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Abstract: Alzheimer’s disease (AD) affects tens of millions of people worldwide. Despite the ad-
vances in understanding the disease, there is an increased urgency for pharmacological approaches
able of impacting its onset and progression. With a multifactorial nature, high incidence and preva-
lence in later years of life, there is growing evidence highlighting a relationship between metabolic
dysfunction related to diabetes and subject’s susceptibility to develop AD. The link seems so solid
that sometimes AD and type 3 diabetes are used interchangeably. A candidate for a shared pathogenic
mechanism linking these conditions is chronically-activated mechanistic target of rapamycin (mTOR).
Chronic activation of unrestrained mTOR could be responsible for sustaining metabolic dysfunction
that causes the breakdown of the blood-brain barrier, tau hyperphosphorylation and senile plaques
formation in AD. It has been suggested that inhibition of sodium glucose cotransporter 2 (SGLT2)
mediated by constant glucose loss, may restore mTOR cycle via nutrient-driven, preventing or even
decreasing the AD progression. Currently, there is an unmet need for further research insight into
molecular mechanisms that drive the onset and AD advancement as well as an increase in efforts
to expand the testing of potential therapeutic strategies aimed to counteract disease progression in
order to structure effective therapies.

Keywords: Alzheimer’s disease; sodium glucose cotransporter 2 inhibition; mechanistic target of
rapamycin; metabolic dysfunction hypothesis; diabetes

1. Introduction

Alzheimer’s disease (AD), the leading cause of dementia in aging people, is character-
ized by a cognitive decline that involves memory, orientation, judgment, communication
and reasoning, and is a major threat to people’s health and quality of life worldwide [1,2].
According to the World Health Organization, over 47 million people are afflicted by AD
globally, and this number is expected to reach almost 76 million by 2030 and about 115 mil-
lion by 2050 [3]. The incidence of AD continues to rise steadily; as aging demographics
of the global human population and life expectancy are increasing, leading to a heavy
economic and societal burden. Undoubtedly, extensive research into the pathogenesis
and AD therapies continues to stimulate in-depth efforts by academia, pharmaceutical
companies and government attention to finding curative compounds or at least slow the
disease progression.
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To date, with a multifactorial nature, the ultimate cause of AD remains elusive, and is
generally considered to be related to genetic, neuroendocrine, biochemical, environmental,
and immune factors based on aging [4,5]. In recent decades, several hypotheses have been
designed to explain the AD pathogenesis mechanisms, such as amyloid-β (Aβ) deposition
as the core of neuritic plaques, tau protein hyperphosphorylation as the key constituent
of neurofibrillary tangles, degeneration of cholinergic neurons, or death [2,6–9]. Figure 1
highlights some of the most studied hypotheses for AD, including Aβ aggregation [10–12],
cholinergic dysfunction [13,14], tau aggregation [15,16], oxidative stress [17,18], inflamma-
tion [19–21]. Challenges and future prospects include extensive testing of new hypotheses
such as endo-lysosomal [22–24], mitochondrial [25–28] and metabolic dysfunctions [29,30].
It remains to be determined whether the root cause of AD is the Aβ aggregates formation
and accretion between neurons or tau neurofibrillary tangle developments within neurons
or the cumulative end-effects of other causal epigenetic and/or genetic processes, or a
fusion of both [10,31–33]. In addition, growing evidence suggests that endo-lysosomal,
mitochondrial and metabolic dysfunction display a critical role in the multiple memory and
attention processes of the elderly and are viable early drivers in the onset and progression
of AD [34–36]. Thus, it is more and more evident that there is a solid interplay between
metabolic dysfunction related to metabolic syndrome, diabetes, obesity and patient’s sus-
ceptibility to AD development [37,38]. From the strong relationship between AD and the
pathological conditions of diabetes mellitus, AD can be referred to as “diabetes type 3” or
“brain diabetes” [39,40].

Figure 1. Alzheimer’s disease is a neurodegenerative disease that involves a multitude of factors. Given the complexity of
the human brain, the lack of effective research tools and reasonable animal models, the detailed pathophysiology of the
disease remains unclear. Based on multifaceted nature of AD, there have been proposed various hypotheses, including Aβ

aggregation, cholinergic dysfunction, tau aggregation, oxidative stress, inflammation, etc. Challenges and future prospects
include extensive testing of new hypotheses such as endo-lysosomal, mitochondrial and metabolic dysfunctions to attack
the disease from different angles for the effective development of an early diagnosis and successful drugs for therapies.
NTF, neurofibrillary tangle; Ach, acetylcholine.
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Overwhelming results suggest that there are early abnormalities in cerebral glu-
cose metabolism in people with AD [41,42], involving deficiencies in glycolysis and
glucose transporters [43,44]. A candidate for a shared pathogenic mechanism linking
these metabolically-driven conditions is represented by a chronic mechanistic target of
rapamycin (mTOR) signaling activation [45]. Chronic unrestrained mTOR activation may
be behind AD lysosomal, mitochondrial and metabolic alteration, causing the failure of the
blood-brain barrier (BBB) through endothelial cell dysfunction; as well as leading to tau
hyperphosphorylation, amyloid plaques formation and aggregation in the brain [38,46].
Inhibition of sodium glucose cotransporter 2 (SGLT2), facilitated by a constant glucose loss,
is thought to restore the mTOR cycle via nutrient-driven, nocturnal periods of transient
mTOR inhibition (catabolism) interferes by transient mTOR activation (anabolism) during
daily accompanying nutrition. Thus, a flexible dynamic of mTOR is reinstated, preventing
or arresting AD progression. The current paper aims to discuss the possible implications
of SGLT2 inhibition on chronic activation of mTOR as a common pathogenic mechanism
between AD and diabetes, according to the recent research findings.

