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Background/Aims: The storage amount of liver glycogen could affect the liver fibrosis
assessment made by MRI-based methods. However, it remained unclear whether
glycogen amount could bias the estimation of liver fat content by proton density fat
fraction. In this study, we aimed to investigate whether glycogen metabolism gene variants
could contribute to the bias of PDFF by genetic association.

Methods: We conducted an association study of the glycogen metabolism genes based
on the PDFF data of 11,129 participants in the UK Biobank. The effect of the SNPs in these
genes on non-alcoholic fatty liver disease was estimated by ameta-analysis of the available
NAFLD case-control studies.

Results: We identified significant associations of the SNPs near the genes encoding
glycogen phosphorylase (PYGM and PYGL) and synthase (GYS2) with PDFF (FDR-
corrected p value < 0.05). The genes encoding the regulatory proteins of
glycogenolysis (PHKB, CALM2/3), glucose transporter (SLC2A1), and glucose kinase
(GCK) were also associated with PDFF. The SNP rs5402 of SLC2A2 and rs547066 of
PYGM were associated with NAFLD (p < 0.05) with others being insignificant. Except for
the PYGM gene, the PDFF-associated SNPs showed no associations with NAFLD. In
addition, the burden tests of rare variants in these genes were not significant after FDR
correction.

Conclusion: Liver glycogenmetabolism genes associated with PDFFwere not associated
with NAFLD, which implicated a potential bias effect of glycogen storage on the
quantification of liver fat content by PDFF.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is the condition in
which liver fat content exceeds 5% of liver weight in the absence
of excessive alcohol consumption, viral infection, or chemical or
physical liver damages (Mundi et al., 2020). Currently, liver
biopsy is the gold standard for the diagnosis of NAFLD.
Nonetheless, the need for noninvasive methods to identify
liver steatosis has been emerging to overcome the
shortcomings of liver biopsy, including bleeding and
complications, inter-observation variability.

Magnetic resonance imaging proton density fat fraction (MRI-
PDFF) is a quantitative imaging biomarker and is an accurate and
highly sensitive method for measuring the steatosis of the whole
liver. It can accurately detect microscopic steatosis as small as 5%
(Schwimmer et al., 2005; Le et al., 2012; Reeder et al., 2012; Reeder
2013). MRI-PDFF is increasingly used in the diagnosis of fatty
liver diseases and in clinical trials to evaluate the drug efficacy.
Previous studies have shown that hepatic glycogen content could
affect T1 MRI mapping, which in theory could induce errors in
PDFF measurements (Kramer et al., 2017; Mozes et al., 2021). At
present, direct quantification of liver glycogen is possible through
PAS staining or biochemical measurements of liver biopsy, or
13C-MRS in vivo. However, the evidence for the impact of hepatic
glycogen content on MRI-PDFF measurements has not been
demonstrated.

Here, we investigated whether glycogen metabolism genes
could potentially affect the liver fat content assessed by
imaging-based methods using genetic association studies of
PDFF and NAFLD. With this genetic evidence, our study will
be informative for the rational of considering glycogen storage
when developing novel imaging-based diagnostic methods or the
clinical interpretation of current PDFF measurements.

MATERIALS AND METHODS

The UK Biobank Cohort
The UK Biobank is a prospective cohort study that recruited more
than 500,000 participants aged 37–73 (99.5% of people aged
40–69) from all over the United Kingdom from 2006 to 2010.
In 2014, approximately 45,000 participants accepted the UK
Biobank’s invitation for a visit of abdominal magnetic
resonance imaging. Although the invitation was not
determined by medical information, the MRI exclusion criteria
(such as metal or electronic implants, surgery 6 weeks before the
appointment, severe hearing, or respiratory dysfunction) may
lead to a slightly healthy cohort. The UK Biobank has been
approved by the Northwest Multicenter Research Ethics
Committee (reference number: 11/NW/0382) and obtained
written informed consent from all the participants before
the study.

