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Abstract

As part of its response to a perturbation, an animal often needs to reposition its body. Inertia

acts to oppose the corrective motion, delaying the completion of the movement—we refer to

this elapsed time as inertial delay. As animal size increases, muscle moment arms also

increase, but muscles are proportionally weaker, and limb inertia is proportionally larger.

Consequently, the scaling of inertial delays is complex. Our intent is to determine how

quickly different sized animals can produce corrective movements when their muscles act

at their force capacity, relative to the time within which those movements need to be per-

formed. Here, we quantify inertial delay using two biomechanical models representing com-

mon scenarios in animal locomotion: a distributed mass pendulum approximating swing

limb repositioning (swing task), and an inverted pendulum approximating whole body pos-

ture recovery (posture task). We parameterized the anatomical, muscular, and inertial prop-

erties of these models using literature scaling relationships, then determined inertial delay

for each task across a large range of movement magnitudes and the full range of terrestrial

mammal sizes. We found that inertial delays scaled with an average of M0.28 in the swing

task and M0.35 in the posture task across movement magnitudes—larger animals require

more absolute time to perform the same movement as small animals. The time available to

complete a movement also increases with animal size, but less steeply. Consequently, iner-

tial delays comprise a greater fraction of swing duration and other characteristic movement

times in larger animals. We also compared inertial delays to the other component delays

within the stimulus-response pathway. As movement magnitude increased, inertial delays

exceeded these sensorimotor delays, and this occurred for smaller movements in larger ani-

mals. Inertial delays appear to be a challenge for motor control, particularly for bigger move-

ments in larger animals.

Introduction

Independent of animal size, a fast response time is important to an animal’s survival. A tiny

shrew needs to react quickly to escape from a predator, and a massive elephant needs to

recover quickly from a loss of balance to prevent a fall. Response time—measured as the total

delay between the onset of a perturbation and the completion of the corrective movement that
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is in response to the perturbation—is not just important for relatively rare escapes and falls,

but also for more common motor control tasks. This is because even small time delays can

destabilize feedback control, requiring animals to have compensatory neuromechanical strate-

gies [1–4]. Response time is relevant to the control of movement both in terms of its absolute

duration and its duration relative to the available movement time. For example, the absolute

duration of the corrective response matters to avoid a snakebite, which can be equally deadly

for small and large animals alike. And the relative response time matters to avoid a trip when

galloping, where the corrective response may need to occur within a limb’s swing duration,

which takes longer in larger animals [5–7].

Response time is determined, in part, by neuromuscular physiology [2,8–10]. Consider an

animal whose foot catches on a vine—the lengthening of the limb muscles activates the stretch

reflex, which resists muscle stretch and helps the animal recover its posture [11,12]. This

stretch reflex consists of several component delays. There is a sensing delay to detect the

stretch and generate action potentials, a nerve conduction delay to conduct the action poten-

tials through the sensory nerve fibres to the spinal cord, and a synaptic delay to process the sig-

nal at the sensorimotor synapse. There is another nerve conduction delay as the action

potentials are transmitted down the motor nerve fibres, a neuromuscular junction delay to

transmit the action potentials across the neuromuscular junction, an electromechanical delay

to conduct the action potentials across the muscle and activate the molecular mechanisms

involved in cross bridge formation, and a force generation delay for the muscles to develop

forces. We group these six component delays together and refer to their sum as “sensorimotor

delay” [2].

After the sensorimotor delays, the corrective response to a perturbation often requires that

the animal reposition its body. If muscles could instantaneously generate infinite force, or if

the body and its segments were massless, this could be accomplished instantly. But of course,

muscles have finite strength and bodies have inertia. Consequently, the animal’s inertia

impedes the acceleration generated by muscles, further delaying response time. We refer to

this last contributor to response time as “inertial delay” and define it as the absolute time

between the onset of the corrective movement that is in response to a perturbation and the

completion of this corrective movement. A corrective movement is a dynamic process whose

duration depends on the movement task and the magnitude of this movement. It depends on

the corrective movement task because the time to swing a limb to a new position, for example,

may be different from that required to reject a push to the torso to avoid a fall. This is because

the two tasks involve different muscles, resulting in different force capacities, and different

parts of the body, resulting in different inertial properties. It depends on the magnitude of the

required movement because, all else being equal, less time is required to accomplish small

adjustments to the body’s position and velocity than large adjustments. We approximate these

dynamic effects of inertia as fixed time delays by determining the duration required for a

movement, while controlling for movement magnitude and movement task.

The scaling of inertial delay depends upon how muscle forces, muscle moment arms, and

the body’s inertial properties change with body size. When compared to small animals, larger

animals have larger muscles and longer moment arms which increase joint torque, but also

heavier and longer limbs which increase moment of inertia [13,14]. These properties don’t

scale precisely with simplified scaling rules such as geometric or dynamic similarity [15,16].

Consequently, it is not clear whether allometric scaling of muscle forces and muscle moment

arms offset size-dependent increases in inertial properties, or vice versa. A similar principle is

evident in the scaling of skeletal stress, where the disadvantages predicted for larger animals

when assuming simplified scaling rules are reduced or eliminated by compensatory size-

related changes in other factors, such as posture and moment arms [17–19].