2. Pharmacological Approaches Able of Impacting Alzheimer’s Disease and
Its Progression

Given the poor epidemiological forecast and the increasing number of experimental
and clinical evidence that send the manifestations of AD beyond the brain, there is a major
research interest in expanding testing of new hypotheses to attack the disease from different
angles to provide insights into novel therapeutic strategies. Three such hypotheses are
diabetes type 3, the mitochondrial cascade hypothesis and the endo-lysosomal dysfunc-
tion hypothesis. They provide a basis for therapeutic approaches to restore AD-related
metabolic, mitochondrial and endo-lysosomal dysfunctions; changes that occur early in
the progression of the disease in relation to tau and Aβ deposition, which means that they
are viable factors of AD development [34,35].

In AD patients, factors related to mitochondrial functions have been severely com-
promised. Such factors include mitochondrial morphology, oxidative phosphorylation,
Ca2+ buffering, mitochondrial biogenesis and transport along the neuronal axon. These
processes could lead to negative consequences for neurons as well as for the whole structure
of the brain. Mitochondria are organelles that are defined as the powerhouse of the cell due
to the fact that cells in the human body rely on them to provide energy for vital functions.
Neurons depend on the presence of mitochondria especially at the synapses where these
organelles produce adenosine triphosphate (ATP) while also buffering calcium (Ca2+) ion
concentration. Thus, the high number of mitochondria located in the synaptic area is
justified, compared to other parts of neurons [27,47]. The activity of enzymes involved
in mitochondrial energy production is decreased in AD brains, thus contributing to the
compromise of the mitochondrial ATP production. In line with this observation is the
fact that mild cognitive impairment which is one of the early stages in AD chronology is
associated with an increased level of oxidative stress markers and a decreased level of an-
tioxidants in the brain and peripheral compartments [27,48]. This suggests there is a strong
connection between oxidative stress and mitochondrial dysfunction. The oxidation of ATP
synthase, a mitochondrial enzyme involved in oxidative phosphorylation has been found
in isolated lymphocytes from AD peripheral blood as well as in AD brains, thus explaining
the compromised activity of the ATP synthase and the reduction of ATP levels in AD.
Another mitochondrial factor that is modified in AD is related to the dynamics of the mito-
chondria and processes such as fusion and fission. The unbalance of these processes led to
compromised morphology and distribution of the mitochondria in neurons, fragmented
mitochondria being observed in fibroblasts and brains from AD patients [27]. Due to their
involvement in production of reactive oxygen species (ROS), mitochondria developed a
system that can cope with damage done by ROS to its contents. The degradation at the
organelle level is realized through a process called mitophagy. Studies have shown that
inadequate mitophagy activity in eliminating increased number of damaged mitochondria



Biomedicines 2021, 9, 576 4 of 19

led to disturbance in mitochondrial homeostasis, thus showing the involvement of the
mitophagy process in AD [26].

The endo-lysosomal dysfunction hypothesis refers to the endo-lysosomal and au-
tophagy system which is involved in maintaining protein homeostasis in cells. This system
consists of endosomes, retromers, autophagosomes and lysosomes, each with its specific
set of functions. One of AD’s vulnerable brain regions is the hippocampus. It is here that
different factors related to the endo-lysosomal and autophagy system have been reported:
increased number of endosomal compartments, abnormal accumulation of autophagic vac-
uoles and altered expression levels of protein degradation key regulators [49]. Abnormal
functions of the endo-lysosomal and autophagic networks are common in AD due to their
implication in the homeostasis of Aβ and tau [50]. Lysosomes are involved in degrading
and recycling macromolecules, thus leading to generation of nutrients. They are the last
step to degrading organelles, macromolecules or protein aggregates by the endocytic and
autophagic pathway [51,52]. Being one of the main mechanisms of cellular waste removal,
it is expected that genes that facilitate lysosomal degradation are linked to a broad number
of diseases and factors such as enzymatic dysfunction and positioning regarding lysosomes
are involved in neurodegenerative disorders. A common histopathological feature of AD
is swollen, dystrophic neurites, with lysosomes accumulated within the axonal swellings,
these swellings being located in regions proximal to Aβ plaques in patient brains [51,53,54].
Studies suggest that amyloid accumulation can be actively determined by abnormal lyso-
some axonal transport. Impaired lysosomal positioning may be a contributing factor in AD,
this being confirmed by evidence of accumulation of axonal lysosomes, increased amyloid
plaque burden and lysosome dysfunction [51]. Disruption of the endo-lysosomal system
is one of the earliest detectable histopathological features of AD, abnormal transport and
positioning of lysosomes being contributors to the pathogenesis of the disease [55].

