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A B S T R A C T

It’s crucial to understand the biomechanical properties of brain tissue to comprehend the po
tential mechanisms of traumatic brain injury. This study, distinct from homogeneous models, 
integrates axonal coupling in both axial and transverse compressive experiments within a con
tinuum mechanics framework to capture its intricate mechanical behaviors. Fresh porcine brains 
underwent unconfined compression at strain rates of 0.001/s and 0.1/s to 0.3 strain, allowing for 
a comprehensive statistical analysis of the directional, regional, and strain-rate-dependent me
chanical properties of brain tissue. The established constitutive model, fitted to experimental 
data, delineates material parameters providing intuitive insights into the stiffness of gray/white 
matter isotropic matrices and neural fibers. Additionally, it predicts the mechanical performance 
of white matter matrix and axonal fibers under compressive loading. Results reveal that gray 
matter is insensitive to loading direction, exhibiting insignificant stiffness variations within re
gions. White matter, however, displays no significant differences in mechanical properties under 
axial and transverse loading, with an overall higher average stress than gray matter and a more 
pronounced strain-rate effect. Stress-strain curves indicate that, under axial compression, white 
matter axons primarily resist the load before transitioning to a matrix-dominated response. Under 
transverse loading, axonal fibers exhibit weaker resistance to lateral pressure. The mechanical 
behavior of brain tissue is highly dependent on loading rate, region, direction, and peak strain. 
This study, by combining experimentation with phenomenological modeling, elucidates certain 
phenomena, contributing valuable insights for the development of precise computational models.

1. Introduction

The brain is a highly complex organ containing sub-structures (brainstem, cerebellum, and cerebrum) and it is the most vulnerable 
biological soft tissue to external loading forces. Sudden external stresses and strains (tensile, compressive, and shear) caused by blunt 
force and transient acceleration exceeding a certain limit can cause traumatic brain injury (TBI), and to study the injury mechanism 
and protective equipment, finite element models of the head have been widely used to describe the biomechanical response of brain 
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tissue. However, high-fidelity computational models require accurate experimental data and precise constitutive equations.
The brain, as the softest tissue among all mammals, has highly nonlinear, anisotropic, and viscoelastic characteristics [1–5]. 

Measuring its mechanical properties is highly challenging, but macroscopic mechanical testing of the human brain has been carried 
out. Chatelin demonstrated that the brainstem is the stiffest region and adult brain tissue is relatively stiffer than that of children [6]. 
Some scholars have focused on the brain and indicated that white matter has a significant directional dependence [7,8], but Budday 
believes that brain tissue has not very obvious anisotropic mechanical properties [9]. Research on human brain tissue is also subject to 
strict ethical and regulatory constraints. Porcine brain tissue is often used as a substitute due to its anatomical, developmental, and 
growth similarities to the human brain, as well as its ease of access. It can be tested shortly after death, reducing the impact of tissue 
degradation on mechanical properties. Many scholars have conducted mechanical loading tests on porcine brains [7,10–12], bovine 
brains [13–15], and sheep brains [16,17] with similar structures, indicating a significant directional trend in white matter and regional 
dependence of brain tissue, which is reflected in sensitivity to load direction, velocity, and size. However, compression tests have 
shown that the strength of most regions in the cerebrum does not show significant differences in the absence of directional dependence 
by Li et al. [18]. Microscopic experiments such as indentation have the advantage of being lenient in sample requirements, only 
requiring a small portion of the tissue to be uniform. Some scholars have suggested that white matter is stiffer than gray matter through 
indentation experiments [19–21], while Elkin et al. believe that the cortex is stiffer than the brainstem, cerebellum, and corpus cal
losum [22]. Chen et al. refuted the mainstream view of regional homogeneity, stating that the internal corona radiata is also het
erogeneous in the same region [23]. Jamal et al. used higher resolution and precision atomic force microscopy indentation to suggest 
that the mechanics of white matter depend on the orientation of axons [24]. Recently, magnetic resonance elastography has also been 
widely used, advancing the advantage of non-invasive in vivo assessment in its native environment [25–28]. The high heterogeneity of 
brain tissue makes it difficult to reach a unified conclusion from previous studies with different testing methods.

To describe the material properties of the brain using experimental data, an accurate constitutive model is required to establish the 
relationship between mechanical behavior and mechanical characteristics. Calibrated and validated constitutive models are crucial for 
simulating mechanical stimuli in brain tissue. To simulate the time-independent pseudoelastic behavior of brain tissue, material 
characterization is achieved through strain energy functions, expressed in terms of the invariants I1, I2, and I3 of the right Cauchy- 
Green deformation tensor C. It is commonly assumed that brain tissue is incompressible, i.e., I3 = 1. Mihai qualitatively and quan
titatively captures the mechanical behavior of soft tissues within the framework of finite elasticity, indicating that Fung and Gent 
models, typically used for simulating soft tissues, are not suitable for modeling super-soft tissues like the brain under combined tension 
and shear [29,30]. Micro-mechanical models in hyperelastic methods are based on the microscopic structure and internal mechanisms 
of materials, modeling brain tissue’s mechanical behavior by considering interactions at the atomic, molecular, or particle level. Kaster 
used the Arruda-Boyce model to describe the material behavior of brain tissue during indentation processes [31]. However, the 
stretching of chains can only be represented by the first invariant, which is less effective than phenomenological models based on 
experimental data and observed phenomena.

Due to the mismatch between microstructural models and soft tissue structures in hyperelastic models, compared to the assumption 
of isotropy in gray matter, brain white matter is assumed to have mechanical anisotropy due to the presence of axonal fibers and 
myelin sheaths. Strike a balance between accuracy, available data, and computational costs. Some scholars model white matter mi
crostructures to capture regional material heterogeneity in brain tissue and establish microstructure models that can be applied to 
microscopic mechanical analysis of brain tissue to better understand diffuse axonal injuries. Pelegri’s team has been studying fiber- 
reinforced composites (RAFCs) for years, identifying and generating representative volume element (RVE) micro-geometry struc
tures for finite element analysis. The effective properties obtained from RVE represent the true properties of the material at the 
macroscopic scale, i.e., the smallest volume unit of material in composite materials used to represent the average constitutive response 
[32]. Based on this concept, Pan et al. first extended this concept to brain white matter, applying transition kinematic models to 
micro-mechanical finite element models to simulate axonal behavior in white matter tissues subjected to uniaxial tension [33]. 
However, the simplified model cannot effectively represent the widespread distribution of axonal distortion. They further used a 
stochastic process to establish pseudo three-dimensional representative volume elements (RVEs) similar to axonal structures in central 
nervous system white matter, embedded in the extracellular matrix (ECM) to study the mechanical response of white matter tissue at 
the tissue level [34]. Similarly, Wu et al. combined different volume fractions of axons and neuroglial cells to construct RVEs, 
calculated orthogonal anisotropic storage and loss moduli by frequency loading, and simulated the anisotropic viscoelasticity of white 
matter, used to explain the measurement results of MRE or other experimental modes [35,36]. The characteristics of axons and glial 
cells are taken from previous published works and literature. Agarwal et al. considered a hyperelastic model-based approach and 
appropriately cited spring-dashpot structured models to represent the connections between oligodendrocytes and axons, comparing 
the single-oligodendrocyte and multi-oligodendrocyte models to predict the accumulation of axonal injury and the risk of repeated 
loading damage [37,38]. They described axons and ECM matrices by obtaining the characteristics of axons and glial cells, respectively, 
using a nonlinear Ogden hyperelastic model, constructed RVEs, and simulated simple shear and pure shear to reproduce the Poynting 
Effect of white matter [39]. Karami et al. conducted a series of pioneering work to characterize the microstructure and uniform 
mechanical response of brain tissue under large deformations, proposing a new model for fiber composite materials, laying the 
foundation for building white matter models by replacing geometrically wavy elements with sinusoidal oriented straight-line elements 
[40]. They used electron microscopy to scan the cross-sections of brainstem samples, obtaining an average axonal volume ratio of 52.7 
± 0.06 [41]. Based on this volume fraction, they established axonal components embedded in ECM as representative RVE samples, 
representing the smallest identifiable unit of brain white matter through particle swarm algorithm as a derivative-free optimization 
method, combined with finite element micromechanical simulations [41–43].

