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T he empirical mode decomposition (EMD) method pro-
posed in Yang et al.1 fails to correctly identify causal
relationships for a system of two independent variables

driven by a shared external forcing (aka Moran effect). Using a
simple, two-species Moran effect model (Fig. 1a), it is obvious
that the EMD method erroneously concludes that N1 and N2 have
a causal relationship (IMF 1 in Fig. 1b), although in fact they do
not. This is because effects of external forcing were recorded in
both N1 and N2 time series, and at least one IMF decomposed
from N1 and N2 time series is associated with that external for-
cing. Therefore, removal of such IMF from N1 makes the
remaining less coherent with N2, and vice versa. As such, EMD
methods based on diminished coherence due to IMF removals fail
to falsify spurious causations caused by sharing external forcing.
In contrast, convergent cross mapping (CCM) correctly identifies
the lack-of causal relationship between N1 and N2 (Fig. 1c). The
efficacy of CCM to distinguish Moran effects depends on the
strength of the shared external forcing. In extreme cases, when
external forcing is too strong, N1 and N2 are synchronized (the
pathological case, as noted in a previous study2). Methods to cope
with such situation have also been developed3,4.

Second, Yang et al.1 argued that CCM provides incorrect
causal relationships. However, Yang et al.1 used CCM in a
manner that the original authors2 did not intend, producing
incorrect conclusions. Specifically, following McCracken
et al.5, Yang et al.1 used correlation difference (X cross-map Y
– Y cross-map X) as the definition of CCM causation (Fig. 3 in
ref. 1) without examining the convergence of the cross-
mapping skill; this is an incorrect definition. The correct
definition of causation under CCM is improvement of cross-
mapping skill with increasing time series length (i.e., con-
vergence). In addition, as in real systems, CCM causation can
be bidirectional2. Yang et al.1 used an incorrect definition (i.e.,

correlation difference) and incorrectly concluded that CCM
misidentified the lynx versus hare and Didinium versus
Paramecium interactions as top-down control systems and the
Lotka Volterra predator–prey model and wolf versus moose
interactions as either no or confusing causation. However, in
each of these examples, CCM exhibits clear convergence with
increasing library size in both directions. By using the con-
vergence definition of causation in CCM, we concluded that
these prey–predator systems exhibited bidirectional causation.
That is, CCM correctly identified the reciprocal nature of
predator–prey interactions in all of these systems (Fig. 5 in
ref. 1). As such, we suggest any description of coupling in
predator–prey systems as “directional” claimed by Yang et al.1

may be misleading (Fig. 3 in ref. 1) because predators causally
influence prey by consuming them and prey causally influence
predators by providing them the energy needed for population
growth. Moreover, the relative strength of each direction can
be quantified based on the rate of convergence2,6, with proper
consideration of potential lagged effects3. We also disagree with
the claim that CCM incorrectly identified causal coupling in white
noise. Again, this also stems from using an incorrect definition of
CCM. In contrast, we find no evidence of convergence when
applying CCM to paired white noise signals (Fig. 2a) and a false
positive rate consistent with p= 0.05 as the level of significance
(Fig. 2b, c).

Several additional misunderstandings about CCM in Yang
et al.1 warrant clarification. (1) CCM does not rely on pre-
dictability as the criterion. Rather, CCM relies on information
recovering2,6 that identifies whether the present state of an
effect variable contains information about the present state of
causal variables7 (i.e., nowcast) and thus enables CCM to
identify simultaneous influences. (2) Oscillatory dynamics
may confound the efficacy of CCM; however, methods to
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remove cycles or construct a null model that accounts for
cycles (e.g., seasonality) have been developed4,8–10. (3) Yang
et al.1 stated that “CCM is developed under the constraints of
perfect deterministic system”; this is incorrect. In reality, real-
world systems usually contain a deterministic skeleton con-
volved with stochastic processes11. In fact, modeling and
empirical examples have demonstrated that CCM correctly
identifies causation, even when stochastic processes are con-
volved with deterministic signals2,6,12.

