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Parenteral glutamine supplementation in acute inflammatory conditions is controversial. We evaluated the inflammatory and
survival responses after parenteral glutamine infusion in sodium taurocholate-induced acute pancreatitis (AP) model. Lewis rats
received 1 g/kg parenteral glutamine (n = 42), saline (n = 44), or no treatment (n = 45) for 48 h before AP induction. Blood, lung,
and liver samples were collected 2, 12, and 24 h after AP to measure serum cytokines levels and tissue heat shock protein (HSP)
expression. From each group, 20 animals were not sacrificed after AP for a 7-day mortality study. Serum cytokine levels did not
differ among groups at any time point, but the intragroup analysis over time showed higher interferon-y only in the nontreatment
and saline groups at 2 h (versus 12 and 24 h; both p < 0.05). The glutamine group exhibited greater lung and liver HSP90 expression
than did the nontreatment group at 2 and 12 h, respectively; greater liver HSP90 and HSP70 expression than did the saline group
at 12h; and smaller lung HSP70 and liver HSP90 expression than did the nontreatment group at 24 h (all p < 0.019). The 7-day
mortality rate did not differ among groups. In experimental AP, pretreatment with parenteral glutamine was safe and improved

early inflammatory mediator profiles without affecting mortality.

1. Introduction

Glutamine can become essential during hypercatabolic stress
and under critical conditions, such as severe trauma, sepsis,
inflammatory diseases, and burns [1]. Glutamine is a fuel
source for lymphocytes and enterocytes, a substrate for
glutathione and heat shock protein (HSP) synthesis, and a
potential inhibitory agent for inflammatory cytokine release
[2, 3]. These biological properties could contribute to improv-
ing gut barrier and lymphocyte function and to attenuate
inflammatory responses [4].

In critically ill patients, glutamine supplementation has
been suggested to properly support increased cell prolifer-
ation rates, gut barrier protection, and inflammatory dys-
function attenuation [5, 6]. The intravenous administration
of glutamine can result in its earlier availability for cell use
and could be advantageous for the achievement of rapid

inflammatory modulation and protection of cells against
damage in clinical critical care conditions. However, unex-
pected harmful effects of parenteral glutamine supply, mainly
in patients with multiple organ failure, have been reported
recently [7-9].

These observations have challenged the development of
new guidelines for safe glutamine supplementation and have
made apparent the need for new experimental studies to
better understand this nutrients mechanisms of action in
critical illness. Experimental acute pancreatitis (AP) is an
effective model for the study of systemic responses that
can be applied to test immunomodulatory therapies [10].
The present study aimed to evaluate the impact of previous
parenteral glutamine infusion on inflammatory mediator
levels and mortality in acute critically ill conditions, using
experimental AP as a systemic inflammation-reproducing
model.
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2. Methods

2.1. Animals. Adult male isogenic Lewis rats (n = 131, 300-
350 g) were purchased from the Animal Laboratory of the
Multidisciplinary Center for Research in Biological Science
(Campinas, Sio Paulo, Brazil). Prior to the experiment,
the animals were adapted for 5 days in metabolic cages at
a controlled room temperature (22 + 25°C) with a 12 h
light/dark cycle and free access to water and standard rodent
chow (Quimtia®; Nutrilav, Jundiai, Brazil). All experimental
procedures were approved by the Research Ethics Committee
of the School of Medicine, University of Sdo Paulo, Sdo Paulo,
Brazil.

2.2. Intravenous Access. Animals were anesthetized with
an intraperitoneal injection of ketamine (Ketamin-S(+)®,
100 mg/kg body weight; Cristalia, Itapira, Brazil) and xylazine
(Rompum®, 8 mg/kg body weight; Bayer, Sdo Paulo, Brazil).
Intravenous access was achieved by jugular central venous
catheterization (CVC), according to a standard technique,
followed by connection to a swivel apparatus that allowed
the animals to have free mobility [11, 12]. After CVC, all
animals received 0.9% saline solution infusion for 24 h. After
this period, the animals were randomized to receive 48 h
intravenous infusion of 6 mL/day 0.9% saline solution (saline
group, n = 44) or 1g/kg body weight dipeptide alanyl-
glutamine (Dipeptiven® 20%, Fresenius-Kabi, Bad Homburg,
Germany; glutamine group, n = 42), or no infusion
(nontreatment group, n = 45). All animals had access to a
standard oral diet (AIN-93M) and water ad libitum during
this period.