Proton Density Fat Fraction Measurement
Dixon sequences were acquired using Siemens 1.5T
MAGNETOM Aera at the dedicated UK Biobank imaging
center (Wilman et al., 2017). PDFF from DIXON sequence

were calculated using LiverMultiScan (Perspectum Diagnostics,
Oxford, United Kingdom). The multi-gradient GRE was used to
scan the transverse section of the liver center above the hilum
using the extended 3D DIXON sequence with acquisition
parameters of 2.5 mm voxel size, 6 mm slice thickness, 20° flip
angle (FA), 27 ms repetition time (TR), and two signal averages.
The second, fourth, and sixth echoes were used to construct the
PDFF map. Three 15 mm diameter circular regions of interest
(ROI) were selected by trained professionals to cover the liver
parenchyma and avoid blood vessels or bile ducts in the PDFF
map. The reported PDFF was calculated based on the average
density of the three ROIs from the fat and water phases, using the
liver fat percentage formula: fat/(water + fat). PDFF≥5% was
defined as fatty liver disease. In total, we have the PDFF
measurements for 16,307 individuals.

Genetic Data and QC
The genetic data and quality control procedure have been
described elsewhere (Bycroft et al., 2018). In brief, the
genomic DNA was extracted from peripheral blood and
genotyped by Applied Biosystems UK Biobank Axiom Array
(N = 14,328) and UK BiLEVE Axiom Array (N = 1,517).
Individuals whose genotype missing rate >5%), heterogeneity
rate >3 SD, or self-reported sexmismatched the one inferred from
the genotypes were excluded. The included participants were of
European ancestry. The genotypes were imputed off the
combined haplotype reference of the UK10K and 1000
genome cosmopolitan panels. Our SNP association analysis
was restricted to the genetic variations with minor allele
frequency (MAF) > 1% and imputation quality score> 0.7.
The genetic principal components were calculated from the
genotypes of the UK Biobank array data (Abraham and
Inouye 2014)

Candidate Gene and SNP Selection
Human genes encoding the enzymes for glycogenesis and
glycogenolysis, as well as the direct regulator factors of these
reversible reactions, were selected as the candidate genes
according to the pathway map of Kyoto Encyclopedia of
Genes and Genomes (https://www.kegg.jp). For the purpose of
this study, we restricted the candidate genes in autosomes, which
resulted in the removal of PHKA1 and PHKA2. Both of these
genes are located in chromosome X. In total, we obtained 24
genes of which common SNPs and rare SNPs located in the gene
body, including the 5′ UTR and 3’ UTR, were included in our
linear mixed model and burden test, respectively
(Supplementary Table S1).

Association Test of Common Variants
We conducted the association analysis in a linear mixed model
with GCTA (Yang et al., 2011), which takes into account the
population structure and kinship. The kinship matrix was
calculated using common genetic variants (MAF >0.01%) that
passed quality control in all 106 batches and existed in both
genotyping arrays. We excluded the participants with excessive
alcohol consumption (>40 g per day) or liver damaging drug use
to avoid the confounding from nongenetic factors. The PDFF was
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inverse-normal transformed to a standard normal distribution
(Figure 1). We further adjusted sex, age, BMI, and PC1-5 as the
covariates in the model. False discovery rate (FDR) was adopted
for the multiple tests correction. FDR p value < 0.05 was
considered as the significant association. Pleotropic effects of
the genetic variants were obtained from the NHGRI-EBI GWAS
catalog with proxy SNPs (r2 > 0.6) or the T2D Knowledge Portal
(https://t2d.hugeamp.org/).

For the purpose of picking index SNPs, the common SNPs
were clumped by linkage disequilibrium (LD) calculated from
1000 Genomes GBR panel (r2 > 0.1, window size of 1 Mb).

Gene-Based Burden Tests of Rare Variants
In order to study whether the rare genetic variants of glycogen
metabolism genes were associated with liver fat fraction, we tested
the rare variants (MAF < 0.01) burden in our candidate genes.
The rare variants were genotyped by whole exome sequencing
using the updated functional equivalence (FE) scheme (called the
OQFE scheme). Of the 200 thousand participants who were
sequenced, 100,000 variants were observed in the target region
covering around 39 million bases. These included 8,086,176
SNPs, 370,958 INDELs, and 1,596,984 multiple allelic variants,
with 95.6% of the genetic variants being covered 20 times
or more.

Burden tests were evaluated by SAIGE-GENE (Zhou W et al.,
2020). Three algorithms were employed, including the tradition
burden test, SKAT, which aggregates the individual score test
statistics of SNPs in a SNP set and efficiently computes SNP-set
level p-values (https://www.hsph.harvard.edu/skat/). The
Bonferroni corrected p value threshold p < 0.05 was
considered the significant association with PDFF.