It is noteworthy that interpretation of findings based on
IMF subtraction needs to be done with caution. Yang et al.1

included a strong statement regarding interpreting their
findings, stating that removals of causal-related IMFs enable
us to exclusively recover intrinsic dynamics of the target series
from the residual IMFs. Although this statement is correct
when the system dynamic is a result of superposition of sig-
nals, it is not always correct for general dynamical systems in
which causal influences cannot be easily separated from
intrinsic dynamics. Using a simple example of prey–predator
model, dx

dt ¼ αx � βxy; dydt ¼ δxy � γy, we have a clear expecta-
tion that the prey will grow exponentially in the absence of the
predator, or at the very least, prey cannot oscillate. However,
these expectations are not realized after subtracting causal
IMFs; rather, the remaining components continue to cycle—
quite at odds with intuition based on the statement provided
by Yang et al.1. The salient point is that interpretation of the
residual IMF is not as unambiguous as the original text
implies. Certainly, IMF subtraction is not equal to mathe-
matical subtraction. However, real-world biologists applying
Yang et al.’s approach1 to predator–prey systems may be
confused when interpreting the results according to Yang
et al.’s statement about separability in causal inference. In fact,
after subtracting the effect of the predator on the prey (e.g.,
Fig. 1c in ref. 1), prey continue to oscillate. Based on countless

chemostat experiments, prey grown in isolation reach a steady
state set by the rate of nutrient input and media outflow. Thus,
sustained oscillations (e.g., remaining series after accounting
for predator effect) suggest the existence of other factors.
Assured by their IMF analysis that these oscillations are nei-
ther driven by the predator nor by its intrinsic dynamics,
biologists might conclude that there must be another variable
causing the oscillation (perhaps, time-varying fluctuations in
resource availability or temperature) and fruitlessly search
without success. Of course, they never find one, because the
oscillation is artificially introduced by performing an additive
decomposition on a non-separable system. Thus, we caution
potential over-interpretation of the meanings of various IMFs
in EMD.

To summarize, the EMD method of Yang et al.1 clearly works
for systems in which superposition is obtained, but does not
provide unambiguous results for non-separable, nonlinear
dynamical systems.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Empirical datasets analyzed in this study are open-access and available by following the
same instruction addressed in Yang et al.1. R source codes used to generate synthetic
datasets from the Moran-effect model and white noises are available on GitHub, https://
github.com/biozoo/CommentEMD.

Code availability
Matlab and R source codes for conducting EMD causal decomposition and CCM
analyses, respectively, are provided on GitHub, https://github.com/biozoo/
CommentEMD.
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Fig. 1 Causal decomposition fails to falsify spurious causations presented in Moran effect model. aMoran effect model is a 5-variate difference equation
model in which variables N1 and N2 have no causal relationship, but have a significant correlation in their time series due to shared external forcing, V. We
ran this model for 10,000 time steps with the parameter set [r1= 3.4, r2= 2.9, ψ1= 0.5, ψ2= 0.6, s1= 0.4, s2= 0.35, D1= 3, D2= 3, R1(0)= R2(0)= 1,
N1(0)= N2(0)= 0.5], but retaining only the last 200 steps for analysis. Because of the strong correlation between N1 and N2. b The causal decomposition
method, incorrectly concluded causation according to IMF 1 and 2, even though N1 and N2 do not interact. Here, causal decomposition is performed under
1000 ensemble EMD with noise level r= 0.085 selected based on the criteria of maximizing the separability but maintaining orthogonality of the IMFs,
following the Matlab codes provided in Yang et al.1. In contrast, c CCM had no convergence (i.e., no improvement in CCM skill with increasing library size)
in cross-mapping between N1 and N2, and thus correctly concluded no causation between N1 and N2.
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Fig. 2 CCM analysis for paired white noises. White noise time series were
generated from 10,000 simulations and all time series were trimmed to
length= 10, following Yang et al.1. In total, we performed CCM analyses
between 1000 random pairs of white noises. To evaluate convergence of
CCM, we calculated three indices: a improvement in CCM skill from
minimal (L= 2) to maximal library length (L= 10); b p value for testing the
significance of the improvement in CCM skill using Fisher’s Δρ Z test; and
c p value for testing the significance of monotonic increasing trend in CCM
skill using Kendall’s τ test. In a majority of cases, improvements in CCM
skill were very small and close to zero, indicating no convergence (a). As
such, false positives in both Fisher’s Z test (b) and Kendall’s τ test
(p < 0.05) (c) occurred, with very low probability. In summary, the
probability of detecting spurious causation in paired short white noise was
very low; this was opposite to conclusions of Yang et al.1 based on the
incorrect definition of CCM.
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