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Abstract
Judging object speed during observer self-motion requires disambiguating retinal stimulation from two sources: self-motion and
object motion. According to the Flow Parsing hypothesis, observers estimate their own motion, then subtract the retinal corre-
sponding motion from the total retinal stimulation and interpret the remaining stimulation as pertaining to object motion.
Subtracting noisier self-motion information from retinal input should lead to a decrease in precision. Furthermore, when self-
motion is only simulated visually, self-motion is likely to be underestimated, yielding an overestimation of target speed when
target and observer move in opposite directions and an underestimation when they move in the same direction. We tested this
hypothesis with a two-alternative forced-choice task in which participants judged which of two motions, presented in an
immersive 3D environment, was faster. One motion interval contained a ball cloud whose speed was selected dynamically
according to a PEST staircase, while the other contained one big target travelling laterally at a fixed speed. While viewing the
big target, participants were either static or experienced visually simulated lateral self-motion in the same or opposite direction of
the target. Participants were not significantly biased in either motion profile, and precision was only significantly lower when
participants moved visually in the direction opposite to the target. We conclude that, when immersed in an ecologically valid 3D
environment with rich self-motion cues, participants perceive an object’s speed accurately at a small precision cost, even when
self-motion is simulated only visually.

Introduction

When observing a moving target while moving, the same
retinal speeds can correspond to vastly different physical ve-
locities. When an observer moves in the same direction, par-
allel to a moving object, the retinal speed of the object is
partially cancelled out, and when they move in the direction

opposite to the object, the retinal stimulation due to self-
motion may be added to the retinal speed of the object. To
obtain an accurate estimate of the object’s velocity, observers
must therefore obtain an accurate estimate of their own veloc-
ity and subtract or add the consequences of this movement to
the retinal motion of the target. More specifically, the Flow
Parsing Hypothesis (Dupin & Wexler, 2013; Rushton &
Warren, 2005; Warren & Rushton, 2008, 2009) posits that,
to estimate object motion from ambiguous retinal input
representing the sum of object and self-motion, observers first
compute which components of retinal stimulation are caused
by their own motion in the environment. Then, they subtract
this self-motion information from the overall retinal stimula-
tion and attribute the remaining stimulation to object motion
in the scene. When self-motion is experienced only visually
while undergoing no physical motion, the visual motion cre-
ates a conflict between visual and vestibular inputs as a result
of which self-motion is likely to be underestimated, leading to
biases in judgments of object velocities, although oddly this
has never been quantified for horizontal translation. The effect
has been shown to some extent for vertical observer and object
translation (Dyde & Harris, 2008), as well as for rotating ob-
servers (Garzorz et al., 2018; Hogendoorn et al., 2017; Probst
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et al., 1995) and motion-in-depth(Gray et al., 2004).
Furthermore, it has been argued that self-motion information
is noisier than retinal information concerning object motion,
especially when observers have only visual information about
their own movement at their disposal (Fetsch et al., 2010).
Subtracting noisy self-motion information from retinal motion
in order to obtain an estimate of target velocity should thus
decrease precision (Dokka et al., 2015). Such a subtraction
process is relatively straightforward for the consequences of
angular self-motion, but for lateral motion, the geometry re-
quires additional computations involving estimates of the dis-
tance of the object to the observer and the direction of object
motion relative to the observer’s motion. More specifically,
observers need to first estimate their own motion in an
allocentric world frame by using retinal stimulation attribut-
able to the induced motion of static objects in the environment
and other sensory and efferent information such as vestibular
activity. Then this estimate needs to be used to generate an
estimate of the retinal stimulation expected to be caused by the
observer’s motion. This estimated retinal stimulation due to
self-motion is then subtracted from the total retinal stimula-
tion, which allows the remaining retinal stimulation to be
interpreted as external object motion. The process is known
as “flow parsing,” in which the different aspects of the total
optic flow are attributed to these different causes.

It is important to note that flow parsing is only necessary
when humans need to represent the kinetic properties of their
environment in an allocentric frame. For computations per-
formed in an egocentric frame, it is generally sufficient to time
interceptive actions and avoid collisions according to the ve-
locity of the target relative to the observer. It is true that eco-
logical, optic-flow-based heuristics have successfully ex-
plained humans’ performance in paradigmatic cases such as
the outfielder problem (Fink et al., 2009; Wilson & Golonka,
2013). However, humans are able to recover, represent, and
use the physical parameters of their environment in a variety
of tasks (Burr et al., 2007; Fajen et al., 2013; Ilg et al., 2004;
Wexler, 2003).

There are two major sources of information about passive
self-motion: visual and vestibular cues (Fetsch et al., 2010),
which are integrated according to their relative reliability
(Fetsch et al., 2009). How much each sense contributes to
the global percept of self-motion seems to depend on different
parameters, such as the task and the self-motion profile.
Dokka et al. (2015), for example, found for direction judg-
ments of a probe presented in the fronto-parallel plane during
lateral observer motion that vestibular information in the ab-
sence of visual information led to a vast underestimation of
self-motion. Visual information only elicited a higher accura-
cy, and having both visual and vestibular cues available in-
creased accuracy only marginally beyond accuracy for visual
information only. In a more direct test of perceived self-mo-
tion, Harris et al. (2000) found that vestibular stimulation

evoked by moving the observer through the environment
was an extremely potent cue to self-motion, which induced a
vast overestimation of the distance moved. Visual cues to self-
motion were efficient, too, but less so than vestibular cues.
However, depending on stimulus parameters such as simulat-
ed acceleration, visual cues alone can also lead participants to
overestimate their movement (Redlick et al., 2001). For active
self-motion (i.e., movements initiated by the observer such as
walking through the environment), efference copies and pro-
prioceptive information can serve as further cues. For exam-
ple, judgments about the distance travelled seem to be more
reliable if motion was self-generated as opposed to experi-
enced passively (Becker et al., 2002; Frissen et al., 2011;
Jürgens & Becker, 2006).

Remarkably, the literature is quite sparse with regards to
assessing object motion during lateral, visually simulated ob-
server motion: Warren and Rushton (2007) found that trans-
lational visually evoked self-motion led observers to perceive
the trajectory of a linearly moving probe as tilted towards the
direction of the simulated translation. MacNeilage et al.
(2012) showed that vestibular cues could help distinguish
self-motion from object motion, especially for lateral observer
motion. Similarly, Dokka et al. (2015) investigated the extent
to which observer motion (visual cues only, vestibular cues
only, and both visual and vestibular cues) influenced the
judged direction of vertical downwards motion with a small
lateral component. They found biases in line with insufficient
compensation for self-motion in all observer-motion condi-
tions, as well as decreases in sensitivity. Niehorster and Li
(2017) quantified the extent to which flow parsing was com-
plete for straight-ahead self-motion by having participants
judge the direction of a probe that moved vertically upwards.
Importantly, all these studies used direction judgments as
proxies to probe the completeness of flow parsing, while a
direct psychophysical investigation of perceived velocities is
notably missing from the literature. Furthermore, while some
of these studies presented their stimuli in compelling stereo
3D, none immersed the observer in a virtual environment. It is
not unlikely that flow parsing is facilitated by a more realistic
environment. This study aimed to shed light on the extent to
which visually evoked self-motion influences perceived later-
al object speed in a naturalistic setting. This is particularly
relevant as the visual system has been shown to use velocity
information to extrapolate object trajectories to compensate
for noisy online information and neural delays (Aguado &
López-Moliner, 2019; Aguilar-Lleyda et al., 2018; Jörges &
López-Moliner, 2019; López-Moliner et al., 2010). The aim of
this project is thus to verify the impact of visually simulated
observer motion on accuracy and precision for object speed
judgments during lateral translation, which will further our
understanding of flow parsing and help us understand the
conditions under which flow parsing is incomplete. More spe-
cifically, our hypotheses are:
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& When the observer experiences no visual self-motion dur-
ing object motion observation, we expect the highest
accuracy of speed estimation.

& When visual observer motion is simulated opposite to the
object motion (e.g., observer moves to the right, object
moves to the left) during object motion observation, we
expect them to overestimate the observed speed.

& When visual observer motion is simulated in the same
direction as the target (e.g., both observer and target
move to the right) during object motion observation, we
expect them to underestimate the observed speed.

& We expect the precision to be lower when the participant
experiences visually simulated observer motion during
object motion observation relative to when they are static.

Methods

Participants

We recruited 30 participants (see power analysis) through
word-of-mouth, posts in online VR communities, and the
company XpertVR. Participants we recruited directly (n =
17) received a compensation of CAD$30 (or equivalent in
the local currency at the time of payment) as an amazon.com
gift card. Participants (n = 13) recruited through XpertVR
received a compensation of US$50. Due to the culturally
independent nature of the phenomenon under study, we do
not believe our results are likely to be relevantly skewed by
WEIRD people effects (Henrich et al., 2010). To test for ste-
reo-blindness, participants performed a short custom experi-
ment in VR in which they had to tell which of two rectangles
ahead of them appeared closer. The rectangles were matched
in optical size such that only stereo cues could provide infor-
mation about their relative distances. The difference between
the two rectangles was simulated to be 200 arcseconds and
participants had to guess 16 out of 20 trials correctly. This
experiment, along with some additional explanations about
the geometry of the scene, is available for download here
(on GitHub: https://github.com/b-jorges/Stereotest). The
project has received ethics approval from the Human
Participant Ethics Review Sub-Committee at York
University. Informed consent was obtained from all partici-
pants and the experiment was conducted in accordance with
the Code of Ethics of the World Medical Association
(Declaration of Helsinki).

