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Abstract

Nitric oxide (NO) is a diffusible gas with diverse roles in human physiology and disease. Significant progress in the understanding 
of its biological effects has taken place in recent years. This has led to a better understanding of the pathobiology of pulmonary 
hypertension (PH) and the development of new therapies. This article provides an overview of the NO physiology and its role 
in the pathobiology of lung diseases, particularly PH. We also discuss current and emerging specific treatments that target NO 
signaling pathways in PH.
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Pulmonary arterial hypertension  (PAH) is a progressive 
disease that has poor prognosis since it may lead to right 
ventricular failure and death.[1] The disease is characterized 
by excessive pulmonary vasoconstriction and abnormal 
vascular remodeling that result in loss of vascular 
cross‑sectional area and increase in right ventricular 
afterload.[2] One of the proposed mechanisms involved in the 
pathogenesis of the disease is an imbalance in vasoactive 
mediators with reduced levels of the vasodilatory and 
antiproliferative nitric oxide (NO).[3]

Since the breakthrough discovery in 1987 that the 
endothelium‑derived relaxing factor was nitric oxide (NO),[4,5] 
this colorless and odorless free‑radical gas became 
increasingly recognized as a key factor in human physiology 
and disease.[6,7] NO is an autocrine and paracrine signaling 
molecule whose functions are diverse and involve smooth 
muscle relaxation, platelet inhibition, central and autonomic 
neurotransmission, tumor cell lysis, bacterial killing, and 
stimulation of hormonal release.[7‑10] This review will focus 
on the role of NO in physiology and pathobiology of lung 
diseases, particularly pulmonary hypertension (PH), and the 
current and emerging pulmonary hypertension (PH)‑specific 
treatments based on NO signaling.

NITRIC OXIDE PHYSIOLOGY

NO is an endogenously synthesized, diffusible, lipophilic 
gas that is produced by a group of enzymes known as nitric 
oxide synthases (NOS). Their role is to convert the amino acid 
L‑arginine to L‑citrulline and NO.[6] For their activity, NOS 
require oxygen, reduced nicotinamide‑adenine dinucleotide 
phosphate  (NADPH), and other cofactors such as flavin 
adenine dinucleotide (FAD), flavin mononucleotide (FMN), 
calmodulin, and tetrahydrobiopterin (BH4).[11‑13] NOS is active 
as a homodimer and contains a reductase and an oxygenase 
domain. The oxygenase domain is the active site of NO synthesis 
with binding sites for heme, L‑arginine, and BH4[14] (Fig. 1). 
Three NOS isoforms  (Types  I, II, and III) have been 
identified. These NOS isoforms have important differences 
in expression and regulation as shown in Table  1.[15,16]  
In general, NOS I is expressed in neuronal cells and skeletal 
muscle; NOS II is found in epithelial, and smooth muscles 
cells as well as in neutrophils, macrophages, and fibroblasts; 
and NOS III is present in endothelial cells throughout the 
body.[17] NOS  I and III are continuously expressed and 
regulated by Calcium/Calmodulin; meanwhile, NOS II is 
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regulated at the transcription level. NOS II transcription is 
increased by cytokines (e.g., TNF‑α, interferon‑γ, and IL‑1β), 
endotoxins, oxidants, and shear stress,[10,18] and is decreased 
by corticosteroids, retinoids, transforming growth factor beta, 
platelet‑derived growth factor, insulin‑like growth factor 1, 
and thrombin.[9,10,13,19] The initial clear distinction between 
the constitutive and inducible isoforms has been recently 
distorted and constitutive isoforms may be induced, and 
vice versa.[20,21]

NOS I acts as a functional antagonist of acetylcholine and 
mediates inhibitory nonadrenergic non‑cholinergic neural 
bronchodilation.[22] NOS II is involved in inflammation as it 
mediates the cytotoxic activity of activated macrophages 
and may be a contributing factor in the vasodilation 
observed in septic shock.[23] NOS III plays a role in the 
regulation of vascular flow[24] and may reduce plasma 
exudation in the airways[25] and regulate ciliary beating 
and mucociliary clearance.[26] NOS III is the predominant 
source of NO production in the pulmonary circulation.[14,20] 
Studies in transgenic mice and humans to assess the 
relative contribution of the three NOS isoforms showed 
that NOS II and III are the key regulators of the pulmonary 
circulation tone. NOS III is the key mediator of resting tone 
through endothelium‑dependent pulmonary vasculature 
vasodilation,[27] while NOS II may mediate the pulmonary 
circulation’s response to oxygen.[28] Targeted disruption 
of the NOS III gene in mice was associated with mild PH 
without evidence of pulmonary vascular remodeling,[29] 
which likely reflects compensation by the other NOS 
isoforms.