2.3. Experimental Acute Pancreatitis. After 72h intravenous
access, all animals were anesthetized with an intraperitoneal
injection of 100 mg/kg body weight ketamine (Ketamin-
S(+)®, Cristalia) and 8 mg/kg body weight xylazine (Rom-
pum®, Bayer). The pancreas was exteriorized through an
abdominal incision and the pancreatic duct was catheter-
ized using a 24-gauge angicatheter. AP was then induced
by retrograde injection of 0.5mL 3% sodium taurocholate
solution (Sigma Chemical, St Louis, MO, USA), according
to a standard technique [13-15]. Following AP induction, 71
animals were sacrificed after proper anesthetization at 2h
(saline group, n = 8; glutamine group, n = 9; nontreatment
group, n = 10), 12h (saline group, n = 9; glutamine group,
n = 6; nontreatment group, n = 9), and 24 h (saline group,
n = 7; glutamine group, n = 7; nontreatment group, n = 6)
by cardiac puncture for blood and tissue (lung and liver)
collection, and 60 animals (n = 20/group) were kept alive
for mortality analysis.

2.4. Serum Cytokine Measurement. Blood samples were cen-
trifuged at 1,000 xg at 4°C for 10 min to obtain serum.
Concentrations of cytokines (interleukin- [IL-] 1, IL-2, IL-
4, IL-6, IL-10, interferon- [IFN-] y, and tumor necrosis
factor- [TNF-] ) were assessed in 500 L serum by multiplex
microsphere immunoassays, using a commercial kit for rats
(RECYTMAG® 07-65K; Genesis Ltd., MO, USA). Plates were
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read in a Luminex analyzer (MiraiBio, Alameda, CA, USA),
according to the manufacturer’s instructions [16].

2.5. Heat Shock Protein Measurement. Approximately 100 mg
lung tissue and 50 mg liver tissue were pulverized in liquid
nitrogen. The material was homogenized in RIPA lysis bufter
(100mM Tris-HCI [pH 75], 1% sodium deoxycholate, 1%
NP40, 150 mM NaCl, 0.1% sodium dodecyl sulfate [SDS])
plus protease inhibitors (1mg/mL pepstatin A, 100 mM
phenylmethylsulfonyl fluoride). The samples were then cen-
trifuged at 14,000 xg for 10 min at 4°C. The supernatants were
collected and protein concentrations were quantified using
the Bradford method (Bio-Rad Laboratories, Hercules, CA,
USA).

Protein samples were added to sample buffer (2% SDS,
60 mM Tris [pH 6.8], 5% mercaptoethanol, 0.01% bromophe-
nol blue) and subjected to electrophoresis in a sodium dode-
cyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
system (1.5M Tris-HCI, 10% SDS, 30% bis-acrylamide,
10% ammonia persulfate, and 3,3,5,5-tetramethylethylene-
diamine). Proteins were then transferred to nitrocellulose
membranes using a semidry transfer apparatus (both from
Bio-Rad Laboratories). The membranes were incubated in a
blocking solution of 5% skim milk in TBST buffer (50 mM
Tris buffer [pH 8.0], 100 mM NaCl, and 1% Tween 20)
for 1h at room temperature. Then, they were washed in
TBST and incubated with the primary antibody against the
protein of interest (HSP polyclonal goat anti-rat®; Santa
Cruz Biotechnology, Santa Cruz, CA, USA) overnight at 4°C.
Subsequently, the membranes were incubated in a solution
containing the peroxidase-conjugated secondary antibody
(1:1000; Santa Cruz Biotechnology), and Super Signal detec-
tion (Pierce, Rockford, IL, USA) was performed. Protein
expression was compared by gel densitometry using the
Image] public domain software created by Wayne Rasband at
the US National Institutes of Mental Health, which has been
used previously for the determination of HSP70 and HSP90
[13].