The continuous approximation of the Microstructure Model of white matter allows for the characterization of its mechanical 

W. Kang et al.                                                                                                                                                                                                          Heliyon 10 (2024) e37979 

2 



behavior while maintaining its connection to tissue microstructure. However, it has been observed that the fitting performance of 
stress-strain data is not satisfactory [44]. The Fiber-reinforced structure is a typical structure of many biological soft tissues, and 
scholars generally agree to use strain energy functions to simulate this behavior [45–49], supplemented by strain strengthening terms 
acting along the fiber direction to explain the role of axon bearing in the ECM. To characterize the directionality of the brain, it is 
necessary to consider introducing a vector representing the preferred direction of fibers in the calculation of the strain energy func
tional to achieve structured bonding. Polignon et al. initially proposed a general quadratic form with only I4 representing anisotropy 
[50]. Swedberg et al. established a continuum-based hyperelastic constitutive model to describe the stress-strain relationship of 
tendons and ligaments under tension loads [51]. Ning et al. characterized the mechanical behavior of the brainstem as a transversely 
isotropic hyperelastic response [52]. The above models only have one anisotropic invariant I4, making it impossible to predict 
anisotropy under small strain states. The strain energy function must depend on the pseudo-invariant I5 [53,54]. Feng et al. 
demonstrated through dynamic shear testing of sheep brains that strain energy functions containing both I4 and I5 are essential for 
predicting the mechanical behavior of white matter [16,55,56]. Many scholars have introduced strain energy functions with both I4 
and I5 anisotropic invariants to construct targeted transversely isotropic hyperelastic models for skeletal muscles [57], ligaments [46,
58,59], and brain white matter [12,16,52,55,56,60]. Weiss et al. assumed the elastic response of ligaments and tendons primarily 
composed of collagen fibers to be isotropic matrix and the forces between collagen fiber families and their interactions [46]. Delp et al. 
introduced I4 and I5 to represent the interaction between fibers and the matrix as resistance along the fiber and transverse fibers [48].

Previous studies have provided valuable research on brain tissue from experiments to models. However, there have been fewer 
reports on the regional and directional effects of strain and strain rate on gray and white matter. Research quantifying the influence of 
axon fibers on the transverse and axial properties of the matrix through a combination of phenomenological and structural approaches 
is still lacking. In this study, the porcine brain was divided into regions including the brainstem, cerebellum, and cerebrum (corona 
radiata, corpus callosum, cortex, thalamus), and compressed to 0.3 strain under quasi-static conditions at two strain rates (high and 
low) and considering directionality. We systematically investigated the effects of strain rate, region, and directionality on the me
chanical behavior of brain tissue. In addressing the research question, we utilized Criscione’s description of transversely isotropic 
materials [61] and explicitly and independently represented the stresses along fiber and cross-fiber directions using the strain in
variants I1, I4 and I5, under the assumption of fiber loading. To our knowledge, this is the first time such a model has been introduced to 
characterize brain white matter. Based on the mechanical behavior of brain tissue, we determined the contributions of gray and white 
matter matrix and axons during loading, aiming to enhance our understanding and predictive capability of traumatic brain injury.

Fig. 1. (a) The fresh porcine brain is cut along (b) coronal plane (Including cerebellum, brainstem, and cerebrum) and (c) sagittal plane (d) 
Compression testing of white matter and schematic diagrams of axial and transverse loading.
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2. Materials and methods

2.1. Specimen preparation

The pig brain tissues (N = 120) used in this study were obtained from around 8-month-old adult castrated pigs (N = 17) purchased 
from a local slaughterhouse within minutes after slaughter. To prevent tissue dehydration, the dissected pig brain tissues were stored in 
PBS solution at 4 ◦C until sampling. All experiments reported in this study were conducted within 6 h after the animal died.

In this study, due to the maximum thickness of the cortex, all samples were dissected as 5*5*5 mm cubes [9]. First, the soft 
meninges on the surface of the brain tissue were removed to explore the mechanical properties of the brain parenchyma only. The 
entire brain tissue was partitioned into three parts: brainstem, cerebellum, and cerebrum.

A custom surgical knife, consisting of two parallel surgical knives equipped with 23# blades with an interval spacing of 5 mm, was 
utilized to section the cerebrum into 5 mm-thick slices along the coronal and sagittal planes, as depicted in Fig. 1 (a). The corona 
radiata and corpus callosum were sampled following the direction of fibers (axial direction D1, transverse direction D2). For a sam
pling of the cerebral cortex and thalamus, the sections were taken perpendicular to the coronal plane for D1 and parallel to it for D2. 
The brainstem was separated along the descending axon by dividing it following axial (D1) and transverse (D2) directions. Samples 
were taken from the midbrain, pons, and medulla oblongata, as illustrated in Fig. 1(b) and (c). The cerebellum has a gray matter outer 
layer and a white matter inner layer with small cerebellar medullary fibers arranged in a branching pattern. However, the fiber 
orientation inside the white matter is not clear. Samples consisted of approximately equal amounts of white and gray matter, with D1 
and D2 distinguished in the same way as the cerebral cortex.

2.2. Experimental setup

The Shimadzu testing machine (EZ-LX, Shimadzu, Japan) was used to conduct compression tests on the tissue specimen. The 
specimen was placed on a flat round tray. The lubricant was applied to the pressing plate and tray before placing the specimen each 
time to reduce the end friction effect of the specimen, which is similar to the unconfined compression test, as shown in Fig. 1 (d). To 
determine the mechanical properties of brain tissue under quasi-static conditions, two loading rates (shown in Table 1) were set at 
0.005 mm/s and 0.5 mm/s respectively. The compression test was stopped at the strain of 0.3. This was because the present study is to 
obtain brain tissue properties before head injury and brain tissue could start to have compressive failure as its peak strain reaches 30 % 
[4].

