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Abstract

Background: Grafting vessel with LIMA to the left anterior descending coronary artery plays a most important role
in the long-term prognosis of OPCABG surgery. The aim of this study was to compare the effects of isoflurane
preconditioning on miRs and mRNAs levels in the left internal mammary arterie (LIMA) graft with propofol in
patients undergoing off-pump coronary artery bypass surgery (OPCABG).

Methods: Patients were randomly assigned to receive either propofol (n = 15), or interrupted isoflurane (n = 15). In
group P, propofol administration was continued at 3–5 mg/kg/h intravenous injection for the duration of surgery.
Five minutes prior to incision, patients of the isoflurane group (group Iso) received 2 cycles of 1 MAC isoflurane.

Results: miR-221 were significantly lower in group Iso (P < 0 .05). E-selectin mRNA, RhoA mRNA and ROK mRNA
were significantly lower at specimens of LIMA in group Iso compared with those in group P patients (P < 0 .05). The
expression of NOS3 mRNA was significantly higher in group Iso patients (P < 0 .05).

Conclusion: Our findings provide some insight that prior interrupted isoflurane administration could regulate miR-
221, and downstream effectors (mRNAs) and resulted in actual attenuation of inflammation and spasm of LIMA in
patients undergoing OPCABG surgery.

Trial registration: NCT No. (ClinicalTrials.gov): NCT02678650; Registration date: January 23, 2016.
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Background
Coronary artery bypass grafting (CABG) surgery is the
standard treatment for patients with 3-vessel coronary
artery disease. Reports [1, 2] have showed that autologous
arteries rather than veins as bypass graft provide superior
long-term outcomes. Moreover, using of LIMA to graft the
diseased left anterior descending coronary artery has
become the standard method for almost all CABG surgery
[3]. However, graft spasm, especially in LIMA with an inci-
dence of at least 0.43% in all CABG surgery [4], and graft
stenosis still cause the problem in patients undergoing
CABG surgery.

miRs are small non–coding RNAs that regulate the
expression of target protein–coding genes by promoting
the degradation or suppressing the translation of target
mRNAs. Evidence shows that miRs act as key regulators for
endothelial biology and function [5].
Recent studies have also shown that volatile anes-

thetics can influence miRs expression profiles in the
liver and cardiomyocytes [6, 7], suggesting that isoflur-
ane preconditioning may influence miRs in LIMA as
well. In addition, the regulatory effects of anesthetics
on proinflammatory cytokines and NO/eNOS are dem-
onstrated by experimental data [8]. Thus, in this study,
we hypothesize that isoflurane-mediated precondition-
ing could protect LIMA via down-regulation of miRs.
To test this, we compare the effects of isoflurane on
miRs and mRNAs levels in LIMA graft with propofol in
patients undergoing OPCABG surgery.
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Methods
Patients
We performed a randomized-, prospective-, controlled
clinical study. This investigation conforms to the princi-
ples outlined in the Declaration of Helsinki after receiving
the Medical Ethics Committee approval at Beijing Anzhen
Hospital, Capital Medical University. Written informed
consent was obtained from all patients prior to inclusion.
This study is registered in the ClinicalTrials.gov database
(ID: NCT02678650), Clinical trial date of registration was
23/01/2016, and was performed between January 2016
and December 2016 at Beijing Anzhen Hospital.
Patients with American Society of Anesthesiologists

(ASA) scores between class II and III having coronary
artery revascularization by OPCAB surgery for 3-vessel
disease were included. Exclusion criteria were angina
during the previous 72 h, unstable angina, acute myocardial
infarction, ejection fraction lower than 40%, the need for
inotropic agents or an intra-aortic balloon pump preopera-
tively, congestive heart failure, emergency procedures,
former CABG surgery, concurrent valve repair, severe
systemic diseases involving the renal and hepatic systems,
respiratory disease (forced vital capacity less than 50% of
predicted values), or theophylline therapy.