Apparatus

All the experiments were performed in virtual reality with
participants remaining physically static and seated. We pro-
grammed the stimuli in Unity (2019.2.11f1), while object

motion, visually simulated observer motion, and the psycho-
physical staircases were controlled in C# via its integration
with Unity. The Unity project is available on the Open
Science Framework (https://osf.io/m6ukw/). Stimuli were
presented in a VR (virtual reality) headset. Participants used
the equipment available to them at home, among which were
Oculus Rift CV1, Oculus Rift S, Valve Index, Oculus Quest,
Oculus Quest 2, and HTC Vive. Participants responded using
the keyboard on their computers.

Administration of the experiment

Due to the global COVID-19 pandemic of 2020–2021, data
collection could not occur in a lab setting as planned. Rather,
we opted for an online approach: we recruited participants who
had suitable VR equipment at home and were willing to com-
plete our experiment. We recruited participants through word-
of-mouth, posts on social media such as Twitter and Reddit, and
the company XpertVR. To guide our online participants through
the experiment, we provided instructions both as a PDF docu-
ment (see GitHub: https://github.com/b-jorges/Motion-
Perception-during-Self-Motion/blob/master/Instructions/
Instructions%20Seeing%20while%20moving.pdf) and as a
video (uploaded on YouTube: ht tps : / /youtu .be /
jN141KbNOWA). After they emailed back their signed
informed consent forms, they were sent a link to download a
zip package with the four parts of this experiment (a stereo-
blindness test, a training for the main experiment, the main ex-
periment, and an assessment of how they perceived visually
simulated self-motion in our stimulus), which they were asked
to run on their own hardware. Participants first had to complete
the stereo-blindness test and the training for the main experi-
ment, which also served as a screener to verify whether they
were performing the task correctly. All participants who sent
back their data and who were thus included in our analyses
completed both checks successfully. After these two pretests,
they performed the main experiment followed by an assessment
of their perception of self-motion. They then sent the data back
to us and were paid for their time with a CAD$30 (or the local
equivalent) Amazon gift card. Participants recruited through
XpertVR received US$50 (or the local equivalent).

Setup

Our experiment consisted of a Two-Interval Forced-Choice
Task where participants were asked to indicate which of two
intervals contained objects moving at the higher speed.

Environment and general layout

Participants were immersed in a virtual 3D environment that
included depth cues from lighting, shadows, and the scale of
the textures of the floor and the wall backdrop. The ball
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appeared to the left of the observer if it moved to the right, and
to the right of the observer when it moved to the left. The exact
position was determined by target speed and visual observer
motion (see Eq. 1). See Fig. 1a for a diagram of the visual
scene and Fig. 1c for a screenshot from the experiment; a short
sequence of the experiment can be downloaded from GitHub
at: https://github.com/b-jorges/Motion-Perception-during-
Self-Motion/blob/master/Figures/Main%20experiment.mp4.

Targets and visually simulated observer motion

In one interval participants were presented with a ball
with a diameter of 0.33 m at a simulated distance of 8

m in front of them, travelling with 6.6 or 8.0 m/s (two
target-motion profiles). Participants were seated and the
camera was simulated 1.3 m above the ground. The tar-
gets were simulated 2 m above the ground. The direction
in which the targets moved was chosen randomly on each
trial. During this interval, participants were either static
(“Static with Textured Backdrop”) or experienced visually
simulated observer motion to the left or to the right with a
Gaussian speed profile (three self-motion profiles), accel-
erating until reaching peak speed after 0.25 s and then
s lowing down unt i l coming to a ha l t a t 0 .5 s
(“Simulated Observer Motion with Textured Backdrop”).
The position in time x(t) was given by a cumulative

Fig. 1 a Top view of the stimulus scene in one of the test trials. The red
circle represents the target, which starts on one side of the midline (see
text for details) and moves laterally at 6.6 or 8 m/s for 0.5 s, that is, 3.3 or
4 m. The stylized eye indicates the position of the observer, who can be
static or move to the left or to the right for 0.5 s with a Gaussian motion
profile and a mean speed of 1 m/s. The target is 8 m away from the
observer and 2 m in front of the background wall. b Screenshot from
the program during presentation of the dot cloud in the untextured wall
condition (“Blank Backdrop”). c Screenshot from the program during

presentation of the big target in the textured wall condition (“Textured
Moving Backdrop”). d Screenshot from the self-motion judgment con-
ducted after the main body of the experiment. A short sequence of the
main experiment can be downloaded from GitHub at: https://github.com/
b-jorges/Motion-Perception-during-Self-Motion/blob/master/Figures/
Main%20experiment.mp4. A sequence from the self-motion judgment
part of the experiment is available from GitHub at: https://github.com/
b-jorges/Motion-Perception-during-Self-Motion/blob/master/Figures/
Selfmotion%20judgement.mp4
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Gaussian distribution with a mean of 0.25 s and a stan-
dard deviation of 0.08 s divided by 2, multiplied by -1 for
trials with visually simulated observer motion to the left.
That is, participants were moved visually 0.5 m over the
course of 0.5 s, which amounts to a mean speed of 1 m/s.
The target’s initial position was shifted away from the
observer for motion in the same direction, and towards
the observer when the observer’s visual motion occurred op-
posite to the target motion, such that observer and target mo-
tion were symmetrical, i.e., the distance between observer and
target at the beginning was the same as the distance at the end
of the trial. To achieve this, the starting position of the target
was computed in the following manner:

xinitial ¼ 0:5* Distanceobserver−vx*tð Þ ð1Þ
where xinitial denotes the initial position of the target relative to
the observer, Distanceobserver is the lateral distance in which
the observer is simulated to move, vx is the horizontal speed of
the target, and t is the duration of the motion interval (0.5 s).

Staircase

In the other interval, participants were shown a cloud of small-
er moving balls each with a diameter of 0.1 m as comparison.
The balls appeared 1.25 m to the left of the observer (if the big
target in the same trial moved to right) or to the right of the
observer (if it moved to the left), then moved in the same
direction as the big target and disappeared after having trav-
elled 2.5 m. They were spread out vertically over a distance of
1 m. Ten to 15 balls were visible at any given moment.
Observers were asked to maintain their gaze on a fixation
cross that was continuously displayed straight ahead of them
(i.e., also during visually evoked self-motion), 0.8 m under the
target (see Fig. 1b). The speed of these smaller balls was
controlled by a PEST staircase and constant across their life-
time. We employed two staircases for each combination of
visually stimulated self-motion (left, right, or static) and object
motion (6.6 and 8 m/s), one of which started 33% above the
target’s speed, and the other one 33% below target speed (two
staircases for each combination of target motion and self-mo-
tion). The direction (left to right or right to left) was chosen
randomly for each trial. Thus, there was a total of two target
speeds x three motion conditions x 2 = 12 staircases. The step
sizes were governed by the following rules (Taylor &
Creelman, 1967): the initial step size was 1.2 m/s. For the first
five trials for each PEST, the step size was maintained.
Starting from the 11th trial, after a reversal (participants an-
swered “PEST is slower” in the second-to-last trial and “PEST
is faster” in the last trial or vice-versa), the step size was
halved. After the second same answer, the step size was main-
tained. After the third same answer, the step size was either
maintained when the step size had been doubled before the

last reversal or doubled when the step size had not been dou-
bled before the last reversal. After four same answers, the step
size was always doubled. Each PEST ended when it con-
verged (five consecutive trials with step sizes lower than
0.1) AND participants had judged at least 20 trials of the
staircase. If the staircase did not converge, the PEST was
terminated after 27 trials. The experiment ended when all
PESTs, including the control PESTs (see A possible con-
found: Induced motion section below), had terminated. This
took about an hour overall including instructions and breaks,
which participants could take every 15 min.

Before starting the actual data collection, participants per-
form a training session with one PEST where the big target
moved at 4 m/s. Participants were asked to repeat the training
if the step size in any of the last five trials was above 0.3 m/s. If
they still failed to meet the criterion after a second repetition
they were excluded from the experiment. No participant re-
ported failing this task.

Intended interpretation of visually simulated observer
motion and task

Our experiment critically depended on our participants per-
ceiving themselves as moving rather than the world as mov-
ing. We were furthermore interested in participants making
the velocity judgments relative to the world, not relative to
themselves, and we assume that our instruction will make sure
of this. However, there is a possibility that either of these
assumptions will not hold. This gives rise to four different
scenarios during visually simulated observer motion:

(1) Participants perceive the world as static and themselves
as moving and judge object speed relative to the world.
This is the intended case.

(2) Participants perceive themselves as static and the world
as moving and judge object speed relative to the world.
In this case we would find no effect of visually simulated
observer motion at all, that is, there would be no differ-
ences between visually simulated observer motion and a
(visually) static observer.

(3) Participants perceive the world as static and themselves
as moving and judge object speed relative to themselves.
In this case, participants would add the speed of visually
simulated observer motion fully onto the target speed,
that is, the PSE would be shifted by roughly the mean
value of the visually simulated observer motion.

(4) Participants perceive themselves as static and the world
as moving and judge object speed relative to themselves.
In this case, participants would also add the speed of
visually simulated observer motion fully onto the target
speed, that is, the PSE would be shifted by roughly the
mean value of the visually simulated observer motion.
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To rule out scenarios (2) and (4), we had our participants judge
to what extent they felt themselves or the world moving. They
were only included into the confirmatory analyses if they had a
mean rating between -1 and -0.6 in their judgments about per-
ceived self-motion versus world-motion (see below), indicating
that they fully or mostly perceived themselves to move, rather
than theworld. To achieve that, participants made their judgments
relative to the world and not to themselves, thus ruling out sce-
nario (3), we gave them very clear instructions to this effect.