Only load F and displacement Δx can be obtained through the sensor. The engineering stress reflects the load in compression 
divided by the sample section S0, and the engineering strain reflects the material deformation except for the original length of the 
sample L0. Compression results in an increase in the cross-sectional area of the sample and a decrease in the length of the sample. The 
brain tissue has a large elastic deformation and is almost incompressible [62–64]. Then the engineering stress and strain and the real 
stress and strain are transformed as 

σ =
σTS0

S
= σT(1+ ε), ε=

∫ L

L0

1
L

dL= ln(1+ εT) (1) 

where S and L are the length and loading area during the loading deformation process, additionally,L0 and S0 represent the initial 
length and initial area σT and εT represent the engineering stress and engineering strain respectively.

3. Constitutive model

The deformation gradient tensor is expressed as F = ∂x/∂X, where x is the point in the reference configuration and X is the point in 
the current configuration. The corresponding left and right Cauchy–Green deformation tensors are C = FTF,B = FFT . The relative 
volume change under the two configurations is J = det F, and F is divided into the product of the dilatational part with volume-change 
and the distortional part with volume-preservation [65], F = J1/3F,C = J2/3C. F and C become the modified deformation gradient and 
the modified right Cauchy-Green deformation tensor respectively, meeting detF = λ1λ2λ3 = 1 and detC = (detF)2

= 1. The modified 

Table 1 
Tested regions and sample quantity for compression tests.

Region Cerebrum Brainstem Cerebellum

White matter Gray matter White matter Mixed

Corona Radiata Corpus callosum Cerebral Cortex Thalamus

D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 D1 D2

ε̇ = 0.001/
s

5 5 5 5 5 5 5 5 5 5 5 5

ε̇ = 0.1/ s 5 5 5 5 5 5 5 5 5 5 5 5
Total qty 20 20 20 20 20 20
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principal stretches λ satisfies the relationship λi = J− 1/3λi(i = 1,2,3). 

I1 = trC, I2 =
1
2

[
(trC)2

− trC2
]
, I3 =detC, I4 = a0 ⋅ Ca0, I5 = a0 ⋅ C2a0 (2) 

a0(X) represents the unit vector field in the direction of the transverse isotropic axis at any point X in the reference configuration. 
The mechanical behavior of biological soft tissues is usually characterized by the phenomenological method based on the mechanics of 
continuous media or the microstructural approach to material structure. Phenomenological constitutive relation is mainly based on the 
fitting of data under various stress states with the assumption of isotropy, with the disadvantage that it cannot uniformly explain the 
load-dependent behavior exhibited by many soft tissues and lacks insight into the nature of the material. Based on histological ob
servations, brain tissue can be divided into gray matter, which is structurally isotropic, and white matter, which exhibits anisotropy 
due to the presence of axonal fibers and myelin sheaths. By considering the treatment of muscle tissue by previous workers [46–48] 
and assuming that the white matter and its axons surrounded by myelin sheaths satisfy the continuity assumption, we propose a 
propriety model that takes into account the continuum media mechanics and the white matter structure can describe its deformation 
behavior with a strain energy density function of 

W=Wvol− c +Wvol− p =Wvol− c(J)+Wiso(I1, I2)+Waxon(I4) + Wa− i(I1, I4, I5) (3) 

The strain energy function is expressed in two parts, Wvol− c and Wvol− p represent the volume change and volume preservation 
respectively, and Wvol− p is further refined to express the strain energy Wiso(I1, I2) of the isotropic matrix, the strain energy Waxon(I4) of 
the axon itself, and Wa− i(I1, I4, I5) that represents the interaction between the axon and the isotropic matrix.

3.1. Constitutive model of gray matter

Gray matter is usually considered to be isotropic [16] with an effective bulk modulus much larger than the shear modulus and 
almost incompressible, and the two-parameter strain energy equation proposed by Mooney to characterize rubber is widely used for 
elastomer deformation [66], and the same concept can be applied to gray matter to evaluate the mechanical properties of materials 
whose strain energy density depends on the first and second strain invariants, according to Eqs. (2) and (3), by which the strain energy 
Wiso of an isotropic matrix is expressed as follows: 

W=Wvol− c +Wiso =Wvol− c(J)+C1(I1 − 3) + C2(I2 − 3) (4) 

According to Eq. (4), the second kind of Piola-Kirchhoff stress (PK2) T is obtained from the strain energy density function, 

T=Tvol− c +Tiso =2
∂W
∂C

= JpC− 1 + J− 2/3P : T

= JpC− 1 +2J− 2/3P :
∂Wiso(C)

∂C
= JpC− 1 +2J− 2/3P : [(C1 +C2I1)I − C2C]

(5) 

where P is a fourth-order tensor representing the projection tensor relative to the reference configuration through the C represen
tation. Cauchy stress tensor σ is defined as the second-order symmetric stress on the current configuration, and the force acting on the 
unit reference configuration area is the first kind of Piola-Kirchhoff stress (PK1) P, which is called the nominal stress. According to the 
transformation relationship between the reference configuration and the current configuration, T = F− 1P = JF− 1σF− T, and 
substituting into Eq. (5), it follows that, 

σ =
1
J

FTFT =
2
J

F
(

∂Wvol− c(J)
∂C

+
∂Wiso(C)

∂C

)

FT

=
2
J

(

F
∂Wvol− c(J)

∂C
FT + J

1
3FJ− 2/3P :

∂Wiso(C)
∂C

J
1
3FT

)

= pI+
1
J
F(P : T)FT

(6) 

When the loading direction is along the Z-axis, Eq. (6) can be simplified as follows: 

σ33 =2
(
λ2

z − λ− 1
z
)(

C1 +C2λ− 1
z
)

(7) 

The engineering stress obtained from the experiment is substituted into Eq. (1). Subsequently, using Eq. (7), the material pa
rameters C1 and C2 for brain gray matter are determined.

3.2. Constitutive model of white matter

We modeled the white matter as a fiber-reinforced composite with transverse isotropic material symmetry, which is similar to the 
previous method used to express ligaments [46], but the difference is that the fiber bundle in the ligament has no supporting effect. The 
multilayer sheath formed by the repeated folding and compression of myelin sheath cells around the axon in the white matter can 
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withstand pressure. For the additional contribution of axonal fiber, the quadratic standard enhanced strain energy function can be 
considered [53,54], where 

W = Wvol− c + Wvol− p = Wvol− c(J) + C1(I1 − 3) + C2(I2 − 3)+

C3

2
(I4 − 1)2

+ G1[B1(I4, I5)]
2
+ G2[B2(I1, I4, I5)]

2
(8) 

The last two terms on the right-hand side of the equation above represent the interaction between the axon and the isotropic matrix, 
where G1 and G2 denote the effective shear modulus along the axon and the effective shear modulus perpendicular to the fiber, 
respectively, from which the resistance of the isotropic white matter matrix wrapped around the axon to shear along and across the 
axon can be obtained, the penultimate item represents the strain energy of the fiber itself, and C3 defines the measurement method of 
fiber strength [52]. We quote Criscione’s description of fiber-reinforced materials, using strain invariants I1, I4, and I5 to explicitly and 
independently represent the resistance of brain white matter to along fiber shear and cross fiber shear [61]. Two new strain invariants 
were obtained as 

B1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅
I5

I2
4

− 1

√

,B2 = cosh− 1
(

I1I4 − I5

2
̅̅̅̅
I4

√

)

= ln

⎡

⎣

(
I1I4 − I5

2
̅̅̅̅
I4

√

)