Meta-Analysis of Non-Alcoholic Fatty Liver
Disease GWAS
We performed a meta-analysis of the summary statistics of SNPs
in glycogen metabolism genes using a fixed-effect inverse
variance weighted model. The summary statistics were from
four independent GWAS of NAFLD in the populations of
European ancestry, included three published NAFLD GWAS
(Namjou et al., 2019; Anstee et al., 2020; Liu et al., 2020) and
the FinnGen NAFLD GWAS, covering 4,362 NAFLD cases and
602,500 controls. The diagnosis of NAFLD was mostly made
using liver biopsy, ultrasound, or computerized tomography. The
meta-analysis was conducted using METAL software (Willer
et al., 2010).

RESULTS

Sample Characteristics
Of the 16,307 participants with PDFF data, 14,056 were of
European ancestry. Of these, we excluded 320 participants
with hepatic virus infection, 32 participants with liver
damaging drug use, and 1,989 participants with excessive
alcohol consumption. Finally, 11,715 participants were
available for further analysis. Of these, 45.9% were males

(Table 1). The average age was 64.3 years (SD = 7.5 years),
with an average BMI of 26.5±4.4 kg/m2. The average PDFF
was 4.35 (SD = 4.04). The average glucose was 4.98 mmol/L
(SD = 0.97 mmol/L) and the average triglycerides was 1.66 mmol/
L (SD = 0.95 mmol/L). Using the cutoff of 5%, there were 2,466
NAFLD patients, accounting for 21% of the total. The T2D
prevalence was 3.5% (414) lower than the population prevalence.

Common SNP Association Analysis
In total, 11,129 participants with valid genetic data were included
in the association tests. We obtained 2,027 common SNPs in the
candidate genes from the imputation data (Supplementary Table
S2). After LD-based clumping, 30 tagSNPs were selected
(Table 2). Nine of these SNPs were significantly associated
with PDFF (FDR corrected p value < 0.05). These included
genes encoding the subunits of enzymes catalyze the reversible
conversion between phosphorylated glucose and glycogen,
i.e., GYS2 (rs61928672, beta = −0.04, p = 0.006 and rs187630,
beta = 0.037, p = 0.004), PYGM (rs547066, beta = −0.05, p =
0.013), and PYGL (rs1953873, beta = −0.04, p = 0.004), and genes
encoding the glucose transporter 1 and 2, i.e., SLC2A1
(rs2229682, beta = −0.04, p = 0.021). Moreover, the glucose
kinase (GCK) is also associated with PDFF (rs77888691, beta =
0.075, p = 0.021). Glucose 6-phosphatase (G6PC, G6PC2/3) was
not associated with PDFF. The genes encoding the regulatory
factors, including the β subunits of phosphorylase kinase
(PHKB) and calmodulin (CALM2/3), were also associated
with PDFF.

The PDFF-associated SNPs were further tested for the
association with NAFLD through the meta-analysis of
independent studies (Table 2 and Figure 2). Of the nine
PDFF-associated SNPs in our study, rs187431816 in PHKB
gene was not available in the meta-analyzed result. The proxy
SNP rs7499413 (r2 = 0.32, D’ = 1.0 with rs187431816) was not
associated with NAFLD (p = 0.45) in the meta-analysis. Of the
remaining eight SNPs, only rs547066 in PYGM gene was
associated with NAFLD (p = 0.029, Figure 2E). Other SNPs
were not significantly associated with NAFLD (p > 0.05).

TABLE 1 | Baseline characteristics of the study population.

Characteristics —

N 11,715
Sex (male, %) 5381, 45.9
Age (years) 64.3±7.5
BMI (kg/m2) 26.5±4.4
Waist-to-hip ratio 0.87±0.09
PDFF (%) 4.35±4.04
NAFLD (N, %) 2466, 21
T2D (N, %) 414, 3.5
Serum glucose (mmol/L) 4.98±0.97
Triglyceride (mmol/L) 1.66±0.95