The third hypothesis refers to AD as “diabetes type 3” due to the implications of
insulin resistance within the brain and its impact on neuro-cognition, thus contributing to
neurodegenerative diseases [56,57]. It seems that the metabolic dysfunction that character-
izes obesity, type 2 diabetes mellitus and metabolic syndrome determines susceptibility
for individuals to develop AD [58,59]. To understand the relationship between diabetes
and neurodegenerative diseases it is important to know the role of energy homeostasis
in diabetes. Differentiated neurons do not have the ability to regenerate. Lack of ATP
moieties, energy crisis or oxidative stress will lead to their death or degeneration, causing
neurodegenerative diseases [60]. Another important aspect is that more than 40% of ATP
is used to maintain neurons viable or alive. Impaired glucose uptake is a result of com-
promised glucose metabolism in the brain, this eventually leading to glucose homeostasis
alteration, which is an important factor in the pathogenesis of AD. Reduced levels of insulin
in the central nervous system can determine overproduction and impaired clearance of
Aβ and reduced levels of anti-amylogenic proteins [56]. Brain insulin resistance is the
failure of brain cells to respond to insulin, this leading to insulin deficiency and impaired
glucose transport inside the neurons. Insulin resistance in the central nervous system corre-
lates with peripheral insulin resistance. Therefore, without the protective effect of insulin,
neurons could be more susceptible to neurotoxic insults [61,62]. Insulin resistance in AD
and diabetes can lead to hyperinsulinemia. Therefore, the insulin-degrading enzymes
(IDE) can be saturated which can lead to defects in regulating levels of insulin, Aβ protein
and amyloid precursor protein (APP), IDE being involved in the regulation of Aβ protein
and APP levels [56,63]. In addition to its peripheral actions, insulin is involved in other
processes such as inducing dendritic sprouting, cell growth and repair, neuronal stem cell
activation. It appears that the neuroprotective effects of insulin are due to the regulation
of phosphorylated tau levels. An increased level of insulin resistance is also associated
with high levels of proinflammatory cytokines which are linked to Aβ depositions in the
brains [64]. In diabetes, insulin resistance causes mitochondrial dysfunction, triggering
inflammatory response with increased levels of cytokines such as interleukin (Il)-1β, Il-6,
Il-8, tumor necrosis factor-alpha (TNF-α), alpha-1-antichymotrypsin (ACT) and C-reactive
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protein (CRP), the same mechanism being triggered in AD [65]. The common situation
for both type 1 and 2 diabetes is chronic hyperglycemia, considered a risk factor for AD.
Regarding AD, type 1 diabetes insulin deficiency seems to be the main factor for increased
tau phosphorylation, while hyperglycemia-induced tau cleavage with insulin disturbances
could be the factor that leads to tau pathology in type 2 diabetes [66]. The underlying
mechanism that links these three hypotheses may be chronically-activated mTOR signaling,
which influences mitochondrial dynamics, biogenesis and processes such as autophagy,
mitophagy and proteostasis [47]. This activation is associated with physical inactivity and
over-nutrition, which leads to chronic anabolic signaling driven by increased levels of
glucose, amino acids and growth signaling factors prevalent in patients with metabolic
conditions. By caloric restriction, increased activity, intermittent fasting or pharmacological
agents capable of mimicking the interventions above-mentioned, the beneficial influence it
would have on mTOR could lead to a positive impact on the progression of AD [58,67].

3. Implications of Restoring Metabolic Health in the Therapy of Alzheimer’s Disease

Energy production in the brain depends largely on glucose metabolism, as the dis-
ruption of its homeostasis would endanger neuronal cells. Both hyperglycemia and hy-
poglycemia affect the integrity of the brain, especially the cognitive functions. Cerebral
glucose metabolism consists of glucose transport and intracellular oxidative catabolism,
as the damage of this metabolism favors the appearance of metabolic abnormalities high-
lighted in the brain of patients suffering from AD. In this regard, it appears that glucose
transport abnormalities may be related to insulin resistance [68], the defects in glucose
transporters and glycogenolysis [43].