It is also possible that participants judge motion partially
relative to the world and partially relative to themselves. This
seems to be roughly equivalent to a scenario where participants
judge motion relative to the world but fail to compensate fully
for self-motion in their object speed judgments. Shifting from an
observer-centered reference frame to a world-centered reference
has been suggested as the mechanism behind the accuracy-
precision trade-off observed byDokka et al. (2015): in this view,
transposing a percept into a world-centered reference frame in-
creases accuracy, that is, enhances compensation for self-mo-
tion, at the cost of a decrease in precision.

A possible confound: Induced motion

Induced motion occurs when a stimulus is contained within a
moving reference frame. Even in a VR 3D presentation, a
texture background might be construed as such a reference
frame and therefore induce motion. Induced motion would
bias perceived speed in the opposite direction to the back-
ground motion and could therefore mask potential effects of
self-motion. That is, any induced motion would tend to cancel
out incomplete compensation for self-motion that would oth-
erwise reveal itself as motion in the same direction as the
background, leading to an overall accurate speed estimate.
The strength of induced motion depends on several factors:
The adjacency principle, which states that stimuli that are
closer together in space (in all three dimensions) lead to stron-
ger induced motion (Gogel & Koslow, 1972; Gogel &
MacCracken, 1979). Furthermore, enclosure seems to be im-
portant. Experiments on induced motion without a full rectan-
gular reference frame are rare, but even moving dots have
been shown to induce some motion, albeit to a much lesser
extent than a full frame. Brosgole and Whalen (1967), for
example, found that induced motion was halved when using
a dot as the inducing stimulus moving 0.2° from the induced
stimulus, in comparison to the effect of a full rectangular
frame at the same distance. Duncker (1929) observed that a
horizontal line moving horizontally induced much less motion
than a vertical line moving horizontally or a full rectangle,
which is arguably a scenario that comes closest to our display.

Control conditions: Setup To account for this possible con-
found, we added two additional conditions. In the first condi-
tion (“Blank Backdrop”), we minimized possible induced

motion effects by using an untextured wall backdrop (Fig.
1b). Motion might still be induced by the other objects in the
visual scene, but in the absence of any traditional frame, in-
duced motion should be minimal. All other experimental pa-
rameters were the same as for the main experiment. In the
second condition (“Textured Moving Backdrop”), we aimed
to minimize perceived self-motion while keeping the induced
motion component of the effect intact. We achieved this by
moving only the (textured) wall backdrop of the stimuli, while
keeping the rest of the visual scene (textured floor, context
objects) static. The wall backdrop moved with the same mo-
tion profile as the observer was moved visually in the other
conditions. This added another 14 staircases (six for the
Textured Moving Backdrop condition, and eight for the
Blank Backdrop condition because, for the latter, we also
added two PESTs without visually simulated observer mo-
tion) that were interleaved in a random order with the stair-
cases described above.

Probing perceived self-motion To assess whether this manip-
ulation worked as intended, after conclusion of the main body
of the experiment, we showed the participants the different
conditions (Simulated Observer Motion with Textured
Backdrop , Blank Backdrop , and Textured Moving
Backdrop) without the object motion. After they experienced
the stimulus (i.e., visually simulated observer motion in the
full room, visually simulated observer motion with the
untextured wall background, or no visually simulated observ-
er motion, but a movingwall backdrop), we asked them to rate
on a continuous scale within the virtual environment (see Fig.
1d) to which extent they had perceived themselves or the
world/wall as moving. Figure 1d shows a screenshot taken
from the judgment phase of the task. We repeated this proce-
dure four times for each condition and direction for a total of
24 trials. This took about 2 min. We included only those
participants whose mean ratings per condition were within
0.4 of the expected value (i.e., between -1 and -0.6, indicating
a high degree of observer motion, for Blank Backdrop; be-
tween 0.6 and 1, indicating a high degree of wall motion, for
Textured Moving Backdrop; and between -1 and -0.6, indicat-
ing a high degree of observer motion, for the main test condi-
tion, Simulated Observer Motion with Textured Backdrop).

Data analysis

Outlier analysis and exclusion criteria

We first filtered out trials where the pest speed was more than
1.5 times higher than the standard speed, which amounted to
trials where participants accidentally pressed the wrong button
early on the in the staircase (1% of all staircases). To filter out
staircases that did not converge satisfactorily, we computed
the average test speed of the last ten trials of both threads
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pertaining to each staircase.When the average velocity of both
threads was more than 3 m/s apart, we excluded the staircases.
This accounted for 4.4% of the remaining staircases. Please
note that this outlier analysis was added post hoc because we
failed to include an outlier analysis in the preregistration. For
full transparency, we also included our main analyses over the
unfiltered dataset in Appendix B. Please find the script we
used for this preprocessing step on GitHub at: https://github.
com/b-jorges/Motion-Perception-during-Self-Motion/blob/
master/Final%20Paper%20Data%20Preprocessing.R.

Further, we had planned to only include those participants
who satisfied our criterion in the self-motion perception task:
participants needed to give the regular condition and the blank
wall condition an average rating of > 0.6, indicating that they
mostly perceived themselves to move rather than the world; and
a rating of < -0.6 was required for the moving wall condition,
indicating that they perceived the wall to move rather than them-
selves. See Fig. 2 for the distribution of average responses.
Descriptively, only about half of the participants satisfied our
criterion for each condition. Since data collection for this study

occurred during the COVID-19 pandemic of 2020–2021, which
made access to participants for a study in VR considerably
harder, we decided to conduct an exploratory analysis as to
whether there were significant differences between the partici-
pants that satisfied out criterion and those that did not.

For this exploratory analysis, we used generalized linear
mixed modelling (GLMM), implemented in the lme4 package
(Bates et al., 2015) for R, according to the recommendations
in (Moscatelli et al., 2012). To accommodate the non-linear
character of psychophysical data, we used a probit link func-
tion. We first fitted a test model with “Subject Motion” (a
ternary variable with the levels “Static,” “Same direction,”
and “Opposite directions”), “SpeedBall Cloud” (the speed of
the ball cloud) and “Satisfied Criterion” (a binary variable
with the values “Satisfied Criterion” and “Did not satisfy
Criterion”) as well as all interactions as fixed effects, as well
as random intercepts and random slopes for “SpeedBall Cloud”
and “Subject Motion” per speed of the comparison stimulus
(“SpeedBig Target) and per Participant (“Subject“) as random
effects. We fitted this model across the whole dataset,
neglecting the differences between the Conditions (Main
Condition, Blank Wall condition, and Moving Wall condi-
tion) to keep the computational complexity within reasonable
limits. We used a probit link function. In lme4 syntax, this
model reads as follows:

Response∼SpeedBall Cloud*Subject Motion*Met Criterion

þ SpeedBall Cloud þ Subject Motionð j Subject
�

þ SpeedBall Cloud þ Subject Motionð jSpeedBig Target

�
ð2Þ

We additionally fitted a null model with the same specifi-
cations, but without “Satisfied Criterion” and the respective
interactions as fixed effects. This null model reads as:

Response∼SpeedBall Cloud*Subject Motion

þ SpeedBall Cloud þ Subject Motionð j Subject
�

þ SpeedBall Cloud þ Subject Motionð jSpeedBig Target

�
ð3Þ

We found that the test model was not significantly better
than the null model (p = 0.61). Therefore, rather than
collecting more data to satisfy our original criterion, we
proceeded with the analyses over the full dataset collected thus
far. Some information can be lost when dichotomizing a con-
tinuous variable like the self-motion measure we used for this
cut-off criterion. Therefore, we further explored whether this
measure was related to performance in any of the conditions.
In these analyses, which are reported in detail in Appendix D,
no evidence was found for such relationship. The code used
for these analyses can be found on GitHub at: https://github.

Fig. 2 Distributions of judgments for the self-motion judgment task. For
the Regular Condition and the Blank Wall condition, a rating of above
zero meant that the participant perceived themselves to move rather than
their environment, while a rating of below zero meant that they perceived
the environment to move rather than themselves. For the Moving Wall
condition, a rating above 0 means that they perceived themselves to move
rather than just the wall backdrop, while a rating below zero means that
they perceived the wall to move rather than themselves. The horizontal
bars represent the mean judgment for each participant; the bolt black dot
shows the mean across all participants; the translucent grey dots represent
one data point each. Finally, the horizontal dashed lines correspond to the
cut-off criterion we had established in the preregistration. For the Regular
Condition and the Blank Wall condition, we expected participants to
make judgments above 0.6, while we expected judgments of below -0.6
for the Moving Wall condition
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com/b-jorges/Motion-Perception-during-Self-Motion/blob/
master/Final%20Paper%20Analysis%20Selfmotion.R.

Main hypotheses: Visually simulated observer motion

To test our main hypotheses regarding the influence of visu-
ally simulated observer motion on precision and accuracy, we
performed the following tests over the main conditions, that is,
when the wall backdrop was textured and the participant was
moved visually, not the wall backdrop (“Simulated Observer
Motion with Textured Backdrop” vs. “Static with textured
backdrop”).