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
I1I4 − I5

2
̅̅̅̅
I4

√

)2

− 1

√ ⎤

⎦

(9) 

Then PK1 is 

T=Tvol− c +Tvol− p =2
∂W
∂C

= 2
(

∂Wvol− c

∂C
+

∂Wiso

∂C
+

∂Waxon

∂C
+

∂Wa− i

∂C

)

= 2
(

∂Wvol− c

∂J
∂J
∂C

+
∂Wiso

∂C
∂C
∂C

+
∂Waxon

∂C
∂C
∂C

+
∂Wa− i

∂C
∂C
∂C

)

= JpC− 1 +2J− 2/3P : T

(10) 

Fig. 2. Summary of direction dependency of different strain rates at strains of (a) 10 % and (b) 30 %.
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By the conversion relationship between Cauchy stress and PK2, combined with Eqs. (8)–(10), when the loading direction was along 
the white matter axon direction, 

σ = σ33 − σ22 =2
(
λ2

z − λ− 1
z
)(

C1 +C2λ− 1
z
)
+ 2C3

(
λ4

z − λ2
z
)

(11) 

when transverse to the axon direction (see Appendix A for the detailed derivation), 

σ = σ22 − σ11 =2

[

C1 +C2λ− 1
y −

3G2 ln
(
λy
)
λy

1 − λ3
y

]
(

λ2
y − λ− 1

y

)
(12) 

The stress-strain relationships under axial and transverse loading of white matter are fitted using Eqs. (11) and (12) to obtain the 
material parameters C1, C2, C3, G2.

4. Result and discussion

Fig. 2 displays the average stress of brain tissue in two loading directions under compression strains of 10 % and 30 %. As the strain 
rate increases, the stiffness of the brain tissue increases, and the strain rate effect in each region is significant (p < 0.05), which has 
been confirmed by numerous scholars [8,15,17,18]. The cerebellar experimental samples are mixed materials and randomly sampled. 
The average stress levels of D1 and D2 alternate, and there is no statistically significant difference. Hence, there is no significance in 
studying their directional dependence.

Variations in loading direction and rate sensitivity arise due to regional disparities. Gray matter, composed of neuronal cell bodies 
and glial cells, exhibits no significant difference in D1 and D2 between the thalamus and cortical regions, indicating isotropic behavior. 
Since the cortex covers the surface of the entire brain, tested samples were taken from different areas (frontal, parietal, occipital, and 
temporal lobes). But the results showed relatively low variation. Stress-strain curves along D1 and D2 showed an interleaving pattern, 
even reaching near overlap in the low-strain region, as shown in Fig. 4 (a). Directionality of the thalamus during low-strain-rate 
loading is similar to that of the cortex. As the strain rate increases, the differences between the D1 and D2 stress-strain curves 
become more pronounced, but the trends remain consistent and stress statistics across the loading phase show no significant difference. 
These findings are supported by numerous studies [7,8,14,67]. Scholars have assessed the anisotropy of gray matter using diffusion 
tensor imaging (DTI) and obtained low-level anisotropy scores represented by fractional anisotropy (FA) values within the range of 
0–0.4, with the thalamus slightly higher.

The composition of white matter can be simplified as a homogeneous glial cell matrix and a homogeneous nerve fiber bundle with 
loading direction dependence. The corpus callosum showed greater average axial stress than transverse. At a strain of 10 %, ε̇ =

0.001/s, the stiffness of D1 in the corpus callosum is 2.24 times that of D2. As the strain rate increasing to ε̇ = 0.1/ s, σD1/ σD2 = 3.30, 
and when the strain increases to 30 %, the difference between the two groups increases from 1.25 times to 1.59 times as the strain rate 
increases. Based on Fig. 2, the same phenomenon was observed in the brainstem, where ε = 10%, ε = 0.001/s, σD1/σD2 = 1.94 and ε =

0.1/s,σD1/σD2 = 2.50, when the strain reached 30 %, the average stress ratios obtained under the two loading rates become 1.21 and 
1.50, respectively. This may be due to the presence of fiber bundles with higher Young’s modulus along D1 during the loading process, 
resulting in a higher apparent modulus and stronger resistance to deformation. In the initial loading stage, stress increases faster 
compared to D2. The strain rate effect amplifies the difference in average stress between the loading directions of the corpus callosum 
and brainstem. However, in Fig. 2 (b), the difference in brainstem under low strain rate loading was found to be insignificant (p =
0.15). Unlike the easily-sampled corpus callosum, the fiber direction of the brainstem was complex. While its main direction was 
perpendicular to the cross-section, the fiber bundle density in the medulla oblongata, pons, and midbrain was different. Additionally, 
fiber bundles in other directions [14], such as the pontocerebellar tract extending perpendicular to the coronal plane, could result in an 
increase in stiffness in the D2 direction, making it impossible to cover the transversely isotropic nature of the brainstem due to the 
small sample size.

When the corona radiata is compressed to 10 % strain, the average axial stress is greater than the transverse. However, when the 
strain is increased to 30 %, the directional dependence of the corona radiata seems to vanish. Even under high strain rate loading, the 
stiffness in the transverse fiber direction is greater, although the difference is not significant. In contrast, the axial stress in the corpus 
callosum always surpasses the transverse stress throughout the loading process, and the stress disparity between the two directions 
tends to widen under high strain. Interestingly, the nonlinear characteristics of the axial stress-strain relation disappear, as depicted in 
Fig. 4 (b). The highly concentrated fiber axis during the compression process may be the reason for the linear elastic characteristics 
exhibited, ignoring the matrix contribution. However, the small sample size cannot be excluded as a possible reason. Under low strain 
rate loading, the corona radiata in the D1 direction is consistently greater than D2. As the strain increases, the difference between the 
stress curves of the two directions initially increases and then decreases, with this trend continuing even under high strain. In fact, the 
average stress in D2 may even surpass that in D1. Although the corona radiata is a connecting part between the central gray matter and 
peripheral white matter of the brain, composed of numerous non-myelinated nerve fibers that radiate towards the main axis direction 
(D1), it does not exhibit directional dependency. However, due to the divergent nature of fiber orientation, it is challenging to quantify 
the proportion of fibers deviating from the main axis in samples taken at various positions along the main axis. Any increase in the 
proportion of these fibers will result in an increase in the stiffness of D2 and a decrease in that of D1. Among the three regions of white 
matter studied, the corpus callosum demonstrates the highest degree of anisotropy. Guilfoyle et al. used diffusion tensor imaging of 
mixed mouse brain tissue at 7.0 T to correlate the anisotropy score (FA) with local neural structure, similarly finding that the corpus 
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callosum exhibits higher anisotropy [25]. Chiara Giordano quantitatively demonstrated the correlation between mechanical anisot
ropy and FA, indicating that the corpus callosum has FA values ranging from 0.6 to 1.0, the highest among all regions of the brain.