Metabolic dysfunction is a well-recognized risk factor for dementia, and particularly
patients with diabetes seem to have an increased risk of AD [69]. This risk may be due to a
shared pathogenic mechanism between AD and diabetes involving hyperinsulinemia and
hyperglycemia, which raises the question of whether the use of antidiabetic compounds
could impact the risk of dementia, and whether these agents may be used to prevent or
treat AD [70]. Acetylcholinesterase (AChE) inhibitors, as primary targets for Alzheimer’s
therapy, still offer symptomatic relief only, with no slowing of AD progression [71]. Thus,
some recent studies explored the extent to which antidiabetic treatments could influence
brain pathology, mainly AD characteristics (Table 1), with a majority of them targeting
possible benefits on neuroinflammation, amyloid pathology, tau pathology, cognitive
function, neurogenesis, oxidative stress or synapses [72–75]. A current nested case control
research evaluating the implications of a range of antidiabetic drugs in dementia has shown
that sulphonylureas/glinides, insulin, and thiazolidinediones (TZDs) had no positive
impact on development of dementia. In contrast, dipeptidyl peptidase-4 (DPP-4) inhibitors,
metformin, SGLT2 inhibitors and glucagon-like peptide-1 (GLP1) agonists showed benefit,
with metformin barely reaching significance, whereas both SGLT2 inhibitors and GLP1
agonists use displayed a 42% decrease in dementia risk [76]. Metformin, a widely used
biguanide, crosses the BBB and can improve various cognitive functions. An in vivo study
of a diabetic mouse model treated with metformin found that it reduces hippocampal
apoptosis, increases the expression of p- adenosine 5′mmonophosphate-activated protein
kinase (AMPK), a protein involved in regulating energy metabolism, reduces vascular
permeability, and stimulates endothelial nitric oxide synthesis [77]. Another study relates
the neuromodulatory action of metformin, by activating various molecular signaling
pathways with improved cognitive function such as memory in a streptozocin-induced
diabetic rat model. After 8 weeks of treatment, the cognitive decline of diabetic rats was
ameliorated and some of the therapeutic success would be due to the hypoglycemic effect
of metformin [78].
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Table 1. Classes of antidiabetic compounds as potential therapies for Alzheimer’s disease.

Antidiabetic
Drugs Experimental Model Findings References

Insulin

rat model of intracerebroventricular
streptozotocin

(STZ) injection-induced cognitive
dysfunction, intraventricular delivery of

0.5 units = 12 nmol of detemir

rescued STZ-induced cognitive decline [79]

patients with early AD or moderate cognitive
impairment; intranasal delivery of 20 or

40 IU insulin

improved attention, verbal memory and
functional status; modulation of

Aβ peptide
[80–83]

healthy volunteers, intranasal administration
of 4 × 40 IU of insulin

improvement in memory and mood,
increase regional cerebral blood flow in the

putamen and the insular cortex
[84–86]

Metformin

neuronal cell lines under prolonged
hyperinsulinemic conditions, various

concentrations of metformin (0.4–3.2 mM)

insulin signaling resensitization,
prevention of the molecular and
pathological changes observed in

AD neurons

[87]

murine primary neurons (from tau
transgenic mice and wild type), different
concentration of metformin (2.5 mM or

10 nM)

reduction of tau phosphorylation [88]

transgenic mouse model of AD
intraperitoneal delivery of

200 mg/kg metformin;
or 350 mg/kg/day metformin delivered in

drinking water for several months

amelioration of cognitive deficits, reduce
Aβ plaque deposition

attenuation of memory impairment

[73]
[89]

in older adults with an incident diagnosis of
AD; 1–9, 10–29, 30–59,

or ≥60 metformin prescriptions

more than 60 prescriptions were correlated
with a slightly increased risk of

developing AD
[72]

Thiazolidinediones

transgenic AD mouse model
0.03 mg/kg/day of leptin intranasal delivery

+ intraperitoneal administration of
10 mg/kg/day pioglitazone for 2 weeks

reduce brain Aβ levels and spatial
memory impairments [71]

7 days gavage therapy with 40 mg/kg/day
of pioglitazone

decrease glial inflammation and soluble
Aβ1–42 peptide levels by 27% [90]

control trial in patients with AD and diabetes,
doses of 15–30 mg pioglitazone for 6 months

cognitive deficits amelioration and
stabilization of the disease in diabetics

with AD
[91]

pilot trial with AD patients without diabetes;
daily 45 mg of pioglitazone no important efficacy data were detected [92]

clinical trials; 2 to 8 mg of rosiglitazone, as
adjunct therapy in AD patients pro-cognitive effects [93]

Glucagon-like
peptide-1 receptor

agonists

transgenic mouse model of AD
intraperitoneal injection with 1 or

10 nmol/kg of lixisenatide for 10 weeks
10 nmol/kg lixisenatide for 60 days

prevented memory impairment, neuronal
loss, and deterioration of synaptic plasticity

reduction of amyloid plaques and
neurofibrillary tangles

[94]
[95]

intraperitoneal injection with 2.5 or
25 nmol/kg of liraglutide for 10 weeks

reduce Aβ deposition by 40–50%, and
decrease inflammatory response [96]

a pilot clinical trial in AD patients; daily
subcutaneously injections of 0.6 mg

liraglutide in the first week; hereafter 1.2 mg
daily for another week before finally
increasing to 1.8 mg daily (week 26)

brain glucose metabolism decline
prevention; no important cognitive changes

compared with placebo group
[97]
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Table 1. Cont.