Anesthesia and surgery
Patients received 10mg of morphine intramuscularly as
premedication one hour prior to entering the operating
room. Standard monitoring was achieved in all the patients.
Anesthesia was induced with sufentanil (1 μg/kg), etomi-
date (0.3mg/kg), cisatracurium (0.2mg/kg) and maintained
with hypnotics (propofol or isoflurane), cisatracurium, and
opioid (sufentanil). Patient monitoring included continuous
5-lead electrocadiographic registration with ST-segment
analysis, peripheral oxygen saturation by pulse oximetry,
radial arterial blood pressure, central venous pressure, cap-
nography, rectal temperature, and urine output. The radial
artery catheter was connected to a monitor for pulse
contour analysis (MostCare system, Vygon-Vytech, Padova,
Italy) and the resulting signal processed for determination
of hemodynamic variables. Depth of anesthesia was deter-
mined with bispectral index (BIS XPTM, Aspect Medical
Systems, Newton, MA, USA) and aimed at BIS values
between 40 and 50 during surgery. According to the study
protocol, body-position changes, vasoactive drugs (e.g., nor-
epinephrine), and dopamine were used to keep mean arter-
ial pressure (MAP) above 70mmHg. The nasopharyngeal
temperature was held above 36.0 °C. All OPCABG proce-
dures were performed by the same surgical team.

Intervention
According to computer-generated randomization, patients
were randomly assigned to receive either propofol (group
P, n = 15), or interrupted isoflurane (group Iso, n = 15). In

group P, propofol administration was continued at 3–4
mg/kg/h for the duration of surgery. In group Iso, 5 min
prior to incision, began to isoflurane wash-in / wash-out
operation: isoflurane administration was interrupted for 10
min, by washed out to achieve a MAC value below 0.2(with
a high fresh gas flow 8 L.min− 1). Following the interruption,
isoflurane to achieve 1 MAC end-tidal concentration as
soon as possible (with a high fresh gas flow 6 L.min− 1), and
repeated twice periods of 10min. Discontinuation of iso-
flurane for at 15min during the last wash out time. When
isoflurane inhaled anesthetic, propofol was stopped infu-
sion. If during this interruption the BIS value increased to
> 50, 0.5mg/kg propofol was administered repeatedly in
boluses until the BIS value returned to < 50. The mean flow
(MF) and pulsatility index (PI) of the LIMA graft were mea-
sured at 10min after OPCABG when the ultrasonic coup-
ling index (ACI) was ≥90% by an Ultrasonic Blood Flow
Detector (Medi-stim, VeriQ 4122, Norway).

Tissue sampling
At 1 h after isoflurane exposure (group P, about 100min
after incision), a segment (1 cm) of LIMA was taken from
30 subjects undergoing OPCABG surgery by sgurgeon.
We excluded patients who received papaverine or
high-dose vasoactive drugs before the LIMA graft. Before
we obtained LIMA, surgeon did not apply any vasodilator
such as papaverine. In all patients, LIMA was freed firstly
and then the distal end of the internal mammary artery
was severed. After we got the pedicled LIMA, LIMA was
carefully dissected from their surrounding tissue, and then
snap-frozen in liquid nitrogen and kept at − 80 °C until
further analyses were carried out.

Quantitative RT-PCR
Total RNA was extracted using the TRIzol reagent kit (Bio-
Teke, China), and RNA purity, integrity and quantity were
examined by nanodrop (NANO 2000, Thermo, USA). Puri-
fied RNA samples were performed on reverse transcribed
cDNA using a reverse-transcription kit (BioTeke, China).
Real-time PCR was performed with 2 μ L of diluted RT
product in a Exicycler™ 96 (BIONEER, Korea) using SYBR
Green PCR Supermix (Solarbio, China) according to the
manufacturer’s instructions. U6 was used as reference for
miRs and β-actin for mRNAs. Target expression was
normalized to the expression of loading control for each
sample and the difference between samples was calculated
using the 2 - △△ CT method. The designed primers are listed
in Table 1.

Western blot (WB)
Biopsies were kept stored at − 80 °C and prepared for ana-
lysis on the same day. To measure protein expression, total
protein concentration was measured by the BCA Protein
Assay Kit (Pierce, Rockford, IL, USA). 40 μg protein
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samples were loaded and separated on a 5–10% SDS-PAGE
gradient gel, and electrically transferred onto a PVDF
membrane (Millipore, Billerica, USA). PVDF membranes
were blocked with 5% nonfat milk in Tris buffer solution
containing 0.1% Tween-20 (TBST) for 1 h at room
temperature, followed by incubation with primary antibody.
After washing four times with TBST (5min each, room
temperature), the membranes were incubated for 1 h with
fluorescent-labeled secondary antibodies (anti-Rabbit IgG
at 1:5000). Then, the membranes were washed and proteins
were visualized by using an enhanced peroxidase/luminal
chemiluminescence reaction (ECL Western blotting detec-
tion reagent) (Wanleibio, China), and the final images were
analyzed by densitometry using Gel-Pro-Analyzer software
(Media Cybernetics, USA). All primary and secondary
antibodies were purchased from Wanleibio Biology Ltd.,
Shenyang, China.