Vascular smooth muscle and endothelial cells have the ability 
to regenerate the NOS substrate L‑arginine by synthesizing 
argininosuccinate from citrulline and aspartate, a process 
that requires two enzymes, argininosuccinate synthase and 
argininosuccinate lyase.[30‑32] The first enzyme is co‑induced 
with NOS II and the second is constitutively expressed 
in these cells.[33] Exogenous citrulline administration 
effectively stimulated NO production in vascular endothelial 
cells by means of regenerating arginine.[31]

Once NO is produced, it may act within the cell in 
which it is generated or freely diffuse into adjacent 

cells  (e.g.,  vascular smooth muscle cells), acting as an 
intra‑ or intercellular messenger.[9,34] The NO intracellular 
diffusion may be limited because NO is readily oxidized 
to the more stable metabolic products nitrite (NO2¯) and 
nitrate  (NO3¯)[11] and is scavenged predominantly by 
hemoglobin. Upon entering the cells, NO activates the 
intracellular soluble guanylate cyclase (sGC) to produce 
3’,5’‑cyclic guanosine monophosphate  (cGMP), which 
mediates most of the physiological and pathological 
effects of NO (Fig. 1).[10,35]

Two main types of guanylate cyclase (GC) are known: the 
particulate‑associated enzymes, which are transmembrane 
receptors that contain GC that is activated by atrial and 
brain natriuretic peptide; and the cytosolic or soluble 
type which is activated by NO.[36,37] NO appears to exert its 
effect by binding to the heme iron  (ferrous state) of the 
sGC, stimulating the enzyme basal cyclase activity several 
hundred‑fold.[13,34,38] Once cGMP is produced, it mediates 
physiologic responses through its effects in cGMP‑gated 
ion channels, cGMP‑regulated phosphodiesterases, or 
cGMP‑dependent protein kinases.[34,39] A preferential 
activation of specific target proteins is believed to 

Table 1: Characteristics of nitric oxide synthases isoforms
NOS 
isoforms

Designation Size 
(KDa)

Expression Main cellular sources in the 
lung

Calcium 
regulation

Nitric oxide 
output

Chromosome

I Neural NOS 
(nNOS)

155 Constitutive Inhibitory non‑adrenergic 
non‑cholinergic neurons

Dependent Picomolar 12

II Inducible 
NOS (iNOS)

125 Inducible by cytokines, 
endotoxin and oxidants

Airway epithelial cells Independent Nanomolar 17

III Endothelial 
NOS (eNOS)

135 Constitutive Endothelial cells and brush 
border of ciliated epithelial cells

Dependent Picomolar 7

NOS: nitric oxide synthase

Figure 1: NO synthesis and signaling pathways. BH4, tetrahydrobiopterin; 
cGMP: Cyclic guanosine monophosphate; GMP: Guanosine monophosphate; 
GTP: Guanosine triphosphate; NO: Nitric oxide; NOS: Nitric oxide synthase; 
ONOO‑, peroxynitrite; PK: Protein kinases; sGC: Soluble guanylate cyclase; 
SNO‑Hb: S‑nitrosothiol – hemoglobin. L‑arginine can be regenerated from 
L‑citrulline by two enzymes (argininosuccinate synthase and argininosuccinate 
lyase).
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underlie the differential effects of cGMP in various cells.[40] 
cGMP‑induced vasorelaxation of vascular smooth muscle 
is through several mechanisms including activation of 
K‑channels which hyperpolarizes the cell membrane, 
inhibition of calcium influx, and reduction of myofilament 
calcium sensitivity.[14,39]

The cGMP signal is chiefly limited by phosphodiesterases 
(PDE) which degrade the cyclic nucleotide of GMP. PDE 
degrade both cyclic adenosine monophosphate  (cAMP) 
and cGMP; however, PDE‑5 is specific to cGMP, and 
indeed the enzyme requires the binding of cGMP for full 
activation.[41]

NOS inhibitors and NO generators have allowed for a 
better understanding of the NO signaling pathways. NOS 
inhibitors are analogs of L‑arginine that act as a false 
substrate for this enzyme and inhibit both the constitutive 
and inducible forms of NOS. Of these, the most widely 
used include N‑monomethyl‑L‑arginine  (L‑NMMA), 
N‑nitro‑L‑arginine  (L‑NNA), and N‑nitro‑L‑arginine 
methyl ester (L‑NAME).[42] Another commonly utilized NOS 
inhibitor is L‑aminoguanidine, a more selective inhibitor 
of NOS II.[8] NO generators are compounds that release NO 
such as diethylamine, sodium nitroprusside, and isosorbide 
dinitrite, among others.