2.6. Mortality Observation. After AP induction, 20 rats in
each group remained under observation for a maximum of
7 days, with access to standard oral diet (AIN-93M) and
water ad libitum. The animals were observed individually
every 8 h for death registration. Animals that survived until 7
days after AP were sacrificed with an intraperitoneal injec-
tion of 80 mg/kg ketamine hydrochloride (Ketamin-S(+)®;
Cristdlia) and 8.0 mg/kg xylazine hydrochloride (Rompum®
2%; Bayer).

2.7. Statistical Analysis. All inflammatory variables were
compared using the Kruskal-Wallis and Behrens-Fisher
tests, as Kolmogorov-Smirnov tests showed that they were
not distributed normally. These comparisons were performed
between groups at each time point and within groups over
time. Mortality and survival data were evaluated by the Fisher
test and Kaplan-Meier analysis, respectively. All analyses
were based on a 5% level of significance and were performed
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FIGURE 1: Median serum concentrations of interferon- (IFN-) gamma (a), interleukin- (IL-) 2 (b), IL-10 (c), and tumor necrosis factor- (TNF-)
alpha (d) at 2, 12, and 24 h after acute pancreatitis induction with sodium taurocholate in Lewis rats previously treated or not treated with 48
h infusion of parenteral saline or glutamine. *p < 0.050 versus 12 and 24 h; *p < 0.050 versus 2 and 12 h; “p < 0.050 versus 24 h; “p = 0.051

versus 2 and 12 h; ®p = 0.060 versus 12 h.

using SPSS software (ver. 18.0 for Windows; SPSS, Chicago,
IL, USA).

3. Results

3.1. Serum Cytokine Concentrations. Serum cytokine levels
did not differ among groups at any time point (Table 1).
Serum IFN-y levels in the nontreatment and saline groups

were significantly higher at 2 h after AP thanat12h (p = 0.026
and 0.001, resp.) and 24h (p = 0.002 and 0.050, resp.) after
AP (Figure 1(a)). In addition, animals in the nontreatment
group exhibited higher serum IL-2 levels (Figure 1(b)) and
lower serum IL-10 levels (Figure 1(c)) at 24 h after AP than
at 2h (both p < 0.001) and 12h (p = 0.005 and p < 0.001,
resp.) after AP. Animals in the saline and glutamine groups
exhibited only lower IL-10 levels at 24 h after AP relative to
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FIGURE 2: Lung and liver expression of heat shock proteins (HSPs) at different time points after acute pancreatitis induction with sodium
taurocholate in Lewis rats previously treated or not treated with 48 h infusion of parenteral saline or glutamine. (a) Expression of HSP90 in
lung tissue at 2h. (b) Expression of HSP90 in liver tissue at 12h. (c) Expression of HSP70 in liver tissue at 12 h. (d) Expression of HSP70 in
lung tissue at 12 h. (e) Expression of HSP70 in lung tissue at 24 h. (f) Expression of HSP90 in liver at 24 h. Data are expressed as medians. “ P <
0.050 versus glutamine group; * P < 0.050 versus saline group; P =0.066 versus glutamine group; Ap <0.050 versus nontreatment group.

2h after AP (both p < 0.001; Figure 1(c)). No significant
change in the serum IL-1, IL-4, IL-6, or TNF-« level occurred
over time, although marginally nonsignificant higher TNF-
« levels were observed at 24 h after AP in the nontreatment
(p = 0.051 versus 2 and 12 h after AP) and saline (p = 0.060
versus 12 h after AP) groups (Figure 1(d)).