Antidiabetic
Drugs Experimental Model Findings References

Dipeptidyl
Peptidase-4
Inhibitors

transgenic mouse models of AD
20 mg/kg/day of sitagliptin for an

8-weeks period
daily gavage of 5, 10 and 20 mg/kg

sitagliptin for 12 weeks

pro-cognitive effects, reduction of
Aβ deposits

diminution of nitrosative stress and
inflammation markers, reduction of

Aβ deposition

[98]
[99]

daily oral administration of 5, 10, and
20 mg/kg linagliptin for 8 weeks

amelioration of cognitive deficits,
diminution of Aβ42 levels, reduction of tau
phosphorylation and neuroinflammation

[100]

STZ-induced rat model of AD; 0.25, 0.5 and
1 mg/kg of saxagliptin in gavage delivery for

60 days

reduction of Aβ formation, a marked
decrease of Aβ42 level and tau

phosphorylation
[101]

STZ- induced rat model of AD; daily orally
doses of 2.5, 5 and 10 mg/kg vildagliptin for

30 days

attenuation of tau phosphorylation, Aβ

and inflammatory markers [102]

Sodium-glucose
cotransporter 2

inhibitors

scopolamine-induced rat model of memory
impairment; daily oral gavage of 10 mg/kg

canagliflozin for 14 days
improvement of memory dysfunction [103]

STZ, intracerebroventricular streptozotocin; AD, Alzheimer’s disease; Aβ, amyloid β.

Insulin resistance has also been associated with elevated levels of proinflammatory
cytokines (Il-1, Il-6, TNF-α). Insulin signaling involves the brain to take up glucose and syn-
thesize the insulin-degrading enzyme and is also involved in the degradation of β amyloid.
In diabetes, due to the change in insulin signaling, a low synthesis of the enzyme involved
in its degradation takes place, thus reducing the process of degradation of β-amyloid with
abnormal accumulation in the brain [46,64,104,105]. Insulin and insulin-like growth factor
(IGF) are hormones that regulate cell metabolism. These hormones in the brain are needed
for the synaptic activity, neurogenesis, neuronal survival and memory. Synthesized in the
pancreas, they cross the BBB and reach the brain, bind to insulin receptors and its growth
factor followed by autophosphorylation under the action of kinases, affecting a number of
cellular signaling pathways including PI3K/AKT, MAPK/ERK. S6, a downstream target
of mTOR acts as negative feedback, phosphorylates and deactivates insulin growth fac-
tor substrates [46]. Recent studies have focused on the effects of insulin and its growth
factor on β-amyloid accumulation. Some studies show that reduced signaling of insulin
growth factor has a protective effect against the accumulation of beta amyloid while other
studies have shown that in the brains of patients with postmortem AD, insulin resistance
and reduced insulin signaling have been correlated with increased risk of dementia and
AD [106,107]. Although the physiological role of insulin in the brain is incompletely under-
stood, the intranasal insulin-based therapy began to attract attention in AD research, when
small human studies described improved knowledge without a change in blood glucose or
insulin levels in healthy volunteers [85,108]. Therapeutically, antidiabetic agents such as
rosiglitazone and pioglitazone have been recommended, peroxisome proliferator-activated
receptors (PPARy) agonists used to treat diabetes in order to improve the pathogenesis of
insulin resistance and hyperglycemia [109]. PPARγ is a nuclear receptor with an essential
role as a transcription factor in the control of inflammatory genes; PPARg agonists can
inhibit these proinflammatory genes, as demonstrated in animal models of AD transgenic
mice. These agonists reduced microglial inflammation and favored Aβ phagocytosis
followed by improved cognitive function. The effectiveness of pioglitazone was demon-
strated in a diabetic mouse model when the inflammatory responses present in AD were
reduced. However, Phase III clinical trials for rosiglitazone and pioglitazone approved for
the treatment of type 2 diabetes have failed due to lack of efficacy in AD, both of which
have no impact on the disease [46,110]. Currently, type 2 diabetes therapy aims to reduce
plasma glucose levels during the day by constantly discharging glucose into the urine
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and modifying sodium in the kidneys, SGLT2 inhibitors demonstrate a positive impact
on anabolic/catabolic cycle restoration, a new way to treat AD [106]. SGLT2 inhibitors
target the sodium-glucose cotransporter 2, the major glucose transporter in the kidney,
responsible for the reabsorption of 90% of glucose from primary urine. Inhibition of SGLT2
decreases glucose reabsorption and thus increases urinary glucose excretion, leading to a
reduction in both fasting and postprandial hyperglycemia; preventing glucotoxicity and
hyperglycemia-induced damage [43]. The first clinical trial exploring the SGLT2 inhibition
effects on AD patients is ongoing and focuses on brain energy metabolism impact following
therapy with the SGLT2 inhibitor dapagliflozin [111]. Canagliflozin (known as Invokana)
is SGLT2 targeting drug. A recent research discussed the canagliflozin effects on cerebral
AChE activity in obese diabetic rats [103], while an enzoinformatics study was suggested as
AChE inhibitor [112]. Recently, a new SGLT2i mechanistic theory was approached, which
claims that the loss of glucose through urine directed by SGLT2 inhibitors restores the
diurnal switching between anabolic and catabolic states caused by mTOR signaling [67].