The most important endogenous NOS inhibitor 
among the methylated arginines is the asymmetric 
dimethylarginine  (ADMA).[43,44] ADMA is produced 
as a result of proteolysis of methylated proteins. The 
methylation of arginine is a post‑translational modification 
via protein arginine methyltransferaes  (PRMT). ADMA 
acts as a false substrate and competitively inhibits NOS 
activity, blocking the formation of endogenous NO.[44,45] 
ADMA undergoes clearance by the dimethylarginine 
dimethylaminohydrolase  (DDAH) and it is also partially 
cleared by the kidneys.[46] Methylated arginines, like 
ADMA, may be responsible for the “L‑arginine paradox.” 
At physiological state, NOS is saturated with arginine, 
thus an increase in arginine concentration in plasma or 
cytosol should have no effect in NO production.[31] However, 
elevating plasma arginine or citrulline levels enhance NO 
production, suggesting some form of competitive inhibition 
of NOS, such as ADMA, is present and can be overcome 
by increasing the arginine concentration.[45,47] Another 
explanation for the arginine paradox is the potential 
existence of a separated cellular pool of arginine allocated to 
NO synthesis, i.e., caveolar‑localized arginine regeneration 
system, in which citrulline is recycled to arginine.[32] This 
hypothesis is supported by a study that revealed the 
colocalization in discrete cellular domains  (caveolae) 
of enzymes involved in arginine regeneration and NO 
production.[31,32]

NITRIC OXIDE PHYSIOLOGY IN THE 
PULMONARY VASCULATURE

The specific role of NO produced in the pulmonary 
vasculature is still a matter of intense investigation. Data 
suggest that NO inhibits smooth muscle tone, proliferation, 
and migration.[48‑50] NO causes relaxation of the vascular 
smooth muscle tone via the activation of cGMP.[48,49] In fact, 
endogenous NO plays a key role in decreasing the pulmonary 
artery resistance at the time of birth and in maintaining the 
dilation of the pulmonary vasculature.[39,49,51] The production 
of NO by NOS II in injured vascular smooth muscle cells may 
prevent vasospasm and inhibit cell proliferation by possibly 
inducing apoptosis.[52‑55] In addition, NO in this setting may 
regulate the metabolism of vascular smooth muscle cells, 
favoring anaerobic glycolysis,[52] and lead to toxic effects on 
adjacent endothelial cells.[56]

NO inhibits vascular smooth muscle cell proliferation,[57] 
DNA synthesis,[58] and collagen production via activation of 
cGMP.[48,50,58,59] Furthermore, NO inhibits vascular smooth 
muscle cell migration independent of the effects on 
proliferation.[50] Higher levels of NO are required to inhibit 
proliferation rather than to produce vasodilation, suggesting 
a potential concomitant activation by cGMP of the cAMP 
kinase pathway which inhibits cellular proliferation.[60] NO 
generators can also inhibit proliferation in cells that lack sGC, 
suggesting that cGMP‑independent mechanisms play a role. 
One of these potential mechanisms is the up regulation of 
Fas, a membrane protein that belongs to the TNF receptor 
family and induces apoptosis.[54] NO‑induced apoptosis could 
be the result of a feedback control on calcium responses to 
growth factors, or deamination of purine and pyrimidine 
bases in DNA that leads to increased mutagenesis and DNA 
strand breaks.[61,62] Although NO has been reported to inhibit 
cell proliferation in endothelial cells,[63] other investigations 
have shown than either exogenous NO[64] or NO produced 
by NOS II in vascular smooth muscle cells may stimulate 
endothelial cell proliferation.[65]

Alternative NO pathways include the oxidation of NO 
to form nitrite or reaction with protein thiols to form 
S‑nitrosothiols, molecules that can lead to vasodilation 
or can regulate protein function by post‑translational 
modification.[66,67] NO is oxidized in the blood and tissues 
to form nitrite and nitrate.[13] Nitrate is produced by 
the reaction of NO with oxyhemoglobin, while nitrite is 
formed by oxidation of NO.[13] These molecules can be 
recycled to form NO by an allosterically controlled nitrite 
reductase reaction predominantly during hypoxia, thereby 
complementing the NOS pathway.[68‑70] Deoxygenated 
hemoglobin has nitrite reductase activity, forming NO from 
nitrate  (NO3