Scaling of inertial delays in terrestrial mammals
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Here we seek to understand how inertial delays scale with animal size in terrestrial quadru-

pedal mammals. Our intent is to determine how quickly different sized animals can produce

corrective movements when their muscles act at their force capacity relative to the time within

which those movements need to be performed. Towards this goal, we begin by deriving scaling

relationships for the time available to produce a corrective movement, which we term “avail-

able movement time”. Next, we focus our study on two different tasks designed to represent

scenarios commonly encountered during animal locomotion. The swing task represents an

animal repositioning its limb to produce a corrective foot placement—modeled as a distrib-

uted mass pendulum. The posture task represents an animal recovering its posture after a push

forward in the sagittal plane—modeled as a point-mass inverted pendulum. We begin this

analysis by deriving analytical expressions for the scaling of inertial delay by linearizing both

of these models and parameterizing them using simplified scaling rules. This helps build intui-

tion for the dependence of inertial delay on task, movement magnitude, muscle force, muscle

moment arm, and inertial properties. Then to obtain more realistic estimates for the scaling of

inertial delays, we parameterize the complete nonlinear models with measured values from lit-

erature and simulate them numerically. We then estimate response time as the sum of sensori-

motor delays and inertial delays. Finally, we compare this required response time to the

available movement time to gauge whether relative response times reach magnitudes where

they could detrimentally affect motor control.

Scaling of available movement times

We use characteristic movement times to understand how much time an animal has available

to respond to a perturbation and complete the corrective movement. We compare response

times to these available movement times to gauge whether the time required to respond may

hinder neural control of movement. Here, we analytically quantify the scaling of two charac-

teristic movement times which we have chosen to approximate the time it would take an ani-

mal to fall to the ground, and the time an animal’s leg is in swing phase when running.

As response time becomes longer relative to fall time, it becomes more difficult for an animal

to stop a fall and regain balance. To analytically derive the scaling of fall time, consider an

animal of mass M, falling from the height of its leg L to the floor under the force of gravity.

Here, we assume that animal morphological features scale with geometric similarity. Two

animals are geometrically similar if they have exactly the same shape, even if they are of dif-

ferent sizes [19]. More specifically, it requires that linear features between animals, such as

leg length, scale with M1/3, surface area features scale with M2/3, and masses of body seg-

ments scale with M1 [16]. Under these assumptions, the time tf required for an animal to

fall to the floor is given by:

tf ¼
ffiffiffiffiffi
2L
g

r

/
ffiffiffi
L
p
/ M1=6 ð1Þ

where g is the acceleration due to gravity. We have provided a detailed derivation in section A

of S1 File. While it would take longer for an animal to fall like an inverted pendulum, rather

than crumple to the ground as described above, the dependence on mass would not change.

Similar to falling, if response time exceeds the natural time period of the swinging limb, or

some fraction of this period, the animal may have difficulty recovering if the swing is per-

turbed. We used the natural time period of a pendulum with the properties of an animal limb

as a proxy for swing duration [20,21]. Assuming geometric similarity, the natural time period

Scaling of inertial delays in terrestrial mammals
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ts of a pendulum scales as:

ts ¼ 2p

ffiffiffi
L
g

s

/
ffiffiffi
L
p
/ M1=6 ð2Þ

Thus, like time to fall, swing period depends on M1/6. Swing duration calculations based on

values reported in the literature estimate that it scales with M0.14 at trot-gallop transition

speeds and with M0.13 at maximum sprint speeds [2]. Thus, characteristic movement times

scale approximately with M1/6 based on both theoretical considerations and empirical mea-

surements. We use these characteristic movement times to normalize the absolute response

time.

This relative response time is a measure of how long response time is when compared to

the time available to complete the response. It is unlikely that animals have to complete a cor-

rective movement in exactly the duration of the swing phase at sprint speeds. It is possible that

they can recover from a perturbation if the corrective movements take longer, and it is also

possible that the corrective movements have to be completed in an even shorter period of

time. Nevertheless, swing duration seems like a reasonable benchmark to complete a corrective

movement to foot placement by the same limb that is perturbed rather than distributing the

corrective movement across multiple limbs and multiple phases of the gait cycle. Furthermore,

swing duration, fall duration, and pendulum period share a common scaling exponent provid-

ing us with some assurance that relative response time will not depend strongly on size as a

consequence of our choice of the available movement time used to normalize the absolute

response time.

A simple model of inertial delay

3.1 Model

To obtain theoretical estimates for the scaling of inertial delays, we first consider a simple pen-

dulum operating in the horizontal plane without the effect of gravity (Fig 1). These equations

of motion are linear, allowing us to analytically derive the scaling of inertial delays. These esti-

mates will support subsequent numerical simulations and provide intuition about how various

factors contribute to inertial delays. This system is an angular version of a sliding block model

and can be analytically described as a double integrator—a simple and well-studied dynamical

system [22,23].