Steatosis (N, %) —

0 8887,75.86
1 2822,24.09
2 6,0.05
3 0,0

Age, BMI, waist-to-hip ratio, PDFF, serum glucose, and triglyceride are given in
mean ± SD.
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Pleotropic Effects of the Associated Genes
The glycogen SNPs associated with PDFF were reported to be
associated with the serum level of alkaline phosphatase (PHKB)
and gamma-glutamyl transferase (GYS2). Others were associated
with glycemic or insulinemic traits, including fasting glucose,
glycated hemoglobin, fasting insulin, or type 2 diabetes. PYGM
and GCK were also associated with adiposity traits, e.g., birth
weight and BMI (Table 3). In particular, GCK and GYS2 were
associated with T2D and fasting insulin level, respectively. It is
worth noting that these associations were proxied by SNPs with
weak LDwith the glycogen SNPs. Hence, we sought to replicate the
association with T2D and fasting insulin level using the meta-
analyzed results from cohorts that are available in T2D Knowledge
Portal. The GYS2 SNP rs187630 was associated with fasting insulin
(p = 1.16 × 10−5), while GCK SNP rs77888691 was not associated
with T2D (Supplementary Table S3).

Rare Variant Burden Test
The rare SNPs of most glycogen metabolism genes were not
associated with PDFF after Bonferroni correction (corrected p
value > 0.05, Table 4). At the nominal significance level, SCL2A1,
encoding membrane glucose transporter 1, was associated with
PDFF (SKAT-O p value = 0.005). This association was also
supported by the sensitivity analysis made by SKAT and
traditional burden test (p value = 0.039 and 0.003, respectively).

TABLE 2 | Associations of common SNPs in glycogen metabolism genes with PDFF and NAFLD.

SNP Chr POS EA OA EAF Gene BETA SE P P_adj NAFLD_BETA NAFLD_P

rs2229682 1 43,395,635 C T 0.79 SLC2A1 0.04 0.014 0.004 0.021 −0.025 0.340
rs563702873 2 47,402,220 G I 0.28 CALM2 0.037 0.013 0.005 0.021 0.154 0.871
rs5402 3 170,727,739 A T 0.12 SLC2A2 0.017 0.018 0.324 0.374 0.135 2.953E-04
rs28720688 3 170,729,129 A G 0.84 SLC2A2 0.005 0.015 0.744 0.744 −0.002 0.950
rs77888691 7 44,231,570 G T 0.05 GCK 0.075 0.026 0.004 0.021 −0.086 0.100
rs10904517 10 5,541,183 T C 0.34 CALML5 0.018 0.012 0.145 0.218 −0.013 0.571
rs1142825 10 5,567,366 G A 0.76 CALML3 0.013 0.013 0.311 0.374 −0.010 0.692
rs547066 11 64,523,494 C A 0.92 PYGM 0.051 0.021 0.013 0.030 −0.091 0.029
rs61928672 12 21,700,544 G A 0.85 GYS2 0.044 0.016 0.006 0.023 0.027 0.440
rs187630 12 21,746,567 T C 0.29 GYS2 0.037 0.013 0.004 0.021 −0.001 0.941
rs1953873 14 51,392,833 T C 0.81 PYGL 0.041 0.014 0.004 0.021 −0.010 0.772
rs35301423 15 68,487,271 T I 0.54 CALML4 0.014 0.012 0.238 0.325 −0.024 0.601
rs187431816 16 47,555,554 G A 0.98 PHKB 0.121 0.047 0.01 0.025 NA NA
rs2593595 17 41,056,245 G A 0.19 G6PC 0.03 0.015 0.042 0.084 0.004 0.893
rs112003011 17 41,056,283 T C 0.99 G6PC 0.027 0.048 0.581 0.601 0.244 0.056
rs2229611 17 41,063,466 T C 0.21 G6PC 0.024 0.014 0.084 0.140 0.013 0.591
rs228758 17 42,148,205 C T 0.45 G6PC3 0.022 0.011 0.054 0.101 0.031 0.240
rs79646099 19 14,209,826 T C 0.06 PRKACA 0.016 0.024 0.504 0.560 −0.070 0.201
rs116889014 19 14,225,580 T G 0.97 PRKACA 0.057 0.032 0.077 0.136 −0.102 0.340
rs56765950 19 47,108,183 C T 0.36 CALM3 0.019 0.012 0.119 0.188 0.021 0.449
rs10405893 19 47,113,138 G A 0.89 CALM3 0.043 0.018 0.019 0.041 0.005 0.891
rs62125989 19 49,475,876 C T 0.69 GYS1 0.013 0.012 0.302 0.374 −0.004 0.902
rs7409311 19 49,492,822 G A 0.93 GYS1 0.022 0.022 0.316 0.374 −0.057 0.209
rs140496340 19 49,495,744 C I 0.44 GYS1 0.006 0.012 0.577 0.601 NA NA

EA, effect allele; OA, other allele; EAF, effect allele frequency; BETA, SE, and P, the association summary statistics with PDFF; P_adj, the FDR, corrected P; NA, not available.
The FDR, corrected P or NAFLD p values less than 0.05 were highlighted in bold.