−) and nitrite  (NO2
−),[69,71] a reaction that can 

explain the hypoxia‑specific vasodilatory effect observed in 
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some organs. The NOS pathway is oxygen dependent while 
the nitrate‑nitrite‑NO pathway is hypoxia activated.[69,70]

In addition, NO can be responsible for nitrosylation of a 
cysteine residue of the β‑subunit of hemoglobin, resulting 
in S‑nitrosylated‑hemoglobin, a protein that exerts NO‑like 
vasodilator effects.[39] This reaction is favored in the 
oxygenated state of hemoglobin, and, once desaturation of 
hemoglobin occurs, there is release of SNO to acceptor thiols 
potentially delivering NO to the systemic circulation.[72] 
S‑nitrosylation and nitration enable the systemic transport 
of the NO signal, a process that would not be possible for 
NO due to its very short half‑life[14] and strong affinity to 
bind hemoglobin.

NITRIC OXIDE AND NITRIC OXIDE 
SYNTHASES IN THE LUNG

NO is produced endogenously in the human lung in the 
upper and lower respiratory tract and it is detectable in 
exhaled breath  (6-8 ppb).[28,73] The origin of exhaled NO 
in the human lung likely depends upon all three isoforms 
of NOS (I‑III) but predominantly derives from the airway 
epithelial expression of NOS II, the high‑producer of NO. 
NO metabolites like nitrosothiol and nitrite  (NO2

−) are 
found in the bronchoalveolar lavage of human lungs.[8] NO 
is formed in high concentrations in the upper respiratory 
tract  (nasopharynx and paranasal sinuses) and in lower 
quantities in the lower respiratory tract.[28,73] It is produced 
in a variety of cells including epithelial, endothelial, and 
smooth muscle cells, and also in inhibitory non‑adrenergic 
non‑cholinergic neurons, mastocytes, fibroblasts, 
macrophages, lymphocytes, and neutrophils.[6,7,28]

Immunohistochemical studies have identified the presence 
of all three isoforms of NOS, expressed in different cells of 
the human lung  (Table  1).[6,10,12,28,74‑76] Specifically, NOS  I 
is located in inhibitory non‑adrenergic non‑cholinergic 
neurons; NOS II is expressed in the airway epithelium; and 
NOS III is found in endothelial cells.[8,21,76,77] Contrary to what 
occurs in other organs where NOS II needs to be induced, 
in the lungs this enzyme is continuously expressed in the 
airway epithelium at basal conditions.[21]

NO is involved in pulmonary neurotransmission, 
host defense, airway and vascular smooth muscle 
relaxation, mucociliary clearance, airway mucus secretion, 
inflammation, and cytotoxicity.[8,77] NO plays key roles in lung 
biology and has been implicated in the pathophysiology of 
several lung diseases such as asthma, cystic fibrosis, 
bronchopulmonary dysplasia, lymphangioleiomyomatosis, 
and adult respiratory distress syndrome in addition to 
pulmonary hypertension.[8,12,20,28,35,78‑84]

Endogenous NO plays an important role in the regulation 
of airway function, having both beneficial and detrimental 
effects.[20] It leads to bronchial smooth muscle relaxation, 
potentially modulating the basal airway tone.[8] Inhaled 
NO decreased pulmonary airway resistance in pigs and 
NO generators relaxed human airway smooth muscle 
in vitro.[8] Exhaled NO is increased in inflammatory 
airway diseases such as asthma and bronchiectasis likely 
due to an increase in NOS II expression in the epithelial 
cells of these patients with some contribution from the 
constitutive NOS isoforms.[8,20,77] In asthma the fraction 
of exhaled NO is considered a surrogate for eosinophilic 
airway inflammation and steroid responsiveness.[20,85‑87] 
A reduction in exhaled NO levels is observed in smokers 
possibly as a result of a dysregulation of NOS activity as 
cigarette smoke contains high levels of NO.[77,88]