mTOR is a serine/threonine (289 kDa) protein kinase with large dimensions present in
all cell types, a protein named after rapamycin, a compound isolated in 1972 from Strepto-
myces hygroscopicus structurally related to lipid kinases such as phosphatidylinositol-3-OH
kinase (PI3K), with a key role in multiple cellular processes such as glucose metabolism,
apoptosis, proliferation, transcription and cell migration [113–115]. mTOR kinases function
as a hub for switching between anabolic and catabolic processes, consisting of 2 complexes
called mTORC1 and mTORC2, with different cellular functions and essential for life. mTOR
binds to specific proteins in each complex (Raptor and Rictor), mTOR complex (mTORC)1
being activated by the availability of nutrients, especially amino acids and coordinates
protein synthesis and degradation and mTORC2 being receptive especially to insulin,
promoting stress responses, mediates conversation between pathways insulin signaling
and mTOR signaling [116,117]. The target of mTOR is a protein kinase with an essential
role in controlling protein synthesis, cellular functions and autophagic regulation, as the
disorder of this major regulator is associated with the pathogenesis of various human
diseases such as AD by Aβ deposition, deterioration of the metabolic state of the cell with
the onset of diabetes and obesity, the inactivation of mTOR signaling being initiated in the
early stages of AD [107].

Diabetes and AD are both linked to a condition of chronically activated mTOR, result-
ing in chronic inhibition of autophagic and lysosomal processes that affect the long-term
functioning of the brain, pancreas, heart, kidney, and other organs [118–120]. Identifying
which compound, if any, is ideal for the treatment of AD and whether these drugs would
be optimal in association use, remains to be tested.

4. Impact of SGLT2 Inhibition on Chronic mTOR Activation: Is the Brain a Target?

mTOR activity is indispensable in terms of the normal cognitive process, while mTOR
hyperactivity can be damaging to brain function [121–123]. The interrelation between
neuropathological hallmarks of AD and mTOR has been studied extensively, highlighting
a preclinical picture that often revealed contradictory-appearing data [124,125]. Figure 2
shows schematically the implications of mTOR hyperactivity in the normal cognitive
process and AD.

Analyzing the changes of mTOR signaling in AD transgenic mouse models, Lafay-
Chebassier et al. [126] reported lower mTOR signaling and an important alteration of
mTOR phosphorylation in the cerebellum of 12-month-old APP/PS1 mice than controls,
contradicting a previous study that revealed hyperactive mTOR signaling in 9-month-
old APP/PS1 mice. The hyperactivity of mTOR has been described when the mice have
extensive Aβ plaque deposits [127]. In a study that explored the correlation between the
mTOR pathway and Aβ-induced synaptic dysfunction, which is considered to be critical
in the AD pathogenesis; mTOR signaling was downregulated in young pre-pathological
Tg2576 mice. In contrast, in elderly Tg2575 mice with established Aβ pathology, mTOR
activity was comparable to that of wild-type mice of the same age [128]. Using 3xTg-AD
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mice, other studies have shown an age- and cerebral region-dependent increase in mTOR
activity. The results showed that the formation of Aβ plaques preceded mTOR hyperactivity
and was most likely due to high levels of soluble Aβ. Genetic or immunological prevention
of Aβ formation and deposition was sufficient to decrease mTOR signaling to wild-type
levels [129–131]. The findings were in agreement with reports exhibiting an upregulation in
mTOR signaling in postmortem human brains affected by AD [132–136]. Chronic inhibition
of mTOR by rapamycin therapy when it began in the early stage of Aβ deposition and in
the absence of microtubule-associated protein tau (MAPT) pathology improved learning
and memory function in transgenic mice modeling the disease [114,137].

Figure 2. Schematic representation of mTOR hyperactivity in cognitive aging and AD. (a) Left—The implications of mTOR
in main processes of aging. These features of aging, to different degrees, lead to an increased risk for AD, as well as cognitive
decline during normal aging. Rapamycin and other pharmacological approaches that decrease mTOR activity may be
valuable for delaying AD progression. (b) Right—The interrelation between neuropathological hallmarks of AD and mTOR.
Hyperactive mTOR increases the production of Aβ and tau; and many factors including diabetes may influence the crosstalk
of these proteins, and the aberrant cycle it creates contributes to the pathogenesis of AD.

Rapamycin administration both early and late in AD pathogenesis has been shown to
delay, but not reverse accumulation of Aβ and MAPT tangles, as well as cognitive deficits
in transgenic mouse models [122]. Although the data indicate that rapamycin treatment
has unwanted side effects in the elderly population, therapies in which the compound is
utilized in on-off programs may be designed for early or moderate AD stages. Additionally,
research using agents other than rapamycin that inhibit the mTOR pathway and lack its
side effects may be justified. While it is difficult to dissect the underlying causes of these
divergent findings, the strain and age of animals, as well as variable Aβ levels may have
differential effects on mTOR. Recent data suggests that, just as Aβ affects mTOR, mTOR
similarly affects Aβ. This indicates that these proteins are closely correlated with each other
and clarification of the mechanism of this relationship may reveal previously unknown
features of AD pathogenesis [45].