To assess the Just Noticeable Difference (JND) as a mea-
sure of precision, we first established a Test Model, in which
responses were fitted to a cumulative Gaussian, with subject
ID (“Subject”) and horizontal speed (Speedhorizontal, with
values -8, -6.6, 6.6, and 8 m/s) as random effects with random
intercepts and random slopes for the speed of the ball cloud
(“SpeedBall Cloud”) and the self-motion profile (“Motion
Profile"), and self-motion (binary variable “Subject Motion”
with the values “Yes” and “No”) and the speed of the ball
cloud (“SpeedBall Cloud”) and their interaction as fixed effects.
In lme4 syntax, this corresponds to:

Response∼Subject Motion*SpeedBall Cloud

þ SpeedBall Cloud þMotion Profileð jSubject
�

þ SpeedBall Cloud þMotion Profilej SpeedTarget
� �

ð4Þ

We then established a Null Model with subject and hori-
zontal speed as random effects with random intercepts, and
subject motion profile and difference in speed between target
and ball cloud as fixed effects, but not their interaction:

Response∼Subject Motionþ SpeedBall Cloud

þ SpeedBall Cloud þMotion Profileð jSubject
�

þ SpeedBall Cloud þMotion Profilej SpeedTarget
� �

ð5Þ

We then used an ANOVA to test whether the test model
was significantly better than the null model. If the interaction
term improved the model significantly, the subject motion
profile had a relevant influence on the slope of the fitted cu-
mulative Gaussian. We expected the interaction parameter to
be lower for Subject Motion = “Same Direction” and Subject
Motion = “Opposite Direction,” thus putting into evidence
that visually simulated observer motion decreases precision
in object speed judgments during self-motion.

To assess the Point of Subjective Equivalence (PSE), our
Test Model contained the same random effects as above and
the self-motion profile (ternary variable “Motion Profile”with

the values “Same Direction,” “No Motion,” and “Opposite
Direction”) and the speed of the ball cloud (“SpeedBall
Cloud”) as fixed effects (Moscatelli et al., 2012). The lme4
syntax is:

Response∼Motion Profileþ SpeedBall Cloud

þ SpeedBall Cloud þMotion Profileð j Subject
�

þ SpeedBall Cloud þMotion Profilej SpeedTarget
� �

ð6Þ

The Null Model contained the same random effects, and
only the speed of the ball cloud as a fixed effect.

Response∼SpeedBall Cloud

þ SpeedBall Cloud þMotion Profileð j Subject
�

þ SpeedBall Cloud þMotion Profilej SpeedTarget
� �

ð7Þ

We compared both models with an ANOVA and expected
the Test Model to be significantly better than the Null Model,
indicating that visually simulated observer motion had an im-
pact on the PSE. Visually simulated observer motion in the
same direction as the target should decrease perceived target
speed and visually evoked self-motion in the opposite direc-
tion of the target should increase perceived target speed.

Control conditions

For the control conditions (Textured Moving Backdrop and
Blank Backdrop), we used the model comparison [4]/[5] to
assess whether wall motion (Textured Moving Backdrop) or
visually simulated observer motion (Blank Backdrop), respec-
tively, led to any biases in perceived velocity. For Textured
Moving Backdrop, we expected that same pattern as for the
main condition, but a slightly less complete compensation,
with the untextured wall backdrop giving fewer cues about
visually simulated observermotion. Furthermore, there should
be next to no induced motion effects, which should augment
the observed effect further. For Blank Backdrop, we expected
a small effect of induced motion in the opposite direction of
the effect of visually simulated observer motion, that is, an
overestimation of speed when observer and wall moved in
opposite directions, and an underestimation of speed when
observer and wall moved in the same direction.

Power analysis

Based on the analysis plan above, we proceeded to a power
analysis via simulation. We computed the power for the main
condition (visually simulated observer motion with a textured
wall backdrop). The R code used for this power analysis is
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available online on GitHub at: https://github.com/b-jorges/
Motion-Perception-during-Self-Motion/blob/master/
PowerAnalysisMotionEstimation.R. We first created datasets
that would roughly resemble the data we are expecting to
collect. At the core of the simulation of these datasets is the
assumption that responses could be described by a cumulative
Gaussian function (which approximates what is commonly
known as “Psychometric Function”). The mean of the
cumulative Gaussian corresponds to the PSE, and its standard
deviation is proportional to the JND.We varied the means of the
Gaussian according to the self-motion profile. Pilot data show
consistently a bias to interpret the dot cloud as faster; when the
observer is static, we thus assume a PSE of 2/3 of the presented
speed. When the observer moved opposite to the target, we
expected the PSE to be higher than in the static condition, and
when the observer moved with the target, we expected the PSE
to be lower. We conducted the power analysis assuming a dif-
ference of 1/8 of the mean presented speed of the visually
evoked self-motion; Dokka et al. (2015) found biases up to
50% of the visually simulated observer motion. Their task, di-
rectionality judgments about downward motion with a lateral
left- or rightward component, bears some similarities to ours,
but is different enough to warrant a more conservative estimate
for the sake of the power analysis. We also use a more natural-
istic environment, which may render flow parsing more com-
plete. For the standard deviation, we parted from a Weber frac-
tion of 7% for the static condition (McKee, 1981), which corre-
sponds roughly to a standard deviation of 10% of the PSE.
Where the observer is moving, we expected increased JNDs
and therefore an increased standard deviation. For the sake of
this power analysis, we assume that the standard deviation in this
case might be 1/4 higher than the standard deviation for a static
observer. Dokka et al. (2015) found increases of up to 200% in
thresholds from no self-motion to visually simulated observer
motion. We choose a much more conservative value to account
for task differences. Additionally, we varied the PSE and SD per
participant bymultiplying themwith random values drawn from
a normal distribution with a mean of 1 and a standard deviation
of 0.1. To account for the fact that our staircase leads to a con-
centration of responses around the PSE, we drew the stimulus
strengths from a Cauchy distribution with a location of 1 and a

scale of 0.04.We drew 55 stimulus strengths for this distribution
(per combination of target speed and self-motion, we use two
PESTs with about 27 trials each; see above) and fed them into
the cumulative Gaussian we established per condition and par-
ticipant. This yielded the answer probability per trial. We then
used these probabilities to draw binary answers (PEST faster
yes/no) from a Bernoulli distribution for each trial.

We simulated 500 of these data sets, and conducted the
analyses described above over each for 20, 22, 24, 26, 28,
and 30 participants. We report the percentage where the Test
Model was significantly better than the NullModel in Table 1.

While the effect should be easily detectable for the
accuracy-based hypothesis, the precision hypothesis is some-
what harder to detect and requires at least 30 participants (for a
power above 0.9). Note that, as the simulation process in-
volves several sources of uncertainty, some variability is to
be expected in the results, which explains why the power
difference between 22 and 24 participants is smaller than the
difference between 24 and 26 participants.

Our predictions for the effect of induced motion, which we
want to probe for in the control conditions, are about accuracy.
Considering that it is generally easier to detect accuracy dif-
ferences than precision differences with the above method, we
are confident that the participant number that allows us to
detect the precision main effect will also allow us to detect
any relevant effect of induced motion.

Pre-existing data

We collected data from seven pilot participants in the main
condition (visually simulated observer motion with a texture
wall backdrop). One (s07) was excluded because some of her
PESTs did not converge. Two participants (s01 and s02) had
previously done the task in 2D, but only their 3D data were
included in the analysis. Pilot results are largely in line with
our predictions: In terms of JNDs, we found that our Test
Model was significantly better than the Null Model (p =
0.02), and effects trended in the direction of our hypothesis
(regression coefficients of -0.078, SE = 0.034, for the interac-
tion between visually simulated observer motion present and
the difference in speed, which corresponds to a lower preci-
sion). For the PSEs, we found that our Test Model was sig-
nificantly better than the Null Model (p < 0.001), and the
effects were largely in the expected direction (regression co-
efficients of 0.072, SE = 0.05, for the main effect of congruent
motion, and -0.25, SE = 0.053, for the main effect of incon-
gruent motion; which corresponds to a lower perceived speed
for congruent motion and visually evoked self-motion, and a
higher perceived speed for incongruent motion and visually
evoked self-motion). The code used for this analysis as well as
the pilot data are available on GitHub (https://github.com/b-
jorges/Motion-Perception-during-Self-Motion/blob/master/
AnalysisPilotData.R).

Table 1 Simulated power values for 20, 22, 24, 26, 28, and 30
participants

N Power accuracy Power precision

20 1 0.744

22 1 0.800

24 1 0.812

26 1 0.852

28 1 0.876

30 1 0.910
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The pilot data were not included in the final analysis; we
recruited 30 new participants.

Results

Effect of visual self-motion on accuracy and precision
– main experimental condition

The code for the following analyses can be found here (on
GitHub: https://github.com/b-jorges/Motion-Perception-
during-Self-Motion/blob/master/Final%20Paper%
20Analysis.R).

Pre-registered analyses For our main hypotheses about the
effects of visually simulated self-motion on precision and ac-
curacy, we fitted the GLMMs specified above and used model
comparisons to assess whether the variable of interest had a
significant impact on performance (see Fig. 3). We first com-
pared the precision test GLMM (Eq. 4) to the precision null
GLMM (Eq. 5). A Likelihood Ratio Test (implemented in the
anova() function from base R) showed that the test GLMM
was not significantly better than the Null GLMM (p = 0.067),
that is, we found no evidence that self-motion changed preci-
sion in the main experimental condition.