Ignoring the impact of loading direction, the data from ten compressions in each test area were statistically divided into six cases 
and compared in pairs to explore the regional effects of brain tissue. as shown in Fig. 3(a) and (b). Consistent with the views of previous 
studies, the brainstem is the stiffest region in brain tissue [6,10,11,18]. At ε = 0.3,ε̇ = 0.001/s, the average stress was 4.151 kPa in the 
brainstem and 3.121 kPa in the cerebellum, but the difference was not statistically significant (p = 0.056). The directional dependence 
of the brainstem was not significant under this condition, which may be due to the small sample size of this study. As a representative of 
mixed tissue, the average stress in the cerebellum was higher than that in the gray matter of the cerebrum (thalamus/cortex). However, 
there was no statistically significant difference in the white matter of the cerebrum (corpus callosum/corona radiata), and it was only 
higher than the corpus callosum at 30 % strain.

Fig. 4 (d) shows the average stress-strain curves of gray matter (thalamus/cortex) and white matter (corona radiata/corpus cal
losum) for a total of 20 samples at two different strain rates. The stress of white matter remains consistently higher than that of gray 
matter throughout the loading process. The average stress of white matter in the brain (2.010 kPa) is significantly higher than that of 
gray matter (1.674 kPa) when compressed to maximum strain at low strain rates (p = 0.044). Moreover, as the strain rate increases, the 
difference in stiffness between white and gray matter becomes more significant (white matter σ = 3.563 kPa vs. gray matter σ = 2.454 
kPa, p = 0.003). Studies have consistently reported that white matter is greater stiffness than gray matter in bovine brain indentation 
experiments [19–21], human brain compression, shear, and indentation tests [8,68], micro indentation of mouse brain [67], and sheep 
brain shear tests [16]. Nevertheless, there are few studies that present different perspectives. Christ et al. found that the elastic modulus 
of gray matter in female mice is higher than that of white matter, as revealed by AFM [69], and Chatelin et al. conducted rheological 
tests on the corona radiata and thalamus of the human brain, which showed that there was no significant difference in stiffness be
tween them [6]. In addition to in vitro tests, several researchers have employed magnetic resonance elastography (MRE) techniques to 
conduct in vivo experiments align with the findings of this study [26,28]. Nonetheless, other studies documented conflicting trends 
[27]. The intricate structure and dynamics of brain tissue, encompassing time, physiological state, sample size, and the methods and 
excitation frequencies employed to elicit the elastic properties in vitro experiments, have contributed to these discrepancies. The 
authors posit that the distinctions in mechanical characteristics between gray and white matter result from differences in their 
structure and composition. Gray matter, exhibiting a lower modulus, can decelerate external force impacts, while white matter, with a 
higher modulus, provides superior support and connectivity functions. The strain rate effect is more apparent in white matter than in 
gray matter, attributable to the presence of fiber bundles, which make the porosity more evident and vulnerable to fluid loss than gray 
matter. High loading rates can diminish fluid loss in white matter samples [70]. Fig. 4 (c) depicts the average stress-strain curves for ten 
samples from four regions of the cerebrum, ignoring directionality. The corona radiata is observed to be the region with the highest 
stiffness, while the corpus callosum and thalamus show nearly identical stress trend at low strain rates, but their differences are 
magnified as the strain rate increases, although the stress peak values seem to be similar. Despite the homogeneous gray matter within 
each region, regional differences still exist, with the thalamus exhibiting higher average stress than the cortex, except for high strain 
rate loading up to a strain of 0.3 (p = 0.0927), as shown in Fig. 3 (b). The hypothesis of the corona radiata as the hardest region in the 
brain shows significant differences for both the cortex and thalamus in all four cases, except for no significant difference in peak stress 
at low strain rates (p = 0.154), as demonstrated in Fig. 3 (a). As mentioned earlier, distinguishing between the stiffness of the corpus 
callosum and thalamus is difficult. The corpus callosum, as white matter, is slightly harder than the cortex at low strains (p = 0.057), 
which becomes more significant at high strains (p = 0.045).

Some studies found that the initial shear modulus of the porcine thalamus is higher than that of the cortex through shear tests, and 
satisfied the relationship μT > μCR > μC > μCC. Additionally, it has been observed that the thalamus was stiffer than the cortex, but the 
corpus callosum was the softest of the four [7,71]. In this study, the stiffness difference between the corpus callosum and cortex will 
increase with the increase of strain rate. Hence, it is reasonable to attribute the variation in in loading rate and loading mode causes the 
stiffness difference in different regions. Jin et al. suggested that the stiffness of corona radiata under compression loading is the largest, 

Fig. 3. Compression test results for significant difference between brain regions at strains of (a) 10 % and (b) 30 %. CR = Corona radiata, CC =
Corpus callosum, C= Cerebral cortex, T = Thalamus, B = Brainstem, CL = Cerebellum. ‘-’, ‘*’ and ‘**’ represent no significant differences, with 
significance levels of 0.1 and 0.001, respectively. Black bottom table = strain rate: 0.1/s, purple top table = strain rate: 0.001/s.
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Fig. 4. Stress-strain curves of (a) thalamus and cerebral cortex and (b) corpus callosum and corona radiata. Average stress-strain curves of (c) four 
non-directional cerebral regions and (d) cerebral gray and white matter.

Table 2 
(a) Apparent elastic modulus of brain tissue strain rate of ε̇ = 0.001/s. (b) Apparent elastic modulus of brain tissue strain rate of 
ε̇ = 0.1/s.

Apparent elastic moduli E1 E2 E3

(0–0.1) (0–0.2) (0–0.3)

Corona radiata 4.755 6.822 10.752
Corpus callosum 3.645 5.408 8.818
Cerebral cortex 1.863 4.341 8.148
Thalamus 3.103 5.870 10.150
Brainstem 9.464 12.754 19.287
Cerebellum 4.393 9.485 17.329

Apparent elastic moduli E1 E2 E3

(0–0.1) (0–0.2) (0–0.3)

Corona radiata 9.783 13.353 20.279
Corpus callosum 7.382 8.524 11.928
Cerebral cortex 3.278 6.216 12.413
Thalamus 4.612 8.374 14.193
Brainstem 19.959 23.846 33.294
Cerebellum 6.518 16.406 31.565
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which is consistent with our research [8]. Holzapfel and other researchers found in the compression test of the human brain that the 
stiffness of the cerebral cortex is greater than that of the white matter, and the corpus callosum is the softest [9]. However, their use of 
indentation experiments has yielded contrasting results [72]. It is speculated that the influence of the meninges and the prolonged 
death time (within 60 h of the test death) may be considered. Li et al. reveals the cortex, thalamus, corona radiata, and corpus callosum 
sections of the cerebrum did not significantly differ between strains of 0.25 and 0.5 [18]. Nonetheless, magnetic imaging technology 
revealed that the corpus callosum is stiffer than the corona radiata [26]. Interestingly, the results of different studies on the regional 
dependency of brain tissue properties are always contradictory, largely depending on the loading mode, even for the simplest uniaxial 
loading modes of tension and compression. Table 2 presents the apparent moduli E1, E2, and E3 for stress-strain responses obtained for 
strain ranges of 0–0.1 (0–10 %), 0.1–0.2 (10–20 %), and 0.2–0.3 (20–30 %), respectively. We observed that with increasing strain rate, 
the apparent elastic modulus also increased, further confirming the strain rate effect. The positive correlation between the apparent 
elastic modulus and strain indicates that brain tissue has compressive strain-strengthening properties, and some studies have shown 
that it is negatively correlated with strain during tension, with compressive stress greater than tensile stress at the same absolute value 
of strain [8,9,18,52]. While both brain tissue and muscle tissue are modeled as transverse isotropic bodies, muscle fibers will buckle 
under compression, whereas axons can resist compression. Some researchers suggest that at the microstructural level, the cerebro
spinal fluid in cells and extracellular matrix offers substantial resistance to

Compression, but limited resistance to tension [2], whereas others propose that the compression-resistant attribute of brain tissue 
arises from the squeezing of the cell bodies [13].