NO is a key molecule in the oxidative metabolism since it 
can exert oxidant or antioxidant effects depending on the 
local tissue milieu. Hence, in an environment where the 
load of antioxidant is low, NO will have oxidant properties; 
however, when the oxidant load is high, NO plays an 
antioxidant role by scavenging free radicals and reactive 
oxygen species.[16,74] NO rapidly consumes superoxide (O2¯) 
by forming peroxynitrite (ONOO¯) which is a less reactive 
oxidant that can be further metabolized to products like 
nitrate  (NO3¯).[79] Some of these reactive oxygen species 
could be responsible for oxidative modification of cellular 
proteins such as oxidation of sGC, a reaction that can impair 
the specific activity of sGC and reduce the ability of NO to 
stimulate cGMP.[89] On the same lines, recombinant human 
superoxide dismutase decreases oxidative stress and 
increases eNOS activity and expression, stimulating NO 
production, and ultimately pulmonary vasodilatation.[90‑92]

NITRIC OXIDE IN PULMONARY 
HYPERTENSION

NO is a potent pulmonary vasodilator that is produced locally 
in the lung and has effects on smooth muscle relaxation and 
proliferation. The close proximity of the airways and vessels 
in the lung allows NO produced in high levels in the upper[93] 
and lower[28] airways by NOS II to affect pulmonary vascular 
tone, in concert with the low NO levels that are produced by 
NOS III in the vascular endothelium.[35] NO is considered to 
be a selective pulmonary vasodilator because after exerting 
its vasodilator action, NO is scavenged by hemoglobin 
having minimal effects on systemic hemodynamics.[35]

Disruption of the NO pathway is a major contributor to 
the pathobiology of PH. NO in exhaled breath and NO 
biochemical reaction products in bronchoalveolar lavage 
are lower in lungs of patients with PAH than controls and 
their level is inversely related to the degree of PH.[45,94] NO 
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in exhaled breath of individuals with idiopathic PAH is 
significantly lower than subject with PH associated with 
other causes or healthy nonsmoking controls.[95] In fact, 
patients with PH associated with other causes had similar 
levels of exhaled NO than healthy controls.[95]

Early data demonstrated a reduced expression of NOS III, 
measured by immunostaining, in the vascular endothelium 
of pulmonary arteries in patients with PAH. This reduced 
expression inversely correlated with the severity of the 
morphological arterial changes.[96] More recently, however, 
other investigators showed increased or unaltered NOS III 
immunostaining in PH.[97,98] Moreover, there is evidence 
of high NOS III expression in plexiform lesions in PAH.[99] 
A unifying hypothesis suggested that the activity of NOS III 
may be reduced rather that its expression.[100] Other NOS 
isoforms besides NOS III may contribute to the low exhaled 
NO observed in idiopathic PAH.[94]

NO has also been implicated in the important role that 
bone morphogenetic protein receptor II  (BMPRII) has 
in the pathogenesis of PAH.[101] In the lung, BMPRII is 
highly expressed in endothelial cells and its activation 
promotes proliferation, migration, and survival of these 
cells.[102] BMPRII levels are markedly reduced in patients 
with heritable or idiopathic PAH, promoting endothelial 
dysfunction and apoptosis.[102] These effects have been 
recently attributed to a decrease in NOS III activity, since 
BMPRII ligands failed to stimulate NOS III dependent 
protein kinase activation in pulmonary artery endothelial 
cells from patients with mutation in the BMPR2 gene.[103]

PAH patients treated with epoprostenol had a three‑fold 
higher exhaled NO than PH patients not receiving this 
treatment and two‑fold higher than healthy controls. 
Interestingly, exhaled NO increased at 24 hours in those 
patients treated with this prostacyclin analog.[95] These 
data suggest that prostacyclin analogs may in part improve 
PH through effects on NO. In support of this, previous 
work has shown that nebulized epoprostenol increased 
the exhaled NO in patients with PAH associated with 
congenital heart disease.[104] Similarly, inhaled iloprost also 
led to an increase in NO concomitant with a decrease in 
pulmonary artery pressure in a patient with PAH associated 
with scleroderma.[105] Other PAH‑specific therapies that 
do not directly target the NO pathway may also improve 
the fraction of exhaled nitric oxide suggesting a crosstalk 
between different signaling pathways.[95,106,107]

The NO signaling pathways have been found to be affected 
in PH at different levels. Endogenous NOS III inhibitors 
may be involved in the pathogenesis of PH. These include 
the symmetric and asymmetric dimethylarginines (ADMA). 
Animal models of hypoxic PH showed increased ADMA 

levels and decrease in activity of dimethylarginine 
dimethylaminohydrolase (DDAH), the endothelial enzyme 
that metabolizes ADMA.[108] Higher serum levels of ADMA 
are increased in patients with idiopathic PAH[109,110] and 
chronic thromboembolic pulmonary hypertension,[111] and 
correlate with disease severity and survival. ADMA levels 
increase predominantly due to a reduction in the expression 
and function DDAH.[110]

Arginase II, an enzyme that is part of the urea cycle and 
breaks down arginine to ornithine, can decrease the 
substrate available to NOS for NO synthesis. Idiopathic and 
PAH associated with sickle cell disease patients have been 
found to have higher levels of Arginase II and lower levels 
of L‑arginine than healthy controls.[112] In the absence of 
L‑arginine or BH4, NOS III may become “uncoupled,”[14] 
resulting in the generation of the free radical superoxide.