We then proceeded to testing the influence of the self-
motion profile on PSEs by comparing the Test GLMM

Fig. 3 For illustration purposes, we fitted psychometric functions to the
full staircase data for each participant, self-motion condition, motion pro-
file, and SpeedTarget. We used the quickpsy package (Linares & López-
Moliner, 2016) for R, which fits cumulative Gaussian functions by a
direct likelihood minimization and yields the means of these functions
as measure of accuracy and the standard deviations as a measure of
precision. Please note that this was done only for data visualization as
our statistical analysis sidesteps the need to fit individual psychometric
functions for each staircase. a and b The big solid dots correspond to the
difference between the mean PSEs (a) and standard deviations of the

fitted psychometric functions (b) across participants and velocities in
the “Same Direction” and “Opposite Directions” conditions and the
“Static” condition, while the translucent dots illustrate individual PSEs
or standard deviations per participant and SpeedTarget. a The dotted line
also corresponds to 100% compensation for the Same Direction and
Opposite Directions conditions. The dashed lines on the other hand cor-
respond to the expected value for 0% compensation for self-motion, that
is, when 100% of the visually simulated self-motion is added on or
subtracted from the object motion

Table 2 Regression coefficients, standard errors, and 95% confidence intervals for the Generalized Linear Mixed Model we set up to test for a
differential impact of self-motion in the same direction as object motion and self-motion in the opposite direction of object motion

Regression
Coefficient

Standard
Error

95% CI
(lower)

95% CI
(upper)

Significant

Intercept -2.76 0.25 -3.26 -2.22 *

Self-motion: Same direction 0.03 0.16 -0.34 0.34 n.s.

Self-motion: Opposite directions 0.2 0.15 -0.13 0.52 n.s.

Speed (Ball Cloud) 0.59 0.05 0.5 0.67 *

Speed (Ball Cloud) * Self-motion: Same direction (Interaction) -0.01 0.02 -0.06 0.04 n.s.

Speed (Ball Cloud) * Self-motion: Opposite directions
(Interaction)

-0.06 0.03 -0.12 -0.003 *
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specified in Equation 6 to the Null GLMM specified in
Equation 7. A Likelihood Ratio Test showed that the test
GLMM was not significantly better than the null GLMM (p
= 0.361), that is, our data failed to provide evidence that the
motion profile had a significant impact on PSEs.

Exploratory analyses We further conducted an exploratory
analysis to assess whether precision was affected differentially
by visually simulated self-motion in the same direction as the
target and in the opposite direction of the target. To avoid hav-
ing to subset the data, we computed bootstrapped 95% confi-
dence intervals for all fitted regression coefficients rather than
using model comparisons. We used the same GLMM as for the
main confirmatory hypothesis, but rather than the variable
“Self-motion: Yes/No” we used the variable “Motion Profile:
Static/Same Direction/Opposite Directions” as the independent
variable. We then used the confint() function from base R to
compute the 95% confidence intervals for all fixed effects. See
Table 2 for all regression coefficients, the respective standard
errors, as well as the 95% confidence intervals. As evident from
the table, only the regression coefficient pertaining to the influ-
ence of self-motion on precision in theMotion profile: Opposite
Directions” was significantly different from zero (the interac-
tions between the fixed effect “Speed_Ball Cloud” and
“Motion Profile: Opposite Directions”). It was negative, that
is precision in this this motion profile was lower.

In terms of PSEs, to explore a differential effect of visually
simulated self-motion in the same direction as object motion
and self-motion in the opposite direction as object motion, we
used the 95% confidence intervals we computed for the Test
GLMM fitted for precision. As evident from the regression
coefficients and confidence intervals reported in Table 2, nei-
ther visually simulated self-motion in the same direction as the
object nor in the opposite direction had a significant impact on
PSEs (fixed effect “Self-motion: Same direction” and “Self-
motion: Opposite direction,” respectively).

The regression coefficient can be interpreted as the mean
degree of compensation for visually induced self-motion
across all participants. A regression coefficient of -1 for

“Same direction” and a regression coefficient of 1 for
“Opposite direction” would mean no compensation for visu-
ally simulated self-motion, while regression coefficients of 0
would be synonymous with full compensation. Values be-
yond these limits would mean negative compensation or over-
compensation, respectively. For the “Same Direction”motion
profile, we thus found a compensation of 103%, that is, a very
slight overcompensation, while we found an 80% compensa-
tion for the “Opposite Directions” motion profile.

Effect of visual self-motion on accuracy and precision
– control conditions

Blank Wall Condition: preregistered analyses We first tested
whether visually simulated self-motion had any impact on preci-
sion in the BlankWall condition by fitting the Test GLMM (Eq.
4) and the Null GLMM (Eq. 5) to the relevant subset of the full
dataset. A Likelihood Ratio Test showed that the Test GLMM
was not significantly better than the Null GLMM (p = 0.379),
indicating that visually simulated self-motion did not have a
significant impact on precision in this condition.

We then tested whether visually simulated self-motion af-
fected PSEs even with a blank wall backdrop. A Likelihood
Ratio Test revealed that the Test GLMM (see Eq. 6) was not
significantly better than the Null GLMM (see Eq. 7; p =
0.379), that is, we found no evidence that visually simulated
self-motion influenced PSEs.

Blank Wall Condition: exploratory analyses As for our main
hypothesis, we explored to what extent visually simulated
self-motion affected precision and accuracy differentially
when simulated self-motion and object motion were in the
same direction or in opposite directions (see Fig. 4a and b).
As above, we computed 95% confidence intervals for all fixed
effects in the full GLMM (specified in Eq. 4). The results for
the blank wall subset of the dataset can be found in Table 3.
Here, we found that visually simulated self-motion in the op-
posite direction of the target elicited significantly lower
precision.

Table 3 Intercept and regression coefficients along with the corresponding standard errors and confidence intervals for the Generalized Linear Mixed
Model we fitted to test for the impact of visually simulated self-motion with a blank wall backdrop on accuracy and precision

Regression
Coefficient

Standard
Error

95% CI
(lower)

95% CI
(upper)

Significant

Intercept -2.77 0.26 -3.33 -2.17 *

Self-motion: Same direction 0.06 0.15 -0.33 0.37 n.s.

Self-motion: Opposite directions 0.32 0.15 -0.04 0.64 n.s.

Speed (Ball Cloud) 0.59 0.05 0.48 0.69 *

Speed (Ball Cloud) * Self-motion: Same direction (Interaction) -0.01 0.03 -0.06 0.05 n.s.

Speed (Ball Cloud) * Self-motion: Opposite directions
(Interaction)

-0.08 0.02 -0.14 -0.02 *
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As for compensation, visually induced self-motion in the
same direction as the target was compensated for, on average,
by 106%, that is, we observed a slight overcompensation.
Visually induced self-motion in the opposite direction was
compensated for by 68%.

Moving Wall Condition: preregistered analyses Lastly, we
tested whether the moving wall condition impacted precision
and accuracy. To test for the impact of the moving backdrop
on precision, we fitted the relevant GLMMs (Eqs. 4 and 5) and
compared them with a Likelihood Ratio Test. In agreement
with our hypothesis, the Test GLMM was not significantly
better than the Null GLMM (p = 0.086), that is, the moving
wall did not have a significant impact on precision.

For accuracy, we fitted the Test GLMM (Eq. 6) and the
Null GLMM (Eq. 7) on the relevant subset of the data and
compared them with a Likelihood Ratio Test. The Test
GLMM was significantly better than the Null GLMM (p =
0.03), counter to our hypothesis that the moving wall would
not impact PSEs. The intercept for the Test GLMMwas -2.67
(SE = 0.26). We found regression coefficients of 0.09 (SE =

0.06) for the fixed effect “Self-motion: Same Direction,” -0.06
(SE = 0.08) for the fixed effect “Self-motion: Opposite direc-
tions,” and 0.57 (SE = 0.05) for “SpeedBall Cloud”.

MovingWall Condition: exploratory analyses Lastly, we again
performed an exploratory analysis on whether wall backdrop
motion in the same direction as the object affected accuracy or
precision differently than wall backdrop motion in the oppo-
site direction of the object (see Fig. 4c and d). As for the main
hypothesis and the first control condition, we computed 95%
confidence intervals for the GLMM specified as per Equation
4. The detailed results can be found in Table 4; no significant
relationship was observed between any self-motion profile
and accuracy or precision in this condition.

Modelling

Since we used a relatively ecological task, there are a number
of different effects at play at the same time. Accuracy may be
influenced not only by visually simulated self-motion but also

Fig. 4 As for Fig. 3, but for the Blank Wall condition (a and b) and for the Moving Wall condition (c and d)
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by induced motion, while precision may be related to retinal
velocities (which vary between the self-motion profiles) as
well as the visually simulated self-motion. Therefore, we de-
cided to prepare a model to allow to disambiguate the relative
distributions of each of these effects and isolate the effects of
self-motion. The four effects mentioned above, each impact
performance differentially:

– Induced motion should lead to an overestimation of ob-
ject speed when the object moves in the same direction as
the observer, and to an underestimation of object speed
when the object moves in the opposite direction. It should
be present in the main experimental condition and in the
moving wall condition, but it should be minimized in the
blank wall condition.

– Self-motion should lead to an underestimation of object
speed when the object moves in the same direction as the
observer, and to an underestimation of object speed when
the object moves in the opposite direction. It should be
present in themain experimental condition and in the blank
wall condition, but minimized in the blank wall condition.

– The retinal speed corresponding to object motion is
higher when object and observer move in opposite direc-
tions thanwhen the observer is static, and it is lower when
object and observer move in the same direction. By
Weber’s Law, the highest retinal velocities should elicit
the lowest precision (in absolute terms) and vice versa.