Through the established constitutive model, the elastic response of the white matter was assumed to be the glial cell matrix, axon 
fibers, and the resistance of their interaction, and the average stress-strain of different regions of brain tissue under two strain rates 
were fitted, as shown in Table 3. The model demonstrates an excellent fit to the mechanical behavior of brain tissue (0.971<R2 <

0.999), quantitatively exploring the role of fiber bundles in the compression process. Assuming the brain tissue is incompressible, the 
initial shear modulus of the matrix is μ0 = 2(C1 + C2), and the Poisson’s ratio is 0.5, furthermore, the initial Young’s modulus satisfies 
E0 = 3μ0. The strength of the corona radiata, corpus callosum, and brainstem fibers relative to the matrix’s Young’s modulus at low 
strain rates was 1.140, 1.912, and 0.706, respectively. The corpus callosum had the highest proportion, and the fibers were highly 
oriented. At high strain rates, this value decreased to 0.802, 1.258, and 0.857, respectively, all to varying degrees, and the effect of 
strain rate was more evident in the matrix than in the fibers. Arbogast et al. predicted that the stiffness of fibers was three times that of 
the matrix through the created structural mathematical model [73]. In addition, studies have indicated that axons are 10 times that of 
isotropic matrices [52,74]. Recently, Jamal et al. conducted AFM indentation experiments to measure the ratio of axons to matrix in 
the corpus callosum and corona radiata of sheep brain, which were 1.892 and 1.728, respectively, which seems to be closer to our 
results. It is almost impossible to measure the stress in fibers through in vitro experiments. Although no consistent quantitative results 
have been obtained, qualitatively it is believed that the fiber stress in white matter cannot be ignored, and the assumption of isotropy is 
not valid. Young’s modulus of the thalamus is higher than that of the corpus callosum and the corona radiata matrix, which seems to 
explain to some extent the contradictory regional dependence results of different scholars. When collecting samples of white matter in 
the brain, the distribution of axons is somewhat random. If the sample size is small and the fiber density is insufficient, the measured 
hardness of gray matter may be higher than that of white matter. Even in the highly oriented corpus callosum, there may still be biased 
axons, which can affect test results. Additionally, the regional trend may depend on the length scale. As shown in Table 3, the 
cross-fiber shear modulus is highest in the corona radiata, followed by the brainstem, and lowest in the corpus callosum. These fitting 
parameters are obtained under transverse loading, which supports our observation that the corona radiata has the most biased axons, 
while the corpus callosum has the strongest axonal orientation.

Table 3 
(a) Material parameters at the strain rate of ε̇ = 0.001/s. (b) Material parameters at strain rate of ε̇ = 0.1/s.

Corona 
Radiata

Corpus callosum Cerebral 
Cortex

Thalamus Brainstem Cerebellum

C1 − 1.565 − 1.455 − 1.284 − 1.247 − 2.338 − 2.536
C2 1.742 1.559 1.434 1.586 2.892 2.939
C3 1.246 1.193 ​ ​ 2.346 ​
G2 0.2126 0.084 ​ ​ 0.1842 ​
μ0 0.3540 0.1880 0.30 0.6780 1.1080 0.8060
E0 1.0932 0.5640 1.2000 2.0340 3.3240 2.4180
R2

(D1) 0.9972 0.9889 0.9959 0.9999 0.9932 0.9965
R2

(D2) 0.9863 0.9759 0.9821 0.9710

Corona 
Radiata

Corpus callosum Cerebral 
Cortex

Thalamus Brainstem Cerebellum

C1 − 2.261 − 1.486 − 1.7085 − 1.623 − 3.273 − 5.291
C2 2.743 1.832 1.9985 2.15 4.739 5.7360
C3 2.329 2.632 ​ ​ 5.384 ​
G2 0.5808 0.021 ​ ​ 0.1576 ​
μ0 0.9640 0.6920 0.58 1.0540 2.0940 0.89
E0 2.8920 2.0760 1.74 3.1620 6.2820 2.67
R2

(D1) 0.9867 0.9795 0.9892 0.9996 0.9904 0.9868
R2

(D2) 0.9851 0.9714 0.9878 0.9804
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Fig. 5 depicts the brain tissue, axonal fibers, and inter-fiber stresses of the corpus callosum and corona radiata as a function of the 
principal stretch, using fitting parameters obtained under low strain rate. Specifically, Fig. 5 (a) illustrates that during the initial stage 
of shortening of the corpus callosum under the principal stretch (D1), the fiber stress (represented by the blue solid line) dominates, 
whereas as the stretch decreases, the matrix stress (indicated by the purple dashed line) dominates. This phenomenon arises from the 
fact that the axonal fiber bundle experiences stress exceeding the critical value during compression, and the fibers underneath the 
bundle fail to attain adequate symmetry in shape and initial state, therefore, some fibers within the bundle lose stability abruptly, 
resulting in the collapse and deformation of the entire bundle. The mechanical mechanism presented above explains the previously 
mentioned phenomenon, i.e., the increase in strain leading to the weakening of the difference between axial and transverse directions 
of the white matter. Moreover, Arbogast et al. achieved a higher fiber-to-matrix stiffness ratio than in this study (30 % strain) at smaller 
deformations (2.5 % strain), providing a cross-study comparison. The corpus callosum has a high density of axonal fibers that are 
highly oriented relative to the corona radiata, as illustrated in Fig. 5 (b). In this state, the critical point of matrix fiber stress alternation 
is more deformed than that of the corona radiata, and the overall fiber bundle stress is also high, satisfying λC = 0.84 < λCR = 0.89 and 
σC = 0.496 kPa < σCR = 0.435 kPa. When the strain rate increases to ε̇ = 0.1/s, the principal stretch and fiber stress at the critical 
point respectively become λC = 0.77, λCR = 0.84 and σC = 1.253 kPa, σCR = 0.967 kPa. Generally, the stress threshold for material 
compression rod instability is lower at high strain rates than at low strain rates. However, both the degree of deformation and fiber 
stress at the critical point increase. This anomalous phenomenon may originate from the physiological structure of the white matter 
where the fiber bundle is wrapped by the matrix providing resistance to transverse deformation under axial loading. Additionally, the 
presence of fiber bundles in white matter creates a porous structure [43,73], and the increase in strain rate reduces water loss rate, 
resulting in higher stiffness.

When the principal stretch varies in the transverse direction, the cross-fiber stress of the corpus callosum and the corona radiata is 
relatively small, mainly borne by the matrix surrounding the axon. The peak cross-fiber stress of the corpus callosum and the corona 
radiata is approximately 0.180 kPa and 0.455 kPa, respectively, with a slightly higher proportion in the corona radiata (0.208). 
However, at a strain rate of 0.1/s, the stresses become 0.045 and 1.243, respectively. The axonal fibers have low resistance to 

Fig. 5. Predicted stress-strain curve by model for fiber, matrix, and cross-fiber in compression, (a) corpus callosum (b) corona radiata.