3.2. Heat Shock Protein Expression. Data on HSP expression
are presented in Table 2. Animals in the glutamine group
exhibited greater lung and liver HSP90 expression than
did those in the nontreatment group at 2h (p = 0.007;
Figure 2(a)) and 12h (p = 0.001; Figure 2(b)) after AP,
respectively, and greater liver HSP90 and HSP70 expression
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FIGURE 3: Seven-day mortality rates of Lewis rats treated or not treated with 48 h parenteral infusion of saline or glutamine before acute

pancreatitis induction with sodium taurocholate.

than did those in the saline group at 12h after AP (p <
0.001 and p = 0.006, respectively; Figures 2(b) and 2(c)).
Marginally nonsignificant greater lung HSP70 expression was
observed in animals in the glutamine group compared with
the other groups at 12h after AP (p = 0.066; Figure 2(d)).
Lung HSP90 expression was greater in the saline group than
in the nontreatment group at 2h after AP (p = 0.017;
Figure 2(a)). The nontreatment group presented increased
lung HSP70 and liver HSP90 expression relative to the other
groups at 24 h after AP (p = 0.019 and 0.004, respectively;
Figures 2(e) and 2(f)).

3.3. Mortality. No significant difference in 7-day mortality
was observed among groups (nontreatment, 28%; saline,
47%; glutamine, 27%) (Figure 3). In addition, the median
interval of mortality occurrence did not differ among groups
(nontreatment, 24-48 h; saline, 30-36 h; glutamine, 48 h).

4. Discussion

Our study aimed to contribute to the understanding of poten-
tial inflammatory mechanisms that may impact the risk-
benefit balance of parenteral glutamine infusion in critical
care. AP was chosen as a critical condition model due to the
central roles of inflammatory mediators in its physiopathol-
ogy and in multiple organ dysfunction syndrome, which
is usually its primary cause of death [10]. In addition, the
systemic effects of AP are similar to those observed in other
critical conditions, such as septicemia, severe burns, and
trauma [17]. Specifically, sodium taurocholate-induced AP

has been reported to be a representative model of the disease,
with severe and measurable systemic inflammatory response
and multiple organ failure, as evidenced by lung, liver, and
intestinal impairment in rats [18-21].

In human and experimental models, marked release of
the proinflammatory mediators IL-1, IL-6, and TNF-« is
the main detrimental finding associated with AP [15, 22].
This release is usually followed by increased release of anti-
inflammatory mediators (e.g., IL-10), which may induce
immunosuppression in the late stage of the disease [15]. In
our study, high doses of parenteral glutamine infused for
48 h before the induction of experimental AP did not change
serum levels of IL-1, IL-6, and TNF-« at any post-AP time
point. Marginally nonsignificant increases in TNF-« levels
were observed at 24 h after AP in the nontreatment and saline
groups, but not in the glutamine group.

The glutamine group also did not show the significant
decreases in IFN-y level observed over time in the nontreat-
ment and saline groups. In addition, the IL-2 levels were
maintained overtime in the glutamine and saline groups and
the decrease in IL-10 level, observed in all groups at 24 h after
AP, occurred more slowly in the glutamine and saline groups
than in the nontreatment group. Possible harmful effects and
benefits associated with these cytokines must be interpreted
in light of the timing of their release over the inflammatory
stages of AP progression. For instance, IFN-y and IL-2 can
activate inflammation, but these cytokines also have benefits
related to pathogen clearance that can be relevant in efforts
to avoid infection in the later stages of critical aggression
(23, 24].