– Self-motion requires the observer to parse out retinal
stimulation due to self-motion to obtain an accurate rep-
resentation of object speed. This process has been shown
to add noise to the object speed estimate (Dokka et al.,
2015). This effect should be present whenever the observ-
er is moved visually through their environment.

We therefore built two models, one for accuracy and one
for precision, to disentangle these effects. The implementation
in R is available for download on GitHub at: https://github.
com/b-jorges/Motion-Perception-during-Self-Motion/blob/
master/Final%20Paper%20Modelling.R.

Accuracy model

The Model We used the following model:

PSEStatic þ EffectSelfmotion*ConditionSelf −Motion

þ EffectInduced Motion*ConditionInduced Motion ð8Þ

PSEStatic is the PSE in the static condition; we used the PSE
in the static condition with the texture wall as baseline for the
main experimental condition (textured wall, visually
simulated self-motion) and the moving wall condition (texture
wall, wall moves), and the PSE in the static Blank Wall con-
dition (blank wall, visually simulated self-motion).
EffectSelfmotion captures how strongly visually simulated self-
motion biased perception and is fitted to the data. Wall
ConditionSelf − Motion took a value of 1 when self-motion
was expected to lead to an overestimation of speed (when
self-motion and object motion were simulated in opposite di-
rections), a value of -1 when an underestimation of speed was
expected (when self-motion and object motion were simulated
in the same direction) or a value of 0 when self-motion was
not expected to bias speed perception (when no self-motion
was simulated, including those conditions where the wall
moved). EffectInduced Motion is an indicator for the strength of
the motion that our stimulus induced and is the second param-
eter that is fitted to the data. Lastly,ConditionInduced Motion could
take the value 1 when the motion induced by the stimulus
should augment perceived speed (i.e., either when the wall
moved in the opposite direction to the stimulus in the Moving
Wall Condition, or when the observer experienced visual self-
motion in the same direction as the stimulus in the Main
Experimental Condition); it took the value -1 when the motion
induced by the wall backdrop should decrease perceived speed,
such as when the wall moved in the same direction as the
stimulus (in the Moving Wall Condition) or when visual self-
motion in the opposite direction of the target motion was stim-
ulated (in the Main Experimental Condition); and it took the
value 0 when we expected no effect of induced motion, that is,
when both wall and observer were still (in theMovingWall and

Table 4 Intercept and regression coefficients along with the corresponding standard errors and confidence intervals for the Generalized Linear Mixed
Model we fitted to test for the impact of the moving wall backdrop on accuracy and precision

Regression
Coefficient

Standard
Error

95% CI
(lower)

95% CI
(upper)

Significant

Intercept -2.81 0.26 -3.37 -2.28 *

Self-motion: Same direction 0.24 0.13 -0.05 0.54 n.s.

Self-motion: Opposite directions 0.19 0.15 -0.14 0.56 n.s.

Speed (Ball Cloud) 0.6 0.05 0.49 0.71 *

Speed (Ball Cloud) * Self-motion: Same direction (Interaction) -0.03 0.02 -0.09 0.02 n.s.

Speed (Ball Cloud) * Self-motion: Opposite directions
(Interaction)

-0.05 0.02 -0.12 0.01 n.s.
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Main Experimental Condition, respectively) or when the wall
backdrop was blank (in the Blank Wall Condition).

Fitting procedure Fitting this model required the PSEs for each
participant in each of the experimental conditions. For this rea-
son, we excluded all participants for whom we had excluded
one or more staircases in the initial outlier analysis. Twenty-one
participants remained. We then proceeded to fitting the model
by minimizing the root mean squared error (RMSE) between
the model predictions and the observed PSEs for all conditions
in each participant individually. We used the optim() function
from base R (RCore Team, 2017) for the optimizationwith 0 as
initial values for both EffectSelfmotion and EffectInduced Motion. We
thus obtained predictions for each staircase from each partici-
pant as well as values for EffectSelfmotion and EffectInduced Motion

for each participant.

ResultsAs evident from Fig. 5a, our model makes qualitative-
ly good predictions of the participants’ PSEs, and we obtained
a mean RMSE of 0.37 m/s and a median RMSE of 0.44 m/s.
For EffectSelfmotion, we found a mean value of 0.09 m/s and a
median value of 0.11m/s. That is, across the whole population
participants compensated for about 90% of the self-motion
(which we had simulated at 1 m/s). However, as evident from

Fig. 5b, there was a large spread of individual differences. For
EffectInduced Motion, we found a mean value of 0.11 m/s and a
median value of 0.09 m/s, that is, 1 m/s wall movement elic-
ited about 0.1 m/s of motion. The distribution of this value can
be found in Fig. 5c.

Precision model

The model We constructed the model as follows:

SDStatic þ EffectSelf −Motion*ConditionSelf −Motion

þ EffectRetinal Velocity*Retinal Velocity ð9Þ

where SDStatic is the standard deviation of the psychometric
function in the Static conditions, again, as above, separately
for the Blank Wall Condition and the Main Experimental
Condition. EffectSelf − Motion is a free parameter that captures
the extent to which visually simulated self-motion lowers or
raises precision (as measured by the standard deviation of the
fitted psychometric functions). This parameter is fitted to the
data. ConditionSelf − Motion can take the value 1, when visual
self-motion was simulated (same direction and opposite direc-
tion trials both in the Blank Wall Condition and the Main
Experimental Condition), or 0 when no self-motion was

Fig. 5 aModel predictions for the Point of Subjective Equivalence (PSE)
model plotted against the PSEs observed in the participants. The dashed
lines represent unity, where all the dots should fall if the model predicted
performance perfectly. The different colors indicate the different experi-
mental conditions (Main Experimental Condition, BlankWall Condition,

and Moving Wall Condition). b The distribution of EffectSelfmotion for the
21 participants used to fit the model. c The distribution of EffectInduced
Motion for all participants included in this modelling exercise
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simulated (including Moving Wall Condition). EffectRetinal
Velocity is also fitted to the data and captures how the retinal
speed of the stimuli predicts differences in standard deviations
of the fitted psychometric functions. Retinal Velocity is the
retinal speed over the 0.5 s a trial lasted. See Table 5 for the
exact values for each condition.

Fitting procedureWe used the same procedure as for the PSE
model, with the only difference being that we used the stan-
dard deviations of the fitted psychometric functions (as a
proxy for precision) as target instead of the measured PSEs.

Results Qualitatively, the fit of this model was worse than for
the PSE model. The mean RMSE across all participants is
0.75 m/s and the median RMSE is 0.6 m/s. Please see Fig.
6a for an illustration of the fit. We found a mean EffectSelf −

Motion of 0.031 m/s, the median being 0.025 m/s. That is, the
standard deviations of the fitted psychometric functions were
higher by a very small amount in response to visual self-mo-
tion. SD For EffectRetinal Velocity, the mean was 0.0016 °/s, and
the median was 0.0017 °/s. Higher retinal velocities corre-
sponding to the target were thus connected with slightly lower
precision overall, albeit the spread across participants was
large. Note also that the retinal velocities were two to three
orders of magnitude higher than any effect we observed here.
Please refer to Figs. 6b and 6c for the full distributions of fitted
values.

Lastly, to test whether the relationship between compensa-
tion for self-motion and precision found by Dokka and her
colleagues (2015) held in our dataset as well, we tested the
correlation between EffectSelf − Motion, PSEs and EffectSelf −

Motion, JNDs. We found a non-significant regression coefficient

Table 5 Mean retinal speeds
throughout the 0.5 s of
presentation of the big target in
the different motion profiles and
conditions

Condition Target speed Retinal Speed

Self-motion simulated in same direction as target 6.6 m/s 27.6 °/s

8 m/s 32.5 °/s

Self-motion simulated in opposite direction as target 6.6 m/s 73.3 °/s

8 m/s 82.2 °/s

No self-motion simulated (including Moving Wall Condition) 6.6 m/s 46.6 °/s

8 m/s 56.2 °/s

Fig. 6 a As for Fig. 5a, but for the predicted and observed standard deviations of the fitted psychometric functions. b Distribution of fitted values for
EffectSelf − Motion, JNDs. c Distribution of fitted values for EffectRetinal Velocity
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of -0.2, indicating that higher compensation for visually in-
duced self-motion was (descriptively) related to lower preci-
sion, even though this correlation was not significantly differ-
ent from zero (p = 0.187). However, keep inmind that we only
obtained one value per participant, and we used a reduced
dataset to fit this model, that is, we have an effective sample
size of 21. A failure to detect a correlation may thus be due to
lacking power rather than the absence of a relationship.

Discussion

We did not find evidence that participants’ perception of object
speed was biased by visually simulated self-motion. That is,
they generally compensated effectively for visual self-motion.
We found evidence for an (on average) full compensation both
in the Main Experimental Condition (103%) and the Blank
Wall Condition (106%) when self-motion was simulated
visually in the same direction as the target motion. For visual
self-motion in the opposite direction of the target, we found a
descriptively lower degree of compensation: 80% in the Main
Experimental Condition and 68% in the BlankWall Condition.
Please note that these were, however, not significantly different
from a complete (100%) compensation, with 95% confidence
intervals of [48; 112] for the main experimental Condition and
[36; 104] in the Blank Wall Condition. While we did find a
significant effect of induced motion on PSEs in the Moving
Wall Condition, we could not pinpoint in which motion profile
this effect occurred in subsequent exploratory analyses. It has
been suggested that motion is only induced when the inducing
stimulus and the target are in the same plane of fixation
(Heckmann & Howard, 1991); since in our case the inducing
stimulus (the wall) was behind the target, albeit at a relatively
small distance (the wall was simulated 2 m behind the target,
which in turn was simulated 8 m in front of the observer), this
may have weakened the effect of induced motion in our exper-
iment. Fitting the PSE model showed similarly that participants
compensated to a large extent for visually simulated self-mo-
tion, albeit with a large between-participant variability, while
induced motion seemed to influence performance as well,
equally subject to a large between-participant variability. This
high variability may in part be related to the fact that our par-
ticipants completed the experiment in their own home without
direct supervision by the researchers.While this should, in prin-
ciple, not bias results, it may well increase the variability in
responses, both within and between participants.