3.2 Scaling of model parameters

Assuming the pendulum scales with geometric similarity, its length would change with M1/3,

mass with M1 and moment of inertia (ML2) with M5/3. We consider two scenarios for the scal-

ing of maximum muscle force. In the first scenario, we assume that muscle force maintains

dynamic similarity between animals of different sizes by scaling force in direct proportion to

animal mass: Fmusc/M1 [15]. In the second scenario, we instead assume muscle force scales

with cross-sectional area: Fmusc/M2/3 [17]. In this simple pendulum model, the applied muscle

torque Tmusc is the product of the muscle force and a constant muscle moment arm Rmusc:

Tmusc ¼ FmuscRmusc ð3Þ

We assume that the muscle moment arm scales with geometric similarity (M1/3).

Scaling of inertial delays in terrestrial mammals

PLOS ONE | https://doi.org/10.1371/journal.pone.0217188 February 4, 2020 4 / 18

https://doi.org/10.1371/journal.pone.0217188


3.3 Analytical derivation for the swing task

The swing task represents an animal repositioning its swing leg to control foot placement and

maintain stability during walking and running [24–28]. For the swing task, the pendulum is

required to move through an angular distance Δθ starting from rest, under the control of mus-

cle torque Tmusc. The inertial delay tID to reposition the pendulum is given by:

tID ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ML2Dy

Tmusc

s

ð4Þ

We have provided a detailed derivation in section B of S1 File. Eq 4 shows that inertial

delay is proportional to the square root of both the movement magnitude (Δθ) and the

moment of inertia of the pendulum (ML2), and inversely proportional to the square root of the

applied torque. Therefore, doubling muscle torque would only result in a 30% reduction in

inertial delay. These calculations indicate that while inertial delay does depend on actuator

limits, increasing muscle torque may not be an effective option to reduce it.

Next, we consider our two different scenarios for the scaling of muscle force. Beginning

with muscle force scaling with dynamic similarity, we determine the scaling of inertial delay by

substituting Eq 3 into Eq 4:

tID ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ML2Dy

FmuscRmusc

s

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1M5=3Dy

c2 M4=3

s

/ M1=6:
ffiffiffiffiffiffi
Dy
p

ð5Þ

where c1 and c2 are constants of proportionality. The relative delay trel scales as:

trel ¼
tID
tchar
/

M1=6

M1=6
/ M0 ð6Þ

where tID is the inertial delay. tchar is a characteristic movement time representing the available

time to produce a corrective movement. tf and ts are examples of characteristic movement

times (ref. Section 2). Therefore, if muscles produce forces proportional to their mass, inertial

delay will scale with the same exponent as characteristic movement times (Eqs 1 and 2), and

relative delay would be independent of animal size. To the extent that animals are like this

Fig 1. Simple model for inertial delay. A pendulum of rod length L and point-mass M rotates about a pin joint

actuated by torque Tmusc. θ is the angle from the horizontal with positive angles in the counter-clockwise direction.

This model ignores gravity and assumes the rod is massless.

https://doi.org/10.1371/journal.pone.0217188.g001
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simple model, large and small animals would be dynamically similar in their response to dis-

turbances and relative delay would not change with animal size. In this scenario, inertial delay

would not disproportionately burden larger animals.

Instead, if muscle forces scale with cross-sectional area (Fmusc/M2/3), inertial delay scales

as:

tID ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ML2Dy

FmuscRmusc

s

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1M5=3Dy

c2M1

s

/ M1=3:
ffiffiffiffiffiffi
Dy
p

ð7Þ

trel ¼
tID
tchar
/

M1=3

M1=6
/ M1=6 ð8Þ

In contrast to dynamic similarity, relative delay will grow with animal size proportional to

M1/6, when muscle force grows only in proportion to cross-sectional area, penalizing larger

animals.

3.4 Analytical derivation for the posture task

The posture task models a standing animal recovering its balance after being perturbed [29–

32]. We represent the standing quadruped with a pendulum, which starts from an initial posi-

tion and has an initial clockwise velocity (� A
_y0) in the sagittal plane due to a perturbation

pushing it forward. We define inertial delay as the time required for muscle torque to return

the pendulum to rest back at the initial position after recovering from the perturbation. We

again use the simple model (Fig 1) and ignore the effects of gravity. The inertial delay tID to

reject the perturbation and return to the vertical position is given by:

tID ¼ ð1þ
ffiffiffi
2
p
Þ
ML2

A
_y0

Tmusc
ð9Þ

We have provided a detailed derivation in section C of S1 File. Similar to Eq 4 for the swing

task, the analytical derivation of Eq 9 gives us insight into how the various factors contribute to

inertial delay (tID) for the posture task. It predicts that the inertial delay during posture recov-

ery after a perturbation is directly proportional to the perturbation size A
_y0 and inversely pro-

portional to the muscle torque Tmusc.

Since larger animals have heavier bodies, longer limbs and larger muscles, we scaled the

size of the perturbation with animal mass to evoke responses with similar relative magnitude.