Accordingly, immunotherapy with IFN-y seems be detri-
mental in the early stage of AP (when inflammation has
harmful effects) and beneficial in the later stage of the disease
(when infectious complications and immunoparalysis are
dominant causes of mortality) [25-28]. Similarly, decreased
IL-2 release and 90% nonspecific mortality were observed
after the intraperitoneal administration of lipopolysaccha-
ride in mice with AP, and therapy with recombinant IL-
2 reduced lipopolysaccharide-induced mortality in the later
stages of the disease [24]. In addition, due to its potent
contraregulatory effects, IL-10 has been found to be beneficial
in a sodium taurocholate-induced AP model [29]. However,
substantial release of this cytokine may hyperintensify its
anti-inflammatory effect and favor immunoparalysis [30].
Therefore, the dynamics of IFN-y, IL-2, and IL-10 release
over time observed in animals in the glutamine group in
this study seem to be protective, enabling the maintenance
of immunocompetence for pathogen clearance in the later
stages of AP progression.

In our study, marked effects on HSP expression were also
observed in the glutamine group in relation to the other
groups. This effect included increased liver HSP70 expression
and a tendency for increased lung HSP70 expression 12 h after
AP, as well as an early significant increase in lung and liver
HSP90 expression. Xue et al. [31] reported improvement in
the expression of heat shock transcription factor-1 (a master
regulator of HSP expression) after parenteral infusion of
glutamine in rats. HSP expression may be vital to cellular and
tissue protection in the context of stress or injury, as HSPs
actas molecular chaperones that stabilize and refold damaged
intercellular proteins and prevent intracellular protein aggre-
gation [32]. Indeed, the main metabolic and stress-signaling
effects of glutamine in illness and injury seem to occur due its
ability to induce HSP expression [33].

Increases in HSP70 expression induced by glutamine are
associated with improvements in survival, tissue injury, and
inflammatory response [32]. HSP90 also has cytoprotective
properties, but most of its target proteins are kinases and
transcription factors that can act as cellular regulators of gene
expression, including the transcription of proinflammatory
molecules via nuclear factor kappa B [34, 35]. However,
we found no systemic detrimental increase in proinflam-
matory cytokines in parallel with increased HSP90 in the
glutamine group. Moreover, compared with the nontreatment
group, the increased liver HSP90 expression in the glutamine
group occurred early after AP induction and was reduced
significantly after 24 h. Because HSP expression increases in
response to detrimental stimuli, this observation is highly
suggestive of early liver homeostasis in response AP injury
in the glutamine group [36].

Parenteral glutamine supplementation was recently asso-
ciated with high mortality rates in critically ill patients with
multiple organ failure [7, 8]. With consideration of systemic
disturbances that could culminate in multiple organ failure,
our AP model did not confirm this harmful effect, despite our
parenteral infusion of high glutamine doses. The most recent
multicentric trial showed that parenteral glutamine infusion
did not change the mortality rate of patients in the surgical
intensive care unit but also did not improve clinical outcomes
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[37]. In our study, the mortality rate was lower and death
occurred later in animals in the glutamine group compared
with the other groups, although these differences were not
significant.

Our study has some limitations in addition to its exper-
imental nature, which may limit the applicability of the
findings to humans. First, glutamine was infused alone
and before critical stress. As the release of inflammatory
mediators is transient, this strategy was adopted to provide
glutamine to cells and tissue in time to observe its modulatory
effects on these mediators in our model. However, we do not
know whether the same effect would be observed if glutamine
were infused with other nutrients and in the presence of stress
factors. In addition, parenteral supply of glutamine before
critical stress cannot be applied fully in clinical practice.
Second, saline was used as a parenteral control for glutamine.
Saline hydration can attenuate AP by mitigating changes
in pancreatic microcirculation and circulatory disorders of
the intestinal wall, which facilitate bacterial translocation
and perpetuate the inflammation mechanism [38]. These
effects may explain the greater benefits of glutamine on
systemic proinflammatory mediator profiles and tissue HSP
expression in comparison with the nontreatment group than
in comparison with the saline group.

Within these limitations, our data suggest that a high dose
of parenteral glutamine protects against stress-induced organ
damage by improving cytokine profiles and increasing HSP70
and HSP90 expression in our AP model. These protective
effects are of particular interest for the treatment of critically
ill patients. Further studies must seek to design a protocol for
parenteral administration of glutamine that allows us to take
clinical advantage of its potential benefits.
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