FIGURE 1 | The distribution of PDFF. Red line represents 5% of PDFF.
MRI-PDFF < 5% are Non-NAFLD participants and MRI-PDFF ≥ 5% are
defined as NAFLD patients.
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DISCUSSION

In this study, we provided the genetic evidence that liver glycogen
storage could bias the liver fat assessment made by imaging-based
methods, i.e., PDFF. We discovered that glycogen metabolism

genes were associated with liver fat content as measured by PDFF.
We also demonstrated that these genes, except for PYGM, were
not associated with NAFLD. PYGM is a glycogen phosphorylase
primarily expressed in skeletal muscle, while PYGL which was
associated with PDFF, is the liver form of glycogen

FIGURE 2 | The forest plots of the meta-analysis of NAFLD in glycogen SNPs associated with PDFF. Figure (A) presents rs10405893; (B) rs187630; (C)
rs1953873; (D) rs2229682; (E) rs547066; (F) rs61928672; (G) rs77888691; (H) rs563702873; and (I) rs7499413.

TABLE 3 | Pleotropic effects of PDFF associated SNPs on liver function or metabolic traits.

SNP Gene GWAS_Trait Proxy_SNP R2 D9 P

rs187431816 PHKB ALP rs73536729 0.27 1.00 8.00E-12
rs187431816 PHKB ALP rs111617804 0.32 1.00 9.00E-09
rs187630 GYS2 GGT rs59857578 0.34 0.69 5.00E-20
rs187630 GYS2 Fasting insulin rs6487237 0.35 0.73 5.00E-09
rs2229682 SLC2A1 Fasting glucose rs841572 0.15 0.65 5.00E-07
rs547066 PYGM BMI rs576076 0.23 0.97 2.00E-12
rs77888691 GCK Birth weight rs138715366 0.18 1.00 4.00E-61
rs77888691 GCK HbA1C rs2971681 0.16 0.64 1.00E-26
rs77888691 GCK Fasting glucose rs10259649 0.13 0.72 2.00E-15
rs77888691 GCK Type 2 diabetes rs2908274 0.16 0.64 5.00E-11

ALP, alkaline phosphatase; GGT, gamma-glutamyl transferase; HbA1C, Glycated hemoglobin.
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phosphorylase. Hence, our study showed that genetic variants in
genes functional relevant to liver glycogen storage could bias the
imaging-based liver fat quantification, while not actually
associated with the increased risk of excessive live fat
deposition.

Glycogen metabolism in the liver involved a pair of reversible
reactions which is catalyzed by distinct enzymes. Glycogen
synthase 1 and 2 (encoded by GYS1 and GYS2) are
responsible for adding glucose to the terminal of the glycogen
molecule, while glycogen phosphorylase L and M (PYGL and
PYGM) can cleave a glucose molecule from glycogen. PYGL is
primarily expressed in the liver. The regulatory proteins of this
reversible reaction also play a role in the amount of glycogen
stored in the liver. Phosphorylase kinase (PHK) and calmodulin
could activate glycogen phosphorylases, while protein kinase A is
responsible for the activation of PHK and deactivation of
glycogen synthases. Moreover, the intracellular availability of
glucose also affects the glycogen storage in liver. This is
usually managed by glucose transporters (SLC2A1 and
SLC2A2), glucose kinase (GCK), and Glucose-6-phosphatase.
The latter two catalyze the reversible reaction that converts
between D-glucose and D-glucose 6-phosphate.

Insulin resistance is frequently seen in patients of
NAFLD (Watt et al., 2019). Our results showed that
GYS2 genetic variants were associated with both PDFF
and fasting insulin. In fact, it has been demonstrated that
the genetic disruption of Gys2 in mice induced hepatic
glycogen depletion and liver-specific insulin resistance
(Irimia et al., 2017). Therefore, the alteration in hepatic
glycogen content related to GYS2 genetic variants may
induce the departure of PDFF measurement from the true

liver fat content. In addition, the remaining PDFF-
associated SNPs were not associated with fasting insulin.
This is consistent with our major finding that these genetic
variants were not associated with NAFLD.