To do this, we express the initial angular velocity of the pendulum, representing the applied

perturbation, in terms of linear velocity:

A
_y0 ¼

v
L

ð10Þ

where v is the linear velocity caused by the initial perturbation and L is the length of the pendu-

lum. We perturbed each model using an initial linear velocity scaled based on a constant

dimensionless velocity vND [33]:

vND ¼
v
ffiffiffiffiffi
gL
p ; v ¼ vND

ffiffiffiffiffi
gL

p
/ M1=6 ð11Þ

Substituting the values for A
_y0 from Eq 10 and Tmusc from Eq 3 into Eq 9 and assuming

muscle force scales with dynamic similarity (Fmusc/M1) predicts that the inertial delay for the

Scaling of inertial delays in terrestrial mammals
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posture task scales as:

tID ¼ 1þ
ffiffiffi
2
p� � ML2v

FmuscRmuscL
¼

c1M1M2=3M1=6

c2M1M1=3M1=3
/ M1=6:vND ð12Þ

trel ¼
tID
tchar
/

M1=6

M1=6
/ M0 ð13Þ

If instead muscle force scales with cross-sectional area (Fmusc/M2/3), the total time for the

posture task would scale as:

tID ¼
c1M1M2=3M1=6

c2M2=3M1=3M1=3
/ M1=2:vND ð14Þ

trel ¼
tID
tchar
/

M1=2

M1=6
/ M1=3 ð15Þ

Similar to our conclusions from Eq 5 in the swing task, we find that if muscles scaled with

dynamic similarity, producing forces proportional to their mass, both inertial delays and char-

acteristic movement times scale with M1/6. This results in constant relative delays regardless of

animal size. However, if muscles produced forces proportional to their cross-sectional area,

inertial delay scales with M1/2 in absolute time and M1/3 when expressed relative to movement

time.

The effect of size on inertial delay depends on the task. The effect of size if muscle forces

scaled with cross-sectional area is steeper in the posture task (Eq 14) than what we found in

the swing task (Eq 7). An additional difference is the effect of movement magnitude—inertial

delay increases in direct proportion to the size of the velocity perturbation in the posture task,

and only with the square root of the angular displacement in the swing task. In sections 4 and

5, we use computer simulations of nonlinear biomechanical models, parametrized by actual

measurements from literature, to refine our estimates for the scaling of inertial delays.

Swing task

4.1 Model

We modeled the swing task as a distributed mass pendulum actuated by muscle torque (Fig 2).

We defined inertial delay for this task as the time required to swing the pendulum from rest at

an initial clockwise angle to rest at a final counter-clockwise angle, with identical angles in the

clockwise and counter-clockwise direction. Unlike our simple model, we included the effects

of gravity, did not assume a point mass, and did not linearize the equation of motion. The

motion of the pendulum is described by:

_y_ tð Þ ¼
Tmusc

MOI
þ
MlimbgLCOM

MOI
sin y tð Þ ð16Þ

where Tmusc is the muscle torque, LCOM is the distance from the pendulum pivot to limb center

of mass, Mlimb is the mass of the limb, and MOI is the moment of inertia of the forelimb about

the shoulder joint (Fig 2A). We applied the control torque in a bang-on bang-off profile from

+Tmusc to −Tmusc to determine a lower bound for inertial delay by ignoring realistic muscle

actuation dynamics. In this scenario, inertial delay represents the minimum movement time

possible, and is limited only by maximal torque (Fig 2B top panel).

Scaling of inertial delays in terrestrial mammals
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4.2 Scaling of model parameters

Table 1 summarizes the scaling relationships we used for our swing task parameters. We used

scaling equations for forelimb mass, length, distance from shoulder joint to limb center of

mass, and moment of inertia from Kilbourne and Hoffman [14]. We used scaling equations

for triceps muscle mass, muscle length, and moment arm from Alexander et al. [13]. We

assumed that the triceps is the main muscle flexing the shoulder joint in quadrupeds, because

it is a prime mover for this action and because it is the only shoulder muscle for which all the

values necessary to compute the scaling of muscle torque are available. Using values for the

Fig 2. Swing task. The model represents repositioning of the swing leg as part of the response to a trip. (a) We modeled the swing task as a distributed mass pendulum

actuated by muscle torque Tmusc. Our model incorporates the distance from the pendulum pivot to limb center of mass (LCOM), mass of the limb (Mlimb), and moment

of inertia of the forelimb about the shoulder joint (MOI). (b) Angle (θ), angular velocity ( _y), and torque (Tmusc) profiles in the swing task for a one kg animal for a 30

degree movement, the movement magnitude for which inertial delay equals sensorimotor delay in a one kg animal. (c) Variation in coefficient a and exponent b of the

power law for inertial delay from numerical simulations with movement magnitude (dark blue), sensorimotor delay (dark green), and theoretical predictions for the

inertial delay exponent based on scaling of muscle force with cross-sectional area/M2/3 (thick dashed line) and dynamic similarity/M1 (thin dashed line).

https://doi.org/10.1371/journal.pone.0217188.g002

Table 1. Swing task scaling parameters and their confidence intervals.

