request. If
any specific keys are not described in detail, the information on
amino acids and their positions will be made available as well
upon the request. The source code is available for use of research
purposes in github (https://github.com/SarikaKV/TSR-3D).

Future Directions
To understand and make effective use of the vast structures
in PDB, there is a need to develop tools for accurately and
efficiently comparing protein structures and organizing proteins
in rational fashion, e.g., sequence-, function-, and structure-
based classifications. The challenges of aligning pairs of protein
structures have attracted a significant level of research efforts.
However, as yet, a good method which allows to search similar
3-D structures in a protein structure database for a given query
of protein structure, does not exist; these can be thought of as the
3-D equivalent search of the 1-D sequence search using BLAST
(Altschul et al., 1997) against protein sequence databases (e.g.,

NCBI). Our method makes it possible to systematically classify
the structures available in PDB, to perform structure-BLAST
search like BLAST search for amino acid sequences. We currently
use only Cα atoms, a common practice. However, it involves
loss of information with respect to geometries of side chains and
structural relationships between side chains, and between side
chains andmain chains. In the future, we plan to incorporate side
chain information into our current method for achieving more
accurate protein structure classification, motif discovery, and for
studying protein and drug, and protein and protein interactions.
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