Statistical analysis
Sample size calculation was based on the assumption
that the SD of the means of the TnI plasma levels will
be 1.5 ng/mL 4 h after surgery, a = 0.05, and β = 0.8. A
40% decrease with isoflurane preconditioning was
assumed [9], the power analysis indicated that a
minimum sample size of 10 patients was required for
each group. In this study we enrolled 15 patients to
improve the power of test.

Descriptive analysis was performed using mean ± SD for
continuous variables and frequencies (percentages) for
categorical data. For comparisons of categorical variables
Chi-square analysis was used. Student’s t-test was used to
compare the means of two samples. All of the collected
data were stored electronically and analyzed using SPSS
17.0 software (SPSS Inc., Chicago, IL, USA). Kolmogorov–
Smirnov and normal-quantile plots were used to determine
whether the continuous variables were normally distrib-
uted. Graphics were produced by use of GraphPad Prism 5
(GraphPad Software, San Diego, CA).

Results
Patient characteristics
Major complications, in-hospital and 30-days mortality did
not occur in this study. Table 2 summarizes characteristics
and clinical parameters of the perioperative patient (n = 30)
in the two study groups. There were no significant differ-
ences in terms of age, height, body weight, sex, diabetes
mellitus (receive insulin therapy one week before surgery),
hypertension, and LVEF, or in other parameters, such as
MF, PI values, ventilation duration, ICU stay and hospital
stay.

Myocardial injury
The two groups had similar baseline preoperative serum
cTnI and CK-MB values. cTnI and CK-MB values were
higher in both groups in the periods after surgery and
peaked at the 4th hour after surgery in both groups. At
4 h after surgery, the cTnI and CK-MB values in the pa-
tients in the Iso group were lower compared to the P
group (P < 0.05). (Fig. 1).

Table 1 List of the designed primers

miR or mRNA Sequence(5′¬3′)