Parameter Coefficient (a) Exponent (b)

Value 95% CI Value 95% CI

Forelimb inertial properties [14]

Mass (kg) 5.82×10−2 4.61×10−2 7.34×10−2 1.00 0.93 1.08

COM length (m) 5.64×10−2 4.98×10−2 6.38×10−2 0.36 0.32 0.40

MOI (kg m2) 2.52×10−4 1.61×10−4 3.95×10−4 1.75 1.60 1.89

Triceps muscle properties [13]

Mass (kg) 6.20×10−3 5.54×10−3 6.94×10−3 1.11 1.07 1.15

Muscle length (m) 1.87×10−2 1.72×10−2 2.04×10−2 0.33 0.29 0.37

Moment arm (m) 8.70×10−3 8.13×10−3 9.31×10−3 0.41 0.38 0.44

https://doi.org/10.1371/journal.pone.0217188.t001
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entire triceps is a further simplification, as only one of the three heads of the triceps move the

shoulder [29]. We assumed that parameters for the shoulder extensor muscles scale in the

same way as those for the triceps.

To determine muscle torque for each animal size, we first determined muscle volume by

dividing the mass of the muscle by a density of 1060 kg/m3 [34]. We found the muscle cross-

sectional area by dividing its volume by the muscle length, assuming that muscles have a con-

sistent cross-sectional area. Multiplying the cross-sectional area by the isometric force genera-

tion capacity of mammalian muscle, estimated at 20 N/cm2, gave muscle force [35,36]. Finally,

we calculated muscle torque by multiplying the muscle force and its moment arm (Eq 3).

4.3 Simulation

We performed simulations of the swing task for seven animal masses logarithmically spaced

from one gram to ten tons, chosen to span the entire size range of terrestrial mammals [37,38].

For each animal mass, we used the scaling relationships from section 4.2 to determine the size-

specific parameters for simulation. At each animal size, we varied the initial clockwise angle

from 0.01 to 30 degrees to quantify how movement size affected inertial delay. We numerically

simulated the swing task using an explicit Runge-Kutta algorithm implemented with

MATLAB’s ode45 solver (MATLAB R2017b, The MathWorks, Inc., Natick, MA, USA). We

used the solver’s event detection to determine when the pendulum reached zero angle and, tak-

ing advantage of the symmetric nature of the problem, switched the direction of the applied

torque from counterclockwise to clockwise. The simulation continued until the solver’s event

detection halted the simulation when the pendulum reached zero angular velocity, which

occurred when the pendulum reached the same counterclockwise angle as it had started in the

clockwise direction. Fig 2B shows an example simulation. Elapsed simulation time was the

inertial delay for each animal size and each initial angle. For each initial angle, we then loga-

rithmically transformed the inertial delay values for the various animal sizes and used least

squares linear regression to extract the coefficient and exponent for the scaling of inertial delay

[39].

We used Monte Carlo simulations to determine 95% confidence intervals for our results by

propagating the uncertainty in the input scaling values for limb inertial properties and muscle

properties through to our estimates for inertial delay [40,41]. First, we generated probability

distributions for each of the limb inertial and muscle properties in Eq 16. For the inertial prop-

erties, we fit a linear regression model in MATLAB to the log-transformed raw data from Kil-

bourne and Hoffman, to generate parameters describing the distribution of the coefficient a
and exponent b [14]. For the muscle properties, we did not have access to the raw data so we

used the mean and 95% confidence intervals of the scaling parameters to generate t-distribu-

tions [13]. We then randomly sampled a single value for each limb inertial and muscle prop-

erty from their respective probability distribution and used them to simulate our model,

generating one scaling coefficient and exponent for inertial delay. We ran 10,000 simulations

in this way, obtaining a distribution of coefficients and exponents. Our final 95% confidence

intervals are 1.96 times the standard deviations of these distributions. We have provided a

detailed description of the Monte Carlo simulations in section D of S1 File.

4.4 Results

Our numerical simulations determined that inertial delay scales with an average of M0.28 for

the swing task, across movement magnitudes (Fig 2C). This scaling exponent falls between our

two analytical predictions, which assume that muscle force scales either with dynamic similar-

ity M1/6 (Eq 5) or with muscle cross-sectional area M1/3 (Eq 7). The coefficient of inertial delay
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in our numerical simulations increased with the square root of movement size (Fig 2C top), as

predicted by our analytical analysis (Eq 4). As movement size increased from 1 degree to 60

degrees, the coefficient increased from 5.8 ms (4.0–7.5 ms) to 43 ms (30–57 ms), while the

exponent remained fairly steady about 0.28 (0.22–0.34). Here and elsewhere, we report our

results as “mean (lower–upper 95% confidence interval)”.

We tested the sensitivity of our numerical results to the applied muscle torque. Varying the

torque from half to four times its original value only increased the scaling exponent of inertial

delay from M0.276 to M0.279. This indicates that our results for the scaling of inertial delay are

robust to possible inaccuracies in our estimates for the torque produced by muscles that flex

and extend the shoulder joint. We have provided a short description of these tests in section E

of S1 File.