Fig. 6. Comparison of white matter compression characteristics between current study and literature.
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transverse compression, and the interaction between the fibers and the matrix also has a relatively small effect on resistance. As 
previously mentioned, the directionality of the corona radiata is difficult to determine at ε̇ = 0.1/s. Moreover, the cross-fiber stress is 
abnormally high, which may be the result of the structural off-axis fiber resistance being miscalculated calculated as cross-fiber stress, 
which is unavoidable in the transverse isotropic model. To address this issue, an anisotropic finite elastic material model with multiple 
fiber families may be established, and the fiber directions should be determined during sampling to obtain unit vectors in the reference 
configuration of the nth fiber.

Fig. 6 shows the statistically averaged stress-strain curves for pig brains (black and red lines), bovine brains (green solid line) [15], 
sheep brains (purple solid line) [17], and human brains (blue solid line) [8] as reported by previous studies. Rodents such as rats and 
mice were excluded from the statistics since their brain structure, which lacks gyri and sulci, differs significantly from that of large 
mammals and Fig. 6 ignores the differences and specific regions of the test samples and compares the measurement methods 
(compression), species, age, and loading rates roughly (only the mean value is not statistically significant). The stress differences 
between adult pigs and piglets confirm that brain tissue stiffens during development. Qualitative similarities between adult cattle and 
adults, as well as between pediatric porcine and lambs, seem to exist. There are indeed differences in brain tissue stress among different 
species, but overall, they are on the same order of magnitude, indicating that using these mammals as substitutes for human brain 
research is feasible.

In summary, the differences in the mechanical behavior of brain tissue are mainly reflected in age, location, type, and fiber di
rection. In addition to these intrinsic factors of brain tissue, sample size, hydration, loading mode, loading rate, and maximum strain 
also affect test results.

Previous studies have elucidated the experimental findings of this study at the microstructural level. Through MRI imaging and 
color-coded fiber orientation, it has been demonstrated that the gray matter appears relatively homogeneous, while fiber orientations 
in the corpus callosum and brainstem white matter are highly directional, with axial stresses exceeding lateral loads [14]. Histological 
staining of adult brainstem tissue sections revealed prominently longitudinal-oriented axon fiber bundles with compact arrangement 
and minimal matrix [73]. Diffusion tensor imaging (DTI) assessment of fiber orientation in coronal planes revealed radiating fibers of 
the corona radiata [9], which reflects insignificant differences in axial and lateral stresses in terms of mechanical behavior. At the 
macroscopic to mesoscopic levels of tissue histology, single axon fibers are surrounded by a one-layer thick myelin sheath, constituting 
the majority of the brain’s white matter tissue. Micro-needle experiments, controlling axial [75] and lateral [76] deformations to 
detect the stiffness of single axons, revealed the contribution of fiber bundles to overall mechanical response. Furthermore, positive 
correlations were found between myelin content and hardness, and negative correlations were observed between protein poly
saccharide content and hardness. Using histological staining methods, a negative correlation between cell count and hardness, a 
positive correlation between myelin content and hardness, and a negative correlation between protein polysaccharide content and 
hardness were revealed [77]. The higher proportion of phospholipids in white matter resulted in greater stiffness compared to gray 
matter. Yousefsani et al. determined the mechanical properties using analytical solutions for the uniform response of white matter 
structures in axial and lateral directions, then considered the deformation of the matrix and axons separately by randomly distributing 
the axons within the matrix [74]. Some scholars have incorporated mechanical parameters measuring fiber dispersion levels into 
models using the fractional anisotropy (FA) scores of brain tissue assessed through DTI [78]. Finite element analysis can help elucidate 
how these components interact and contribute to overall response, as well as conduct sensitivity analyses to assess the relative 
importance of different microstructural parameters. The presence of axonal fibers also influences the overall stiffness and strength of 
white matter tissue. Their distribution and arrangement determine, to some extent, the overall stiffness of the tissue, and their 
contribution is significant. Understanding and considering the role of axonal fibers under compression loading can help us better 
understand the mechanical properties of white matter tissue. The experimental results and theoretical predictions of this study provide 
valuable information for better understanding the mechanical properties of brain tissue and thus the structure and function of the 
brain. However, there are certain limitations.

Firstly, the model does not consider the time-dependent viscoelastic effects and poroelastic effects exhibited by soft tissues. The 
next step could involve subjecting brain tissue to Ramp-Hold loading to obtain time-varying stiffness moduli or dynamic frequency 
loading to obtain the complex modulus, combined with the model established in this study, to establish a Hyper-viscoelastic Model 
characterizing the mechanical behavior of brain tissue through consistency assessment. Secondly, the loading rates in this study fall 
within the quasi-static range, making it difficult to capture the short-term memory response of brain tissue under high strain rate 
loading. The next direction is to construct a Visco-hyperelastic Model by combining viscous dissipative potential functions using the 
principle of Boltzmann superposition to capture the mechanical behavior of brain tissue within a large strain rate range. Additionally, 
our study investigates the mechanical behavior of brain tissue under compression loading, while further exploration of other loading 
modes (such as tension, shear, and combined loading) remains to be explored. Furthermore, due to the ultra-soft and highly hydrated 
nature of brain tissue, despite efforts to minimize errors, the samples in the experimental process still cannot uniformly expand, which 
may affect the accuracy and reliability of our data assessment. Lastly, while large mammals serve as feasible substitutes for human 
brains qualitatively, quantitatively establishing their relationship remains challenging. Future experiments on human brains are still 
required.

5. Conclusion

This study established a constitutive model for brain tissue and derived fitting equations based on the loading direction of gray and 
white matter, compressing the cerebrum (cortex, thalamus, corona radiata, and corpus callosum), cerebellum, and brainstem at low 
and high strain rates under quasi-static constraints up to 30 % strain. The findings reveal the following.
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● The heterogeneity of gray matter structures in the same region does not lead to anisotropic mechanical behavior, although even 
regional differences still exist. As off-fibers exist in the corona radiata, the direction dependence of the corona radiata cannot be 
reflected by the peak stress. The oblique angles of fibers at distinct locations are divergent, thereby underscoring the apparent 
anisotropy of white matter. Given the highly oriented nature of corpus callosum fibers, they exhibit the most prominent transverse 
isotropy.

● Conversely, an increase in strain reduces the directional dependence of white matter, whereas an increase in strain rate enhances 
this phenomenon. The brainstem is the stiffest among brain tissues, corona radiata is the hardest in the brain, and the cortex is the 
softest, with no significant difference in strength between thalamus and corpus callosum. Overall, white matter is stiffer than gray 
matter and the increase of strain and strain rate enhances the regional effect. Furthermore, brain tissue exhibits the characteristic of 
strain-stiffening behavior.