Protein synthesis and their degradation controlled by the autophagy process, the
mechanistic target of mTOR, is a main switch that integrates growth factors and the state
of cellular nutrients that influence metabolism, modulate aging [133,138]. Reduced mTOR
signaling may be a mechanism by which dietary restriction leads to increased longevity,
compensating for reduced aging time [116,117,139]. Autophagy is a lysosome-dependent
homeostatic process by which toxic compounds, damaged organelles and mitochondria,
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misfolded proteins are sequestered in autophagosomes, with vital roles in various physi-
ological and pathological processes such as cell death and the elimination of pathogenic
microorganisms or protein accumulation in cells followed by neurodegeneration [140–142].
The mTOR signaling pathway seems to be involved in both type 1 and type 2 diabetes,
insulin production being reduced in type 1 diabetes due to the destruction of pancreatic
β cells while insulin resistance occurs in type 2. The survival of β cells depends on the
regulation of the insulin receptor substrate -2 (IRS), the chronic exposure of these cells to
glucose and an increased phosphorylation of Ser/Thr being correlated with the decrease
in the level of the IRS-2. Insulin-induced protein proliferation and glucose- and amino
acid-induced growth are dependent on mTOR signaling in pancreatic cells, as chronic
mTOR activation results in insulin resistance characterized by hyperglycemia, and the
onset of type 2 diabetes [143] (Figure 3).

Figure 3. Type 2 diabetes is characterized by insulin resistance caused by uncontrolled hepatic glucose synthesis and by
reduced uptake of glucose by muscle and adipose tissue. The pancreas contains functional β cells, but the variable secretion
of insulin affects the maintenance of glucose homeostasis because β cells are gradually reduced. AD is characterized
by increased synthesis and accumulation of tau and β-amyloid proteins. Aβ plaques may induce insulin resistance.
Cerebral glucose metabolism consists of glucose transport and intracellular oxidative catabolism, affecting this metabolism
favoring the appearance of metabolic abnormalities highlighted in the brains of patients with AD. Chronic activation of
mTOR may be responsible for as endo-lysosomal, mitochondrial and metabolic dysfunctions in AD. High glucose intake
causes hyperactivation of mTOR with abnormal insulin signaling accompanied by accelerated progression and symptoms
similar to AD and with hyperglycemia and the appearance of type 2 diabetes. In patients with type 2 diabetes and AD it
occurs: increased oxidative stress, inflammation, cognitive deficit and insulin resistance. Type 2 diabetes therapies based
on type 2 co-transport inhibitors for sodium and glucose promotes: natriuresis, reduced filtered glucose reabsorption,
decreased renal threshold for glucose, increased urinary glucose excretion followed by reduced plasma glucose levels. These
compounds have a positive impact on the restoration of the anabolic/catabolic cycle and represent a new way to treat AD.
AD, Alzheimer’s disease; Aβ, amyloid β; SGLT2, sodium glucose cotransporter 2; mTOR, mechanistic target of rapamycin.

In therapy with SGLT2 inhibitors, the uric acid levels decrease early in conjunction
with other inflammatory markers, such as high-sensitive CRP, suggesting an early influ-
ence on oxidative stress/inflammation-associated processes. Uric acid is recognized as a
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mediator of endothelial dysfunction and inflammation through its activation of the nod-
like receptor pyrin domain containing 3 (NLRP3) inflammasome [144–146]. Activation of
NLRP3 in the microglia is a key stress-induced innate immune mechanism that leads to AD
pathology [147,148]. The detailed mechanism by which SGLT2 inhibitors decrease uric acid
is currently unknown, but it is interesting that its elevated levels have been shown to indi-
rectly activate mTOR [149]. Its rapid and persistent decrease caused by SGLT2 inhibitors,
in patients with elevated uric acid levels, offers another possible mechanism to reduce
chronically activated mTOR signaling. Even so, the role of uric acid in the development of
neurodegenerative diseases is not clearly defined. Higher uric acid levels can positively
influence cognitive function and reduce the risk of AD onset and progression [150,151].

A growing body of evidence suggests that reduced nitric oxide (NO) signaling is
involved in AD-related pathological processes [152,153]. The NO production is diminished
via endothelial (e) nitric oxide synthase (NOS) phosphorylation, resulting in uncoupling
of NO production [154]. It has been shown that mTOR hyperactivity uncouples NO
production through eNOS phosphorylation, thus increasing superoxide generation. With a
key role in maintaining endothelial function, chronic disruption of NO production can lead
to inflammation, oxidative stress and endothelial dysfunction [154,155]. Dietary rapamycin
supplementation has been shown to reverse age-related vascular endothelial dysfunction
and oxidative stress accompanied by a decrease in superoxide production similar to levels
in younger animals [156]. These results suggest the potential for SGLT2-driven mTOR
inhibition in endothelial cells at the BBB level to modulate the dysfunction and oxidative
stress linked with chronic mTOR activation and to reinstate properly endothelial function
and NO production.