Further, we found that precision was significantly lower for
visually simulated self-motion in the opposite direction of
object motion, both in the Blank Wall Condition and in the
Main Experimental Condition. The Moving Wall Condition,
on the other hand, did not elicit a decrease in precision. This
indicates that precision was indeed impacted by visually sim-
ulated self-motion rather than because of the relative

movement of the backdrop and the stimulus. Since the retinal
speed corresponding to the target was lower when self-motion
was simulated visually in the same direction as the target than
when the observer was static, and it was higher for visual self-
motion in the opposite direction of the target, according to
Weber’s Law, precision (in absolute terms) should be higher
in the former and lower in the latter case. To help disentangle
the effect of Weber’s Law and the effect of self-motion on
precision, we fitted another model to the precision data. This
model indicated, surprisingly, that the effect of Weber’s Law
played only a very small role in our experiment: that is, we did
not find evidence that lower retinal speeds were connected to
meaningful changes in precision. Similarly, the effect of visu-
ally simulated self-motion on precision was found to be ex-
tremely small on average and highly variable from participant
to participant.

Our findings in term of compensation for visually simulat-
ed self-motion are to some extent in line with the findings of
Dokka et al. (2015) for a different task meant to assess the
same perceptual process: in their experiment, a target was
presented moving vertically with only a small horizontal com-
ponent. During presentation, participants could experience lat-
eral self-motion visually, vestibularly, or both visually and
vestibularly at once, and had to judge on each trial whether
the horizontal velocity component of the target was directed
towards the left or towards the right. The authors found a lack
of compensation for self-motion in all conditions: vestibular
cues alone did not allow participants to compensate for self-
motion, visual cues led to a compensation of 47% and com-
bined visual and vestibular cues enabled a compensation of
58%. For our purely visual self-motion, we found a more
complete compensation: when observers were moved visually
in the same direction as the target, compensation was on av-
erage complete, while visual self-motion in the opposite di-
rection of the target was compensated at 80% when the wall
backdrop in the environment was textured (and led thus pre-
sumably to a more accurate self-motion estimate), and 68%
when the wall backdrop was blank. Dokka et al. (2015) found
also that a more complete compensation for self-motion was
related to lower precision. Apart from the differences in the
task, one notable difference between our study and Dokka
et al. (2015) was that they projected their visual stimulus onto
a wall in front of the participant and the environment was a
starfield.We, on the other hand, immersed participants in a 3D
environment that was rich in visual cues to self-motion. It thus
stands to reason that our more realistic, immersive environ-
ment allowed participants to flow parse more successfully and
recover a more accurate representation of target speed even
during visually simulated self-motion. An alternative reason
for why our participants compensated more fully for visual
self-motion could be the Gaussian self-motion profile we sim-
ulated. In principle, if participants solved the task based on the
retinal speeds they observed in the very beginning and very
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end, where the simulated self-motion speed was very low, while
ignoring the faster part in the middle, they could solve this task
with a reasonable degree of accuracy without taking into account
self-motion at all. However, this would have to occur within the
first and/or last 50ms, when the visually simulated self-motion
speed was negligible. Human speed discrimination is
much less precise when motion is presented for less
than 100 ms (McKee & Welch, 1985). It thus seems
unlikely that our participants used such strategy. We
further were not able to replicate the negative correla-
tion between completeness of compensation and preci-
sion observed by Dokka et al. (2015). While we did
find a trend in the same direction, this trend was not
statistically significant, which may, however, be due to
the relatively low power in our statistical assessment of
this relationship.

Some other studies have assessed completeness of com-
pensation for self-motion and precision changes in response
to self-motion in a variety of tasks. Niehorster and Li (2017)
found incomplete compensation for visual self-motion in a
retinal motion nulling paradigm similar to the one employed
by Dokka et al. (2015). While this lack of compensation was
found consistently for a variety of displays that manipulated
the availability of local and global motion cues, none of these
displays aimed to provide an ecological environment for the
observer. Further, Xie et al. (2020) used the same paradigm to
assess the contributions of visual and non-visual cues to flow
parsing. They found that visual cues alone evoked compensa-
tion for about 80% of the self-motion, with non-visual cues
alone accounting for 50%, and practically full compensation
was observed when both types of cues were combined. A
similar observation was made by Dyde and Harris (2008),
who also found incomplete compensation when self-motion
was presented only visually. Both studies, however, used dis-
plays that were less ecological than ours, which may explain
why, under some circumstances, our participants were able to
compensate fully for self-motion even though self-motion was
presented only visually. Finally, Probst et al. (1986) observed
higher thresholds (that is, lower precision) in the detection of
object-motion for different types of self-motion induced by
vestibular, visual, or cervico-somatosensory stimulation,
again with a rudimentary display providing self-motion cues.
It is thus likely that the completeness of compensation for self-
motion is affected by the richness of visual cues to self-mo-
tion, with more ecological displays such as ours facilitating a
more accurate self-motion estimate and thus more complete
compensation. Similarly, self-motion might lead to lower pre-
cision particularly when self-motion cues are available only in
one modality (e.g., visually) and/or the visual environment is
impoverished.

Lastly, did our participants interpret the visually simulated
self-motion as we expected them to? Participants either per-
ceived themselves as moving and theworld as static or the world

as moving and themselves as static; and they could judge object
motion relative to theworld or relative to themselves. The logical
space for this question consisted thus of the combination of each
of these possibilities, that is: (1) world static and motion judged
relative to world (intended); (2) world moving and motion
judged relative to the world; (3) world static and motion judged
relative to observer; (4) world moving and motion judged rela-
tive to observer. The latter two interpretations would predict
shifts of the PSE by exactly 1 m/s, that is, we would expect
PSEs to be concentrated around the dashed lines in Figs. 3a
and 4a.While a few participants did display this behavior, visual
inspection suggests that the majority compensated at least to
some extent for visual self-motion. That is, we found little evi-
dence that participants judged motion relative to themselves. For
scenario (2), we would expect no shifts in PSEs between the
“Static” motion profile and the “Same Direction” and
“Opposite Directions” profiles. And, indeed, we found no sig-
nificant differences between these conditions. Furthermore,
when assessing participants’ sense of self-motion in the environ-
ment explicitly, we found that some of them perceived the world
as moving rather than themselves as moving (see Fig. 2).
However, the majority of the participants did interpret the visual
stimulation as self-motion, even though only about half of them
satisfied our strict criterion of judgments above 0.6 on a scale of -
1 (only world motion perceived) to 1 (only self-motion per-
ceived). Additionally, when testing the hypothesis that partici-
pants who satisfied this criterion performed differently in our
main task from participants who did not, we found no evidence
for a difference in performance between both groups.
Nonetheless, the possibility remains that we were not able to
capture significant biases in response to visual self-motion be-
cause participants interpreted the world as moving and judged
object motion relative to the world.

Conclusions

We set out to study to what extent visually simulated self-motion
might bias perceived lateral object motion and lead to lower
precision. We found no biases at all when visual self-motion
and target motion went in the same direction, while visual self-
motion was compensated for by about 80% when they went in
opposite directions. Precision was slightly lower when self-
motion was simulated visually in the opposite direction to the
target, but we found no evidence for a decrease when observer
and target moved in the same direction. While we have
discussed some caveats, such as the possibility that participants
misinterpreted self-motion as world motion, we attribute our
participants’ ability to compensate for the retinal motion intro-
duced by our simulation of their self-motion as being largely due
to the rich, ecologically valid nature of our virtual reality display.
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Appendix

List of Deviations from Preregistration

In the following, we disclose all changes with regards to the
preregistration of this study.

A series of changes have been made to allow for data col-
lection during the COVID-19 pandemic of 2020-2021. We
packaged the experiment such that individuals who owned
VR equipment would be able to run the experiment by them-
selves from the safety of their homes. To this end, we modi-
fied the original experiment as follows:

– To reach a larger group of potential participants, we ad-
justed our code to allow for testing on all VR devices
capable of running Unity executables, rather than limiting
it to Oculus Rift CV1 as originally planned.

– Instead of a finger mouse, responses were given with the
keyboard.

– We prepared detailed instructions (in PDF and video for-
mat) that allowed participants to administer the experi-
ment to themselves at home.

– Rather than undergrads, we tested participants who were
recruited by word of mouth, on online communities, and
through the company XpertVR.

– Instead of the Stereo Fly stereo vision test, we pro-
grammed a custom stereo-blindness test that we present-
ed in VR. In this program, we showed participants 20
trials that each consisted of two rectangles. They were
asked to judge which of the two were closer. One of the
rectangles was presented slightly closer to the observer
and we adjusted the size of this rectangle such that its
retinal size was the same. With that, participants could
only rely on disparity, which we kept constant at 200
arcseconds across all 20 trials, to solve the task. More
information on the reasoning behind this task, as well as
the underlying math, and on how to download the Unity
project and the executable can be found on GitHub at:
https://github.com/b-jorges/Stereotest.