CLINICAL IMPLICATIONS IN PH: 
DIAGNOSIS AND PROGNOSIS

Although the vascular endothelium produces large amounts 
of NO, very little is exhaled as a result of the marked affinity 
of NO to hemoglobin in the pulmonary circulation.[28] In 
spite of this potential limitation, NO can be measured in 
exhaled breath and its concentration is inversely related 
to the exhalation flow. For this reason, the fraction of 
exhaled NO is measured at a constant flow  (usually 
50  mL/s). Using this approach, the fraction of exhaled 
NO is a reliable surrogate of the maximal flux of NO from 
the large airway compartment.[113] This method does not 
measure the steady‑state mean distal airway/alveolar 
concentration of NO. There is no simple surrogate for 
measuring this parameter since its determination requires 
the measurement of the fraction of exhaled NO at multiple 
expiratory flow rates and the application of a modified 
“slope‑intercept” algorithm.[20,114]

Authors have investigated whether exhaled NO could 
serve as a noninvasive marker of severity of disease and 
response to therapy in PH. The value of repetitive exhaled 
NO measurements was studied in 17 PAH patients over 
two years. NO levels at entry were inversely correlated 
with the number of months from the PAH diagnosis, 
suggesting a global decrease in NO over longer periods 
with the disease.[106] Lower exhaled NO levels at entry were 
associated with higher pulmonary artery pressures and less 
decrease over time. NO at the beginning of the study was not 
associated with survival; nevertheless, its level increased 
over time in the PAH individuals who survived to complete 
the study when compared to those who died, and correlated 
with changes in pulmonary artery pressures.[106] Thus, 
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exhaled NO could be a useful marker of disease severity 
and response to therapy.[94,95,106]

Inhaled NO is frequently used for acute vasodilator 
challenge during right heart catheterization in patients 
with PAH. A positive pulmonary vasodilator test (decrease 
in mean pulmonary artery pressure of at least 10 mmHg to 
an absolute value less than 40 mmHg without decrease in 
cardiac output) indicates the patient that can potentially 
benefit from long‑term calcium‑channel blockers.[115‑118] NO 
vasodilator challenge in several types of PH can also provide 
prognostic information, as responders may have better 
outcome, independent of the treatment administered.[119‑122]

CLINICAL IMPLICATIONS IN PH: 
THERAPY

Inhibiting phosphodiesterases‑5
Therapies that manipulate the downstream NO signaling 
have revolutionized the treatment of PH (Fig. 2). Sildenafil 
and tadalafil are FDA approved PDE‑5 inhibitors for the 
treatment of PAH in adults.[123‑125] The FDA recently placed 
a safety warning on the prescription of sildenafil, not 
recommending its use in pediatric patients due to increase 
mortality with increasing doses in this age group.[125] This 
modification was based on the results of the Sildenafil 
Citrate in Treatment‑Naive Children with Pulmonary 
Arterial Hypertension (STARTS‑2) trial.[126] This extension 
study, designed to assess the safety and tolerability of 
long‑term treatment with oral sildenafil monotherapy in 
children  (aged 1-17  years) with PAH, showed a higher 
mortality risk in patients randomized to high‑dose 
sildenafil.[126]

PDE‑5 inhibitors prevent the normal hydrolysis of cGMP, 
prolonging the NO effects on tissues. PDE‑5 is mainly 
expressed in the pulmonary vascular bed,[127] thus its 
inhibition has primarily pulmonary‑specific effects.[100,128] 
Furthermore, PDE5 is upregulated in the lung[127] and the 
hypertrophied right ventricular myocardium[129] of patients 
with PAH. Therefore, PDE‑5 inhibitors are an ideal treatment 
for PAH because they decrease the right ventricular 
afterload and improve right ventricular inotropy, without 
relevant systemic hemodynamic effects.[129]