miR-221 F GCGACCACCTGGCATACAAT

miR-221 R GTGCAGGGTCCGAGGTATTC

miR-146 F GCGAGGTGAGAACTGAATTCCA

miR-146 R GTGCAGGGTCCGAGGTATTC

U6 F CTCGCTTCGGCAGCACA

U6 R AACGCTTCACGAATTTGCGT

NOS3 F TGTTTGTCTGCGGCGATGT

NOS3 R GGTGCGTATGCGGCTTGT

RhoA F GTGCCCACAGTGTTTGAGA

RhoA R ATCGGTATCTGGGTAGGAG

IKB-a F ATGAAAGACGAGGAGTACGAG

IKB-a R GCAGGTTGTTCTGGAAGTTGA

VCAM-1 F ATTTGACAGGCTGGAGATAGAC

VCAM-1 R CAGCCTGCCTTACTGTGGG

E-selectin F AGAGGCAGCAGTGATACCC

E-selectin R TGAGAAGCACCAAAGTGAGAG

ROK F TGACTGAGTGCCCTGTGGA

ROK R AACCCTGAAGCCTGTGATA

β-actin F CTTAGTTGCGTTACACCCTTTCTTG

β-actin R CTGTCACCTTCACCGTTCCAGTTT

Table 2 Patient characteristics and perioperative parameters

group Iso group P p-Value

Gender, male/female 12/3 10/5 0.539

Age (year) 57.5 ± 5.2 57.3 ± 8.2 0.217

Weight (kg) 74.9 ± 9.8 69.6 ± 13.1 0.430

Height (cm) 166.7 ± 7.2 164.6 ± 7.4 0.855

Diabetes mellitus 3 5 0.409

Hypertension 11 10 0.690

Left ventricular ejection fraction (%) 60.8 ± 7.6 63.1 ± 6.6 0.379

Ventilation (hours) 11.0 ± 2.9 12.4 ± 2.6 0.185

ICU stay (hours) 14.5 ± 2.5 16.9 ± 4.3 0.075

Hospital stay (days) 9.7 ± 1.1 9.8 ± 1.2 0.755

Number of bridge vessels 4.0 ± 0.6 3.8 ± 0.6 0.642

nitroglycerin prior to surgery 3 4 0.666

MF(l/min) 37.3 ± 12.3 31.3 ± 10.6 0.199

PI 2.2 ± 0.9 1.9 ± 0.6 0.146

ICU: intensive care unit
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Quantitative RT-PCR for miRs
We found that compared with the absence of isoflurane
preconditioning, isoflurane pretreatment significantly dow
n-regulated miR-221 expression in LIMA at 1 h after
isoflurane exposure(P < 0.05). Further, miR-221 acts as key
regulators for endothelial biology and function [10–12].
(Fig. 2).

Expression of NO-associated genes
NO, synthesized by endothelial NO synthase (eNOS) which
is a putative target gene of miR-221, is very important for
vascular function [13]. Our data indicated that NOS3
mRNA and eNOS protein increased significantly at 1 h
after isoflurane preconditioning(P < 0.05) and suggested
isoflurane pretreatment regulation of eNOS translational
efficiency. (Fig. 3).

Expression of inflammatory-associated genes
Nuclear factor-kappa B (NF-κB) is considered to be an-
other putative target gene of miR-221 [14]. We found that
the expression of E-selectin mRNA and VCAM-1 mRNA
levels decreaced after isoflurane exposure(P < 0.05). How-
ever, IκB-a mRNA was not significantly changed in group
Iso compared with group P(P = 0.316). (Fig. 4).

Expression of spasm-associated genes
The pathway of RhoA/Rho kinase (RhoA/ROK) is a
major cellular target for regulating vasoconstriction [15].
RhoA and ROK were studied at the mRNA and protein
levels using quantitative RT-PCR and Western blotting.
The results showed that group P had a significantly
higher level of mRNA expression of RhoA and ROK
than of group Iso, and RhoA protein was also expressed
higher in group P(P < 0.05). (Fig. 5).

Discussion
The detailed mechanisms of the influence of anesthetic
agents on LIMA are still unknown. The primary findings
of the present study were that isoflurane preconditioning
during the OPCAB surgery for 3-vessel disease attenuated
myocardial injury, and reduced inflammatory response
and vasospasm in LIMA. More importantly, results also
indicated that miR-221 expression were decreased in
group Iso and their common target genes changed accord-
ingly in LIMA. A growing body of evidence shows an
organ protective effect by volatile anesthetics, such as
isoflurane and sevoflurane [16, 17]. In addition, miRs are
known to be involved in the protective effect of volatile
anesthetics [18–20]. In accordance with our findings, the
protective effect of LIMA of isoflurane preconditioning
could be at least in part attributed to miR-221.
miR-221 plays a key important role in vascular biology

through its effects on vascular smoothmuscle cells and
endothelial cells. For example, miR-221 is found to be
changed in vascular disease, such as atherosclerosis, coron-
ary artery disease, and post-angioplasty restenosis [21–23].
In addition, evidence showed [14] that miR-221 inhibited
NO production and abolished the inhibitory effect of adi-
ponectin on E-selectin activation in human umbilical vein
endothelial cells, which was in line with our study. Olson
and colleagues [20] demonstrated that miR-21 is acting to
protect cardiomyocytes after isoflurane exposure. However,
our study demonstrated that miR21 was not changed be-
tween groups but miR-221 and were down-regulated after
isoflurane exposure in LIMA, and LIMA and cardiomyo-
cytes tissue differences may be a major reason for the
difference between the two results.
Taken together, eNOS and E-selectin seem to be the

common targets of miR-221 to regulate inflammatory. Al-
though the long-term patency of LIMA graft principally
depends on the severity of the native coronary artery

Fig. 1 Postoperative release of serum cTnI and CK-MB. (a) Serum
cTnI levels at different time points. (b) Serum CK-MB levels at
different time points. * P < 0.05, ** P < 0.01, compare with T0; + P <
0.05, ++ P < 0.01, between the groups. T0, 5 min prior to incision; T1,
4 h after surgery; T2, 12 h after surgery; T3, 24 h after surgery; T4, 48 h
after surgery