Posture task

5.1 Model

We modeled the posture task as an inverted pendulum that has been pushed in the forward

direction resulting in an initial body velocity (Fig 3A). The task goal is to apply the correct

muscle forces to reject the perturbation and return the inverted pendulum to rest in an upright

posture. We defined inertial delay for this task as the time required to move from a vertical

position with an initial velocity perturbation in the clockwise direction to rest at the vertical

position, under the control of muscle torque. Unlike our simple model of this task, we

included the effects of gravity and did not linearize the equation of motion. The motion of this

inverted pendulum model is described by:

_y_ tð Þ ¼
Tmusc

MLlimb
2
þ
MgLlimb

MLlimb
2
sin y tð Þ ð17Þ

where Tmusc is the muscle torque, Llimb is the average length of the forelimb and hindlimb, and

M is the total mass of the animal. As in the swing task, we applied the control torque in a bang-

on bang-off profile. In this scenario, inertial delay represents the minimum movement time

possible, and is limited only by maximal torque.

5.2 Scaling of model parameters

Table 2 summarizes the scaling relationships we used for posture task parameters. We set the

length of the inverted pendulum as the average length of the hindlimb and forelimb from Kil-

bourne and Hoffman, because we wanted the pendulum mass to represent the whole-body

center of mass of the animal [14]. In contrast, we set the swing task pendulum length to the

length of the forelimb. If we had used the length of the forelimb for the posture task inverted

pendulum, our values would increase by 8% or less. We used scaling equations for ankle exten-

sor muscle mass, muscle length, and moment arm from Alexander et al. and computed muscle

torque using the steps described in section 4.2 [13]. We assumed that the posture of the animal

is controlled by the ankle extensor muscle groups on the four legs by setting Tmusc to be four

times the torque applied by the ankle extensor group.

5.3 Simulation

We performed simulations of the posture task over the same size range as the swing task. For

each animal mass, we used the scaling relationships from section 5.2 to determine the size-spe-

cific parameters. At each animal size, we scaled the perturbation size based on dimensionless

velocity (Eq 11) to evoke a proportional response from each animal size. The inverted
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pendulum can reject the perturbation and return to rest at the vertical position only up to a

certain limit—if the initial clockwise velocity is too large, the counter-clockwise torque cannot

prevent the inverted pendulum from falling to the ground. The largest perturbation that a

10,000 kg animal could reject and return to vertical was 0.49 dimensionless velocity, so we var-

ied the initial perturbation from 0.01 to 0.49 dimensionless velocity. As with the swing task, we

numerically simulated the motion in MATLAB. We used optimization to determine when to

switch between the maximum counterclockwise and clockwise torque magnitudes such that

the pendulum reached the original upright posture at the same instant the velocity went to

zero. For each perturbation magnitude and animal size, we seeded the optimization with an

initial guess of the optimal timing and then used the Trust-region dogleg optimization

Fig 3. Posture task. The model represents an animal recovering its posture after a perturbation. (a) We use an inverted pendulum with a point-mass body and massless

rigid legs, pivoting about a ground-mounted pin joint. Our model considers limb length (Llimb), mass of animal (M), and actuating muscle torque (Tmusc). (b) Angle (θ),

angular velocity ( _y), and torque (Tmusc) profiles in the posture task for a one kg animal for movement of 0.21 dimensionless velocity, the perturbation size for which

inertial delay equals sensorimotor delay in a one kg animal. (c) Variation in coefficient a and exponent b of the power law for inertial delay determined from numerical

simulations with perturbation size (red), sensorimotor delay (dark green), and theoretical predictions for the inertial delay exponent based on scaling of muscle force

with cross-sectional area/M2/3 (thick dashed line) and dynamic similarity/M1 (thin dashed line).

https://doi.org/10.1371/journal.pone.0217188.g003

Table 2. Posture task scaling parameters and their confidence intervals.

Parameter Coefficient (a) Exponent (b)

Value 95% CI Value 95% CI

Limb lengths [14]

Forelimb length (m) 1.61×10−1 1.42×10−1 1.82×10−1 0.38 0.34 0.42

Hindlimb length (m) 1.63×10−1 1.47×10−1 1.80×10−1 0.36 0.32 0.39

Ankle extensor muscle properties [13]

Mass (kg) 5.10×10−3 4.40×10−3 5.92×10−3 0.97 0.92 1.02

Muscle length (m) 1.06×10−2 8.98×10−3 1.25×10−2 0.14 0.06 0.22

Moment arm (m) 9.40×10−3 8.79×10−3 1.01×10−2 0.38 0.35 0.41

https://doi.org/10.1371/journal.pone.0217188.t002
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algorithm (implemented using MATLAB’s fsolve function) [42]. It used repeated model simu-

lations to search for the optimal time to switch torque direction. Fig 3 illustrates a representa-

tive optimal solution. Elapsed simulation time was the inertial delay for each animal size and

perturbation magnitude. Similar to the swing task, we repeated the simulations and optimiza-

tions for a range of animal masses and used least squares linear regression to extract the coeffi-

cient and exponent for the scaling of inertial delay. We then used Monte Carlo simulations to

estimate the 95% confidence intervals. We have provided a detailed description of the Monte

Carlo simulations in section D of S1 File.