Using nitric oxide as an inhaled gas
Inhaled NO was first shown to selectively reduce 
pulmonary vascular resistance in a lamb model;[130] 
subsequently, multiple studies have confirmed this 
finding in humans.[118,131,132] Continuous inhaled NO had 
beneficial effects in patients with PAH or PH associated 
with COPD;[132‑134] however, high cost and technical 

difficulties for its delivery and avoidance of the toxic effects 
of NO oxidative products have prevented its widespread 
use.[133] During continuous administration of NO, NO 
oxidative products  (NO2) can build up and cause airway 
hyperactivity at low concentrations[135] and pulmonary 
edema at higher concentrations.[136] Methemoglobin is also 
formed as NO reacts with oxyhemoglobin. Furthermore, 
mechanisms should be in place to avoid abrupt cessation of 
inhaled NO as this may lead to rebound PAH with deleterious 
effects.[137,138] Nonetheless, two studies that evaluated the 
long‑term use  (one and three months, respectively) of 
inhaled NO in PAH, chronic thromboembolic PH, and PH due 
to COPD reported no significant increase in methemoglobin, 
withdrawal syndrome, change in oxygenation, pulmonary 
function, or systemic hemodynamics.[132,134]

Currently, inhaled NO is FDA approved for the treatment of term 
and near‑term (> 34 week gestation) neonates with hypoxic 
respiratory failure with clinical and echocardiographic 
evidence of pulmonary hypertension.[81,82,139] Extended 
administration (weeks) of inhaled NO has been studied in 
premature infants and does not appear to improve survival 
or prevent bronchopulmonary dysplasia.[81‑83,140,141] At 
present, inhaled NO is undergoing clinical investigations 
to evaluate its utility as a treatment for bronchopulmonary 
dysplasia (NCT01503801). There are two ongoing studies 
using extended administration of inhaled NO in adults 
with PH. The PHiano study (NCT01265888, Geno LLC) is 
an open label, dose‑escalation, Phase II study using a NO 
delivery system  (NITROsyl) in patients with PAH or PH 
secondary to idiopathic pulmonary fibrosis. The second 

Figure 2: Therapeutic strategies to increase NO effect. BH4, tetrahydrobiopterin; 
cGMP: Cyclic guanosine monophosphate; EPC: Endothelial progenitor cells; 
GMP: Guanosine monophosphate; GTP: Guanosine triphosphate; HMG coA 
red, hydroxyl‑methylglutaryl‑CoA reductase; Inh, inhaled; NO: Nitric oxide; 
NOS: Nitric oxide synthase; ONOO‑, peroxynitrite; PDE: Phosphodiesterases; 
PK: Protein kinases; rhSOD: Recombinant human superoxide dismutase; sGC: 
Soluble guanylate cyclase; SNO‑Hb: S‑nitrosothiol – hemoglobin. L‑arginine 
can be regenerated from L‑citrulline by two enzymes  (argininosuccinate 
synthase and argininosuccinate lyase).
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study (NCT01457781, INO Therapeutics) is a randomized, 
double blind, placebo control, Phase II study of inhaled NO 
versus placebo as add‑on therapy in subjects with PAH. NO 
is delivered by a special device (INOpulse DS).

Nitric oxide donors
Plasma levels of nitrate and nitrite are low in diseases 
that have endothelial dysfunction like PAH.[142] Inhaled 
nitrite could be converted to NO and selectively dilate 
the pulmonary circulation.[143] The vasodilatory effects 
of these inorganic anions  (nitrite and nitrate) are less 
potent than the organic nitrates  (nitroglycerin) and 
nitrites (amyl‑nitrite);[69] however, the inorganic compounds 
do not induce significant systemic vasodilator effects and 
tachyphylaxis as the organic molecules.[69] Nebulized 
sodium nitrite has been shown to ameliorate PH induced 
by hypoxia in animals and humans, with a longer duration 
of action than that of inhaled NO,[143,144] supporting that 
nitrites are NO donors particularly during hypoxia as result 
of the nitrite reductase action of deoxyhemogobin.[69,143] 
Ethyl nitrate is an organic nitrate given by inhalation that 
forms S‑nitrosothiols and has shown to improve pulmonary 
hemodynamics in a model of hypoxia‑induced PH without 
altering systemic vascular resistance or increasing 
methemoglobin levels.[145] Its low potency when compared 
with inhaled NO can be markedly enhanced both in vivo and 
in vitro by the addition of the thiol glutathione.[145]

Efforts in trying to find better stability and prolonged 
half‑life in NO delivery led to the discovery of 
diazeniumdiolates  (diethylenetriamine/NO) that can 
form a group of adducts called NONOates that are 
complexes of NO with nucleophiles that spontaneously and 
nonenzymatically release NO when dissolved in aqueous 
neutral PH solutions. This process prolongs the half‑life 
of NO release up to 20 hours.[146,147] Nebulized NO donors 
have been shown to reduce PVR in hypoxia‑induced PAH 
in piglets,[148] monocrotaline rat model,[147] and ARDS 
patients[149] with no systemic adverse effects or toxic 
reaction products of NO.