We further implemented the following changes that were
unrelated to remote testing:

– We failed to include an outlier analysis in the original
preregistration. We remedied this oversight by conclud-
ing a very liberal outlier analysis, and we also included
the results we obtain without excluding any data in the
appendix.

– We added some exploratory analyses that are clearly
marked as such.

– We added a modelling section to ascertain quantitatively,
rather than just qualitatively, to what extent the effects of

visually simulated self-motion, inducedmotion, and retinal
velocities (by virtue of Weber’s Law) impacted results.

– We noticed that the results of our statistical analysis did not
match the plotted data (either in strength or in direction of
the effect). We re-ran the analyses and substituted some of
the independent variables in the model specifications; we
switched the difference in speed between the test stimulus
and the comparison stimulus for the speed of the compar-
ison stimulus both as fixed effects and as random effects.
We also added random slopes for motion profile per par-
ticipant and target speed. Using Likelihood Ratio Tests, we
confirmed that the model fits were better for this configu-
ration, which is an indicator of less biased results. We
report both the model comparisons and the results
of the preregistered analyses in Appendix B.

Deviations from original analysis plan

When comparing the results of the planned analysis with the
plotted data, we noticed certain incompatibilities.
Misspecifications of fixed and random effects in Generalized
Linear Mixed Models are known to bias results. In the analy-
ses reported in the body of the paper we therefore used a
different dependent variable (the speed of the ball cloud rather
than the difference in speed between the ball cloud and the
target ball) and a more complete set of random effects (the
speed of the ball cloud and the self-motion profile rather than
the difference in speed between the ball cloud and the target
ball). To determine the adequate model specification, we com-
pared four different setups, the preregistered one (see
Wilkinson & Rogers’ notation in Eq. 10 below); one where
we used the velocity of the ball cloud instead of the difference
in speed between ball cloud and target ball (see Eq. 11 below);
one where we added random slopes for the Motion Profile per
Participant and per Speed of the target ball (see Eq. 12 below);
and one where we made both changes (see Eq. 13 below).

Response∼Motion Profile*Difference

þ Differenceð jSubject
�
þ Differencej SpeedTarget
� �

ð10Þ

Response∼Motion Profile*SpeedBall Cloud

þ SpeedBall Cloudð jSubject
�

þ SpeedBall Cloud j SpeedTarget
� �

ð11Þ

Response∼Motion Profile*Difference

þ DifferenceþMotion Profileð jSubject
�

þ DifferenceþMotion Profilej SpeedTarget
� �

ð12Þ
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Response∼Subject Motion*SpeedBall Cloud

þ SpeedBall Cloud þMotion Profileð jSubject
�

þ SpeedBall Cloud þMotion Profilej SpeedTarget
� �

ð13Þ

To assess that these model specifications were a better fit
than the ones proposed in the original preregistration, we used
Likelihood Ratio Tests, which allow us to compare the fit of
two statistical models and ascertain which is more adequate
for the data at hand.

We fitted these models for each condition (Main
Experimental Condition, Blank Wall Condition, Moving
Wall Condition) separately and compared successively
whether Model 11 was significantly better than Model 10,
then if Model 12 was better than Model 11, and finally if
Model 13 was better than Model 12. We found that Model
11 was better thanModel 10 for all conditions (with p < 0.001
for all conditions). Model 12 was better than Model 11 for the
Main Experimental Condition (p = 0.036) and the Blank Wall
Condition (p = 0.002), but not for the MovingWall Condition
(p = 1). For the Moving Wall Condition, we therefore com-
paredModel 13 toModel 11. For the other two conditions, we
compared Model 13 and Model 12. For the Main
Experimental Condition and the Blank Wall Condition,
Model 13 was better than Model 12 (p < 0.001), and for the
Moving Wall Condition, Model 13 was better than Model 11
(p = 0.039). We thus used the model specification laid out in
Equation 13 for all analyses.

Main results according to the original analysis plan

For full transparency, we further report the results when fol-
lowing the original analysis plan, that is, using the model
specification described in Equation 10 and without any outlier
analysis.

Main experimental condition
When following the original data analysis plan (without

removing any outliers and using the difference between test
and comparison speed as independent variable), the test model
for precision (Eq. 4) was still significantly better than the null
model (Eq. 5; p < 0.001). In the same vein, the PSE test model
(Eq. 6) was significantly better than the PSE null model (Eq.
7; p = 0.006). See Table 6 for regression coefficients, standard
errors and 95% confidence intervals for the corresponding
exploratory analyses for the full model (Eq. 4) used for the
exploratory analyses.

Blank Wall Condition
The precision test model (Eq. 4) was again better than the

corresponding null model (Eq. 5; p = 0.028) for the Blank
Wall Condition, and the PSE test model (Eq. 6) was better
than the PSE null model (Eq. 7; p = 0.022) as well. Table 7
displays the regression coefficients, standard errors, and 95%
confidence intervals for the full model (Eq. 4) used for the
exploratory analyses.

Table 7 As for Table 3, but for the full dataset without removing any outliers

Regression Coefficient Standard Error 95% CI (lower) 95% CI (upper) Significant

Intercept 1.41 0.18 1.07 1.79 *

Self-motion: Same direction 0.03 0.06 -0.09 0.16 n.s.

Self-motion: Opposite directions -0.22 0.05 -0.33 -0.1 *

Difference 0.55 0.04 0.47 0.63 *

Difference * Self-motion: Same direction (Interaction) 0 0.02 -0.04 0.06 n.s.

Difference * Self-motion: Opposite directions (Interaction) -0.07 0.02 -0.11 -0.02 *

Table 6 As for Table 2, but for the full dataset without removing any outliers

Regression Coefficient Standard Error 95% CI (lower) 95% CI (upper) Significant

Intercept 1.53 0.2 1.23 1.91 *

Self-motion: Same direction -0.07 0.06 -0.18 0.07 n.s.

Self-motion: Opposite directions -0.35 0.06 -0.48 -0.22 *

Difference 0.58 0.04 0.51 0.66 *

Difference * Self-motion: Same direction (Interaction) -0.02 0.02 -0.07 0.03 n.s.

Difference * Self-motion: Opposite directions (Interaction) -0.11 0.02 -0.15 -0.06 *
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Moving Wall Condition
The precision test model (Eq. 4) was significantly better

than the null model (Eq. 5; p < 0.001) for the Moving Wall
Condition and the PSE test model (Eq. 6) was significantly
better than the null model (Eq. 7; p < 0.001). In Table 8, we

detail the regression coefficients, standard errors, and 95%
confidence intervals for the full model (Eq. 4) used for the
exploratory analyses.
Summary

When comparing the results as per the initial analysis plan,
without outlier analysis and with the original GLMM setup (as
presented in Appendix C), to the results presented in the main
paper, stark differences can be observed. As shown in
Appendix B, our initial analysis plan, particularly with regards
to the model specifications of the Generalized Linear Mixed
Models, was inadequate and produced biased results. The cor-
rect model specifications performed much better, with better
model fits across the board. We therefore believe that the
results reported in this Appendix C should be discarded
completely.

The link between the continuous measure of self-
motion perception and performance

In addition to the analysis we performed to assess the impact
of the self-motion inclusion criterion (see “Outlier Analysis
and Exclusion Criteria”), we further explored whether there
might be a relationship between the continuous self-motion
ratings and performance in terms of PSEs and JNDs. To avoid
triple interactions, we fitted GLMMs of the following struc-
ture to each of the motion profiles (“Same direction” and
“Opposite Directions”) and wall conditions (“Regular Wall”,
“Blank Wall” and “Moving Wall”) separately:

Response∼SpeedBall Cloud*Self −motion Score

þ SpeedBall Cloudð j Subject
�

þ SpeedBall Cloud j SpeedTarget
� �

ð14Þ

We compared each of these models to the corresponding
null model without the self-motion score as factor:

Response∼SpeedBall Cloud þ SpeedBall Cloudð j Subject
�

þ SpeedBall Cloud j SpeedTarget
� �

ð15Þ

We then compared each test model (as per Eq. 14) to the
corresponding null model (as per Eq. 15) with a Likelihood
Ratio Test. We found that the test model was not significantly
better than the null model for any of the conditions, with p
values of 0.62 for Same Direction in the Regular Wall condi-
tion, 0.97 for Opposite Direction in the Regular wall condi-
tion, 0.83 for Same Direction in the Blank Wall condition, 0.9
for Opposite Direction in the Blank Wall condition, 0.47 for
Same Direction in the Moving Wall condition and 0.4 for
Opposite Direction in the Moving Wall condition. This indi-
cates that our data provided no evidence that the self-motion
score was significantly related to performance.
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Table 8 As for Table 4, but for the full dataset without removing any outliers

Regression Coefficient Standard Error 95% CI (lower) 95% CI (upper) Significant

Intercept 1.49 0.19 1.17 1.81 *

Self-motion: Same direction 0.02 0.06 -0.12 0.16 n.s.

Self-motion: Opposite directions -0.19 0.06 -0.31 -0.07 *

Difference 0.58 0.04 0.5 0.67 *

Difference * Self-motion: Same direction (Interaction) -0.03 0.02 -0.08 0.02 n.s.

Difference * Self-motion: Opposite directions (Interaction) -0.06 0.02 -0.1 -0.01 *
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