The most essential amino acids that activate mTOR in order to prevent the formation of
autophagosomes are leucine, glutamine and arginine. A decrease in the level of these amino
acids also seems to drive the lysosomal acidification process critical for protein degradation
independent of autophagy activation [157]. Remarkably, amino acid starvation appears to
be a faster and stronger activator of lysosomal/autophagy degradation than rapamycin, a
direct pharmacological inhibitor of mTOR, making SGLT2 inhibitors potentially superior
options to rapamycin in treating disorders characterized by chronic mTOR activation [158].
Clinical data showing an increase in amino acid catabolism during use of SGLT2 inhibitors
is suggested by the increased oxidation of proteins, which is evident following 3 months of
dapagliflozin therapy [159]. The increase in urea and urea cycle metabolites evident in a
study in diabetic patients treated for 30 days with empagliflozin also suggests that there is
a growth in protein catabolism [160].

Moreover, recent data evaluating the post-mortem status of mTOR in the brain of the
patient with AD revealed concurrent phosphorylation/activation of both AMPK and mTOR
which were co-localized with hyperphosphorylated tau. The results of this study suggest
that the concurrent dysregulated AMPK activity that causes chronic mTOR activation
is critical for genesis and progression of AD, and fundamentally driven by a lack of
constant periods of fasting amino acids flux to the liver to support gluconeogenesis [161].
The striking parallelism of these molecular, cellular, and clinical profiles occurring along
the path towards AD could be beneficially impacted by restoration of circadian SGLT2
inhibition mTOR modulation.

5. Concluding Remarks

Precision therapies for AD, in which genetic, environmental, neuroendocrine, biochem-
ical and immune data are included to design specific prevention and treatment strategies,
lagged behind other areas such as neoplastic diseases. This gap is partly due to the fact
that there is no strong consensus on which therapeutic approaches might be effective. With
the emergence of new pharmaceutical options and the increasing availability of large sets
of metabolic data, the targeted approaches are expected to become more feasible.

Activation/inhibition of mTOR activity may be a shared pathogenic link between all
metabolic and mitochondrial dysfunctions in AD, influencing metabolic dynamics, mito-
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chondrial activity and biogenesis (fusion/fission), and essential housekeeping processes
(proteostatis, mitophagy and autophagy) facilitated via circadian nutrient flux.

These circadian anabolic and catabolic fluxes, specific to healthy people, are disturbed
by aging, physical inactivity, over-nutrition and metabolic diseases leading to the idea
that improvements in metabolic flow through either intermittent fasting, increased activ-
ity, caloric restriction or pharmacological compounds able of mimicking the physiology
of intermittent fasting/exercise/caloric restriction on mTOR may play a critical role in
AD progression.

The multifarious nature of metabolic/remodeling role in AD and related disorders
will require further research. It is likely that various aspects of the restoration of circadian
SGLT2-mTOR modulation, such as its effects on anabolic (cell growth, protein synthesis,)
and catabolic (lysosomal function, autophagy) processes are responsible for sustaining
metabolic dysfunction in AD. Restoring metabolic health is an attractive avenue to facil-
itate future therapies for the prevention and treatment of AD, as well as to promote the
preservation of healthy brain and body aging throughout life.
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Abbreviations

AD Alzheimer’s disease
Aβ amyloid β

mTOR mechanistic target of rapamycin kinase
SGLT2 sodium glucose cotransporter 2

double transgenic mouse model of Alzheimer’s disease over expressing amyloid
APP/PS1 mice precursor protein, encoding the Swedish mutations at amino acids 595/596 and

an exon-9-deleted human PS1
transgenic mouse model, which express a 695-aa residue splice form of human

Tg2576 mice amyloid precursor protein modified by the Swedish Familial AD double
mutation K670N-M671L

3xTg-AD mice
triple-transgenic mouse model harboring PS1M146V, APPSwe, and
tauP301L transgenes

ATP adenosine triphosphate
MAPT microtubule associated protein tau
ROS reactive oxygen species
IDE insulin-degrading enzymes
APP amyloid precursor protein
TZDs thiazolidinediones
GLP1 glucagon-like peptide-1
DPP-4 dipeptidyl peptidase-4
IGF-1 insulin-like growth factor-1
PS1 presenilin 1
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PS 2 presenilin 2
APOE Apolipoprotein E
PPARs peroxisome proliferator-activated receptors
AChE acetylcholinesterase
AMPK adenosine 5′mmonophosphate-activated protein kinase
PPARs peroxisome proliferator-activated receptors
PI3K phosphatidylinositol-3-OH kinase
IRS-2 insulin receptor-2
NLRP3 nod-like receptor pyrin domain containing 3
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