Other therapies based on the nitric oxide pathway
Several promising therapies which affect the signaling 
pathway of NO are under active investigation  (Fig.  1). 
Soluble guanylate cyclase stimulators increase cGMP 
independently of NO. One of these stimulators, Riociguat, 
increased the activity of soluble guanylate cyclase 73‑fold 
in  vivo with partial reduction in pulmonary pressures, 
RV hypertrophy, and pulmonary artery muscularization 
in animal models of PH.[150] This medication showed 
promising results in a Phase II study in patients with PAH 
and chronic thromboembolic PH.[151] We are awaiting the 
results of two Phase III studies evaluating safety and clinical 
effectiveness of riociguat in PAH  (NCT00810693) and 
chronic thromboembolic PH (NCT00855465).[152]

L‑arginine replacement aims at providing excess substrate 
for the NOS enzyme and stimulating the NO production. 
L‑arginine attenuated PAH in different animal models 
of PAH[153‑155] and in patients with PAH associated 
with sickle cell disease, idiopathic PAH, and chronic 
thromboembolic PH.[156,157] L‑citrulline, a urea cycle 
intermediate, is metabolized to L‑arginine in pulmonary 
vascular endothelial cells. Oral supplementation increased 
NO synthesis and ameliorated chronic hypoxia‑induced 
PH in newborn piglets. [158] In children undergoing 
cardiopulmonary bypass, the oral supplementation 
of L‑citrulline safely increased plasma citrulline and 
arginine concentrations, and more importantly PH did 
not occur in those with elevated citrulline levels.[159] The 
safety and effectiveness of intravenous L‑citrulline, in 
children undergoing cardiopulmonary bypass for surgical 
repair of a congenital heart defect, is currently being 
tested (NCT01120964).

NO production by NOS depends on the de novo biosynthesis 
of the enzyme cofactor tetrahydrobiopterin (BH4).[160,161] 
BH4 stabilizes the NOS dimmer assembly and the favorable 
spin state of the Fe (II)‑O2 heme intermediate preventing 
“uncoupling” of the enzyme and formation of reactive oxygen 
products.[14,162,163] The augmentation of tetrahydrobiopterin 
showed promising results in a pilot study in patients 
with PAH or chronic thromboembolic PAH.[164] Another 
promising therapy is the recombinant human superoxide 
dismutase  (rhSOD) that scavenges superoxide anion 
and increases the bioavailability of NO.[165] In a lamb 
model of persistent PH, rhSOD administered through 
the endotracheal tube as a bolus enhanced the effects of 
inhaled NO on pulmonary vasculature.[165]

Attractive new potential therapies for PAH include 
the NOS III enhancers, the delivery of autologous 
endothelial progenitor cells,[166] or the enzyme NOS II 
and III using adenoviral‑mediated transfer or adult stem 
cell‑based ex vivo gene therapy.[167] Bone marrow‑derived 
endothelial‑like progenitor cells prevented the development 
or progression of PH in a monocrotaline rat model of 
PH.[168] The engraftment of these progenitor cells in the 
pulmonary vasculature may restore the microvascular 
structure and function.[168] Meanwhile, animals receiving 
endothelial‑like progenitor cells or mesenchymal stem 
cells transduced with NOS III had reversal of established 
PH and improved survival.[168,169] Adenoviral gene transfer 
of NOS III produced an increase in the NOS III expression 
and activity with attenuation in the hypoxia‑induced 
increase in pulmonary artery pressure.[170] Similarly, NOS 
II gene transfer increased pulmonary NO production with 
reduction in hypoxia‑induced PH and vascular remodeling 
in rats.[171]
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Conclusions

Nitric oxide mediates diverse key signaling functions in 
human physiology and disease. Major progress in the 
understanding of NO signaling pathway has led to the 
approval of PAH‑specific treatments and the ongoing 
discovery and development of promising new therapies. 
Molecules in the NO pathway also have the potential to 
be used as biomarkers of disease severity, outcomes, or 
response to therapy in pulmonary hypertension.
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