Fig. 2 Expression change of microRNAs (miRs) in LIMA during
OPCABG. Expression change of miR-221 in both groups
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stenosis and the quality of the distal vascular bed, the
formation of atherosclerosis [24] which is caused by
inflammation and reduced NO production in the vascular
endothelium also plays a key role in the restenosis of
LIMA. eNOS which has been proposed as a major factor
involved in inflammatory process [25] is expressed mainly
in endothelial cells and involved in regulating vascular
function. Meanwhile, E-selectin is essential for the expres-
sion of inflammatory genes and endothelium pathology
[26]. In this study, by quantitative RT-PCR and WB, our
results indicated that eNOS was up-regulated and
E-selectin mRNA was down-regulated in LIMA in group
Iso. Ge et al. [27] also reported that NO functions as both
a trigger and a mediator of cardioprotection produced by

iso post-conditioning. Smul et al. [28] showed that early
preconditioning with desflurane produces a marked re-
duction in infarct size in an in vivo myocardial infarction
rabbit model by desflurane-induced NOS activation. In
addition, Huang et al. [29] reported that myocardial tissue
eNOS protein expression in a joint isoflurane and propo-
fol anaesthesia was significantly higher than those in the
control group. Although regulatory effects of anesthetics
on NO/eNOS are demonstrated by experimental data
[30], the detailed regulatory mechanisms are still not fully
understood. Here, by our study results, we hypothesized
that isoflurane exposure inhibits the increase in miR-221
expression in LIMA, which attenuates inflammatory in
LIMA. The exactly cause-effect relationship in our

Fig. 3 Expression of NO-associated genes. (a) Expression change of NOS3 mRNA. (b) Expression change of eNOS protein

Fig. 4 Expression of inflammatory-associated genes. (a, b) Expression change of E-selectin and VCAM-1 mRNA. (c) Expression change of IκB-a mRNA
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hypothesis was not fully supported by our findings. Fur-
ther detailed regulatory mechanisms studies are thus
needed.
Our another finding was that the expression of RhoA/

ROK was down-regulated after isoflurane preconditioning.
RhoA/ROK-kinase signaling pathways which is a major
cellular target for regulating Ca2+ sensitivity of agonist-in-
duced contraction [31] is a most important contraction
mechanisms of artery smooth muscle cell, the activation of
RhoA leads to stimulation of ROK that can favor myosin
light chain (MLC) phosphorylation, actin-myosin inter-
action and cell contraction [32]. However, whether miRs
regulate expression of RhoA/ROK in arterial grafts induced
by isoflurane exposure remain unknown. Yang et al. [33]
demonstrated that Iso inhibit KCl-induced PI3K-C2α-par-
ticipation, Rho kinase-mediated MLC phosphorylation, and
vasoconstriction in rat aortic smooth muscle. Here, our
data indicated that isoflurane preconditioning supressed
the expression of RhoA/ROK and activated endothelial
eNOS, resulting in vasodilation of LIMA, so we demon-
strated that isoflurane preconditioning may be very useful
for reperfusion of ischemic myocardium after revasculariza-
tion for left anterior descending coronary artery. However,
cellular mechanistic experiments may be needed in the
futuer.
The limitations of the current study are discussed as

follows. First, in this study, experimental time under
anesthesia was only 1 h after isoflurane exposure. There is a
need to verify time-dependent changes of miRs and
mRNAs expression. Second, the tissue samples were only
taken from LIMA. Given the difference among great saphe-
nous vein, radial artery and LIMA, our results in LIMA
may be different with other grafting vessels. However, graft-
ing vessel with LIMA to the left anterior descending coron-
ary artery plays a most important role in the long-term
prognosis of OPCABG surgery. Our results at least provide

some insight into how isoflurane preconditioning reduces
inflammation and relieves vasospasm in LIMA via
miR-related pathways.

Conclusions
In conclusion, the results obtained in our study revealed
that isoflurane preconditioning applied during OPCABG
surgery indicated cardioprotective effects, which can be
partly explained by its ability to inhibit inflammatory
responses and vasoconstriction in LIMA grafting. Further,
isoflurane preconditioning altered the expression of miR-
221, which may help better understand the underlying
mechanisms of isoflurane preconditioning.
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