Glycogen storage in the body is bonded to a large amount of
water with a mass ratio of 1:3. MRI radio frequency pulse can
form the magnetic coupling between the protons of a glycogen
and the nearby water molecules (van Zijl et al., 2007). This
magnetic coupling weakens the water signal, which in turn
results in exaggerated liver fat measurements. Currently, 13C
magnetic resonance spectroscopy is a popular glycogen
measurement, but a special equipment usually not available
in the clinic is required (Gruetter et al., 1994). On MRI,
glycogen imaging with chemical exchange saturation transfer
imaging (glycoCEST) and nuclear Overhauser enhancement
(glycoNOE) can be used to map liver glycogen content
indirectly (van Zijl et al., 2007; Zhou Y et al., 2020). However,
the difficulty lies in how to decompose the signals of glycogen
molecules from the total water signal, since the chemical exchange
between the hydroxyl protons of glycogen seems to be inevitable.
From a genetics point of view, we demonstrated that the genetic
variants of glycogen metabolism genes could bring bias to PDFF,
which highlighted the relevance of correcting PDFF for liver
glycogen content without the decomposition of glycogen signals
from the total.

Our study has limitations. First of all, the participants included
in our study and the meta-analysis of NAFLD were mostly of
European ancestry. Whether our conclusion can be applied to
non-European cohorts remained to be further elucidated. Second,
it is possible that the negative associations in our results are
attributed to the limited statistical power in NAFLD

TABLE 4 | Burden test of rare SNPs in glycogen metabolism pathway.

Gene N_marker SKATO_P SKAT_P Burden_P Burden_BETA Burden_SE

CALM1 10 1.000 0.973 1.000 2.95E-05 Inf
CALM2 16 0.880 0.724 1.000 6.38E-05 Inf
CALM3 13 1.000 1.000 0.890 −0.002 0.016
CALML3 2 0.757 0.637 0.612 −0.014 0.027
CALML4 8 0.545 0.365 0.520 −0.008 0.012
CALML5 7 0.108 0.073 0.536 −0.010 0.016
CALML6 40 0.073 0.042 0.122 0.015 0.010
G6PC 19 0.673 0.787 0.453 0.011 0.015
G6PC2 19 0.052 0.028 0.785 −0.002 0.009
G6PC3 6 0.170 0.523 0.110 −0.029 0.018
GCK 12 1.000 0.889 0.927 −0.001 0.011
GYS1 63 0.510 0.318 0.662 0.004 0.008
GYS2 32 0.300 0.178 0.366 0.011 0.012
PHKB 78 0.172 0.601 0.095 0.009 0.006
PHKG1 11 0.346 0.219 0.787 0.004 0.015
PHKG2 30 0.646 0.997 0.439 −0.008 0.010
PRKACA 15 0.672 0.834 0.456 −0.009 0.012
PRKACB 20 0.626 0.920 0.409 −0.009 0.011
PYGB 91 0.844 0.620 0.854 −0.001 0.007
PYGL 54 0.771 0.547 0.632 0.003 0.006
PYGM 80 0.906 0.727 0.901 0.001 0.005
SLC2A1 36 0.005 0.039 0.003 0.032 0.011
SLC2A2 23 0.503 0.325 0.605 0.005 0.009

p values less than 0.05 are highlighted in bold. N_marker, number of rare SNPs, included in the test; SKATO_P, the p value of SKAT-O, algorithm; SKAT_P, the p value of SKAT, algorithm;
Burden_P, the p value of the traditional burden test. p values less than 0.05 were highlighted in bold
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meta-analysis. Our conclusion should be tested in studies with a
larger sample size.

CONCLUSION

The common genetic variants in genes related to liver glycogenesis
and glycogenolysis were associated with liver PDFF, while they
were not associated with the risk of NAFLD. This implicated a bias
effect caused by liver glycogen when quantifying the liver fat using
MRI. A MRI-based liver fat quantification method simultaneously
accounting for liver glycogen storage could lead to a more accurate
map of liver fat content.
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