5.4 Results

Our numerical simulations determined that inertial delay scaled with an average of M0.35 for

the posture task, across perturbation magnitudes (Fig 3C). The exponent again fell between

those of the analytical predictions assuming muscle force scaling based on dynamic similarity

(M1/6; Eq 12) and on muscle cross-sectional area (M1/2; Eq 14). Varying the perturbation size

from 0.01 to 0.49 dimensionless velocity caused the coefficient to increase nearly linearly from

1.5 ms (1.1–1.9 ms) to 81 ms (53–102 ms), while the exponent again remained fairly steady

about 0.35 (0.24–0.46). This linear dependence on perturbation size was captured by our sim-

ple model of this task (Eq 9).

Inertial delays, sensorimotor delays and response time

In both the swing and posture task, inertial delay increases more steeply with animal size than

sensorimotor delay. Previous research in our lab has studied sensorimotor delay in terrestrial

mammals of varying sizes and found that it scales with M0.21 [2]. Here we found that swing

and posture task inertial delays scaled with an average of M0.28 and M0.35 across perturbation

magnitudes, respectively. This does not necessitate that inertial delays always exceed sensori-

motor delay because inertial delays also depend on the movement magnitude—for very small

position changes and velocity perturbations, inertial delays are far shorter than sensorimotor

delay at all animal sizes. But as movement magnitudes increase, there reaches a magnitude at

which inertial delay first matches, and then exceeds sensorimotor delay. This occurs at smaller

movement magnitudes in larger animals (Fig 4). For the swing task, inertial delay exceeded

sensorimotor delay when the limb swung through angles greater than 30M−0.14 degrees, corre-

sponding to 63 degrees in a five gram shrew and only 9 degrees in a five ton elephant. Shrews

experience these limb angles only while galloping, but elephants experience them at slower

speeds [16]. For the posture task, inertial delay exceeded sensorimotor delay for velocity per-

turbations greater than 0.21M−0.14 dimensionless velocity, corresponding to 0.44 in a five gram

shrew and only 0.06 in a five ton elephant. For a shrew, this perturbation magnitude is equiva-

lent to its walk-trot transition speed, but for an elephant it is equivalent to a much slower

speed [15]. Because day-to-day activities generally involve smaller movements and less

extreme perturbations, in most situations sensorimotor delay likely dominates response time

for smaller animals while inertial delays dominate for larger animals (Fig 5).

The dependence of both sensorimotor and inertial delays on animal size results in relatively

long response times in larger animals. We estimated response time as the sum of sensorimotor

delay and inertial delay. If this response time equals or exceeds the available movement dura-

tion, an animal cannot complete the task within the available time. Here, we use swing dura-

tion at maximum sprint speed, which scales as 148M0.13 ms, as the available movement time

for fast locomotion [2]. We calculate relative response time as the response time normalized

by the available time—it scales as 0.42M0.08. Inertial delay depends on movement magnitude,

and here we assumed a 30 degree swing because at this magnitude, inertial delay matches

Scaling of inertial delays in terrestrial mammals

PLOS ONE | https://doi.org/10.1371/journal.pone.0217188 February 4, 2020 12 / 18

https://doi.org/10.1371/journal.pone.0217188


sensorimotor delay in a one kg animal. The fraction of swing duration taken up by sensorimo-

tor delay doubles over seven orders of magnitude of animal mass, while that of inertial delay

increases almost six-fold (Fig 5). At maximum running speed, response time requires only

about 30% of swing duration for a five gram shrew but about 80% for a five ton elephant.

These relatively slower response times in larger animals may hinder their effective control of

movement.

Fig 4. Scaling of movements for which inertial delay equaled sensorimotor delay.

https://doi.org/10.1371/journal.pone.0217188.g004

Fig 5. Relative response time. Inertial delay and sensorimotor delay expressed as fractions of swing duration at

maximum sprint speed. Inertial delay is shown for a movement of 30 degrees in swing task. At this movement size,

inertial delay matches sensorimotor delay in a one kg animal.

https://doi.org/10.1371/journal.pone.0217188.g005
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Discussion

Here we studied how inertial delays scale with animal size in terrestrial quadrupedal mammals.

Inertial delay is the component of response time associated with overcoming inertia to move

body segments or reject a perturbation. We quantified it by modeling two scenarios commonly

encountered during animal locomotion—a swing task and a posture task. The scaling of iner-

tial delays depended on both the movement task and its magnitude. Over the perturbation

magnitudes that we considered, inertial delays scaled with an average of M0.28 for the swing

task and M0.35 for the posture task, which are both steeper than sensorimotor delays at M0.21

[2]. We used analytical derivations to show theoretically that if animal muscles could produce

forces proportional to an animal’s mass, as required for dynamic similarity, inertial delays

would scale at the same rate as characteristic movement times and relative delay would be

independent of animal size. However, if muscles only produce forces proportional to their

cross-sectional area, relative delay would increase with animal size and disproportionately bur-

den larger animals. Our numerical predictions for the scaling exponent fell between these the-

oretical predictions indicating that muscle forces that scale more steeply than with cross-

sectional area, and moment arms that scale more steeply than assumed by geometric similarity,

partly, but not completely, overcome the increases in inertia with animal size.

Previous work has suggested that animals may be more acutely challenged by long sensori-

motor delays than by inertial delays [14]. Our comparison of these two contributors to

response time indicates that this is certainly true in all animals when the movement magnitude

is small. But for larger movement magnitudes, including magnitudes encountered during day-

to-day movements, inertial delay is greater than sensorimotor delay in larger animals (Fig 4).

But sensorimotor delays appear to always be important—response time is never entirely domi-

nated by inertial delay (Fig 5). Whether sensorimotor or inertial delays are more challenging

to motor control depends on both the movement magnitude and the animal size.

Our study had several important limitations. First, the lack of literature on scaling of muscle

properties constrained the accuracy of our estimates for scaling of muscle torque. To our

knowledge, only one study reports the scaling of muscle features necessary for determining

torques acting about the shoulder and ankle joints in quadrupedal mammals [13]. Second, due

to the lack of data for other muscles, we assumed that the triceps and the ankle extensors are

the dominant muscles involved in moving their respective joints and that their antagonistic

muscles scale similarly. Thirdly, we assumed that the isometric stress produced by mammalian

muscle is constant at 20 N/cm2 [35], although actual isometric stress values for mammalian

muscle vary from 7 to 148 N/cm2 [43–45]. We tested the sensitivity of our results to muscle

torque and found little effect on the exponent of the power law for both tasks (see section E of

S1 File). Finally, our models are greatly simplified versions of the rather complex multi-jointed,

multi-muscled animal. For example, they do not consider size specific features such as crouch

vs columnar posture [17] and high vs low joint damping [46]. A more complete model of dif-

ferent size animals, like might be possible with Open-SIMM or a similar approach, may pro-

vide more realistic estimates of inertial delay [47]. However, we don’t expect that more

complete musculoskeletal models would greatly change the identified scaling exponents which

were robust to the major simplifications of the analytical models of Section 3 when compared

to our nonlinear simulations in Sections 4 and 5.

Our estimate of response time as the sum of sensorimotor delay and inertial delay makes

several simplifications. Firstly, we assumed that muscles can switch between maximal forces

instantaneously. However, actual muscles have properties that limit their rate of force produc-

tion, such as activation-deactivation dynamics and force-velocity properties [36,48–51]. Sec-

ondly, we assumed that electromechanical delay, force generation delay and inertial delay are
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distinct. However, these component delays are dynamic processes that overlap [2,50]. Thirdly,

we have assumed that sensing delay is independent of animal size. This assumption was based

on More and Donelan who had previously studied the scaling of sensing delay, but due to scar-

city of data, assumed it to be constant at 0.6 ms across animal size [2]. Some sensors, such as

muscle spindles, are sensitive to length and length changes [52]. For these sensors, greater inertia

may result in longer sensing delays. This is because the same perturbing force will result in

slower body accelerations, lower velocities, and smaller length changes of the sensors when iner-

tia is greater. While we have not accounted for this contribution of inertia to sensing delay in our

current modeling work, we suspect it is not a major factor—doubling or tripling the nominal

sensing delay results in a sensing delay that is still short relative to other contributors. Finally,

physiological control rarely works in a purely feedforward fashion without sensory feedback.

Feedback control is more resilient to unexpected perturbations and to the inherent noise and

delays in biological control systems [53,54]. While superior in these regards, it would only slow

the response time that we have estimated here—the optimal feedforward control profile operat-

ing at the limits to muscle torque yields a response time that is a lower bound on what is possible

with feedback control. We suspect that these limitations make our present estimates of response

time conservative, and that a refined model or an experimental approach will find response

times that exceed available movement times, particularly in large animals at fast speeds.

Given the importance of a short response time in controlling movement, how do animals

cope with their relatively long sensorimotor and inertial delays? We suspect that animals bene-

fit from several factors that mitigate the need for rapid response times. In smaller animals,

these include the innate biomechanical properties of the musculoskeletal system to rapidly

counteract perturbations. These stabilizing properties arise from the intrinsic properties of

muscle [55,56], the increased role of joint damping at small sizes [46], and the geometry of the

legs [57]. Biomechanical stabilization is likely less important in larger animals that have a more

upright posture, and lower joint damping [46,58,59]. Instead, larger animals may benefit from

neural prediction to help ameliorate the effects of long response time [1,2,54,60]. This may

only be a useful strategy for comparatively large animals, in which the synaptic delays associ-

ated with neural computation are short relative to movement durations [2]. The effects of large

inertia on control aren’t entirely negative—greater inertia also means that an animal can with-

stand larger external perturbations before being destabilized [14].

Supporting information

S1 File. Supplementary material. In this document, we have provided detailed derivations for

our analytical calculations, described the Monte Carlo simulations used to determine confi-

dence intervals, and elaborated on the methods for determining sensitivity to muscle torque. It

contains the following sections:

A. Analytical derivation of fall time

B. Analytical derivation for the swing task

C. Analytical derivation for the posture task

D. Determining confidence intervals

E. Effect of changing muscle torque on inertial delay scaling.
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