● The established model predicts that the modulus of the gray matrix is higher than that of the white matrix, and the modulus of 
axonal fibers is 0.802–1.912 times that of the white matter matrix. As axial loading increases the strain, the axonal fibers underwent 
buckling instability, and the fiber stress decreased, weakening the difference between axial and transverse stress peaks. During 
transverse loading, the matrix played the main resistance role. This also indicates that the damage to axons caused by axial impact 
on brain tissue is greater than that caused by lateral impact.
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Appendix A. Constitutive equations

According to Eq. (3), the second-order tensor of PK2 of the volume-preserving distortion part of gray matter is written as a matrix, 

T=2

⎡

⎣
C1 + C2I1 − C2C11 − C2C12 − C2C13

− C2C21 C1 + C2I1 − C2C22 − C2C23
− C2C31 − C2C32 C1 + C2I1 − C2C33

⎤

⎦ (A.1) 

Assuming compression loading experiment along Z-axis, the deformation gradient tensor F and the right Cauchy Green tensor C are 

F=

⎡

⎣
λx 0 0
0 λy 0
0 0 λz

⎤

⎦,C=

⎡

⎢
⎢
⎢
⎣

λ2
x 0 0

0 λ2
y 0

0 0 λ2
z

⎤

⎥
⎥
⎥
⎦

(A.2) 

Take (A.2) into Eq (4) to obtain the Cauchy stress tensor, and assuming incompressibility and uniform deformation, the principal 

stretches in the x-axis and y-axis directions content λx = λy = λ
−

1
2

z . 
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σ =

⎡

⎢
⎢
⎣

2C1λ− 1
z − 2C2λz

2C1λ− 1
z − 2C2λz

2C1λ2
z − 2C2λ− 2

z

⎤

⎥
⎥
⎦ − (2C2I2 − p)I (A.3) 

According to the experiment, 

σ33 = σ
σ11 = σ22 = 0 (A.4) 

then the stress is 

σ = σ33 − σ22 =2
[
C1

(
λ2

z − λ− 1
z
)
+C2

(
λz − λ− 2

z
)]

= 2
(
λ2

z − λ− 1
z
)(

C1 +C2λ− 1
z
) (A.5) 

The gray matter material parameters C1 and C2 can be obtained by bringing in the experimental data.
According to Eq. (9), the second-order tensor of PK2 of the volume-preserving distortion part of white matter is written as a matrix, 

T = 2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

n − C2C11 − C2C12 − C2C13

− C2C21 n − C2C22 − C2C23

− C2C31 − C2C32
1
2
T33

⎤

⎥
⎥
⎥
⎥
⎥
⎦

l =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(I5 − I1I4)
2

4 I4
− 1

√

,m =
I5 − I1 I4

2
̅̅̅̅
I4

√ , n =

⎛

⎜
⎜
⎝C1 + C2I1 +

G2 ln(l − m)

(
̅̅̅̅
I4

√
−

I5 − I1 I4

2l

)

(l − m)

⎞

⎟
⎟
⎠

T33 = 2n − 2C2C33 + 2

[

C3(I4 − 1) +
G2 ln(l − m)

(
ml + I1

̅̅̅̅
I4

√
l − m2 − mI1

̅̅̅̅
I4

√ )

(l − m)I4l
−

2 I5G1

I3
4

]

+
4C33

[
G1 l − I3/2

4 G2 ln(l − m)
]

I2
4 ⋅ l

(A.6) 

When the white matter is assumed to be incompressible and loaded along the axon direction, the isotropic plane is perpendicular to the 

transverse isotropic axis, satisfying λx = λy = λ
−

1
2

z , T reduced to 

T=2

⎡

⎢
⎢
⎢
⎣

C1 + C2
(
λ− 1

z + λ2
z
)

0 0
0 C1 + C2

(
λ− 1

z + λ2
z
)

0
0 0 C1 + C2λ− 1

z +
(
C3λ2

z − 2λzG1
)

⎤

⎥
⎥
⎥
⎦

(A.7) 

Cauchy stress is 

σ =

⎡

⎢
⎢
⎢
⎣

2λ− 1
z
[
C1 + C2

(
λ− 1

z + λ2
z
)]

0 0
0 2λ− 1

z
[
C1 + C2

(
λ− 1

z + λ2
z
)]

0
0 0 2λ2

z
[
C1 + C2λ− 1

z +
(
C3λ2

z − 2λzG1
)]

⎤

⎥
⎥
⎥
⎦
− pI (A.8) 

then the stress is 

σ = σ33 − σ22 =2
(
λ2

z − λ− 1
z
)(

C1 +C2λ− 1
z
)
+ 2C3

(
λ4

z − λ2
z
)

(A.9) 

According to Eq. (A.6), when the uniaxial load is applied transversely to the fiber direction (loading direction: y), then λx =
(
λyλz

)− 1, T is 
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T = 2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

n − C2C11 0 0

0 n − C2C22 0

0 0 2n − 2C2C33 + 2C3
(
λ2

z − 1
)
+ 2

[
G2 ln(l − m)

(
m + I1

̅̅̅̅

I4

√

− 2I3/2
4

)]/
λ2

z l

⎤

⎥
⎥
⎥
⎥
⎥
⎦

l =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

λ4
yλ2

z − 1
)2

4 λ4
y λ2

z

√
√
√
√
√ ,m = −

λ4
yλ2

z + 1
2λ2

y λz
,

n =

(

C1 + C2I1 + G2 ln(l − m)

( ̅̅̅̅

I4

√

−
I5 − I1 I4

2l

)

(l − m)
− 1
)

(A.10) 

Furthermore, Cauchy stress is obtained as 

σ = FTFT
− pI (A.11) 

The stresses on the three principal axes are 

σ11 = 2
(
λyλz

)− 2
[

C1 + C2

(
λ2

y + λ2
z

)
+ G2 ln(l − m)

( ̅̅̅̅

I4

√

−
I5 − I1 I4

2l

)

(l − m)
− 1
]

− p

σ22 = 2λ2
y

{

C1 + C2

[(
λyλz

)− 2
+ λ2

z

]
+ G2 ln(l − m)

( ̅̅̅̅

I4

√

−
I5 − I1 I4

2l

)

(l − m)
− 1
}

− p

σ33 = 2λ2
z

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C1 + C2

[(
λyλz

)− 2
+ λ2

y

]
− G2 λz ln(l − m)

(
m2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√ − m
)

+

C3
(
λ2

z − 1
)
+

G2 ln(l − m)
(
m + I1

̅̅̅̅
I4

√
− 2λ3

z
)

λ2
z l

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

− p

(A.12) 

then the stress is 

σ = σ22 − σ33
σ11 = 0 (A.13) 

According to our thinking, we need to eliminate the hydrostatic pressure by subtracting the stress in the x direction from the stress 
in the y direction, and then consider that there is no stress in the x and z directions, so, λz is expressed by λy. When the relationship 
between λz and λy is introduced into the first formula of Eq. (A.14), the stress-strain relationship is obtained. However, the elongation in 
the x and z directions is highly coupled, and without some assumptions, the analytical solution is almost impossible to obtain. We adopt 

the Lin approach, λx = λz = λ
−

1
2

y , and we will further simplify Eq. (A.13) as, 

σ11 = 2λ− 1
y

[

C1 + C2

(
λ− 1

y + λ2
y

)
−

3G2 ln
(
λy
)
λy

1 − λ3
y

]

− p

σ22 = 2λ2
y

[

C1 + 2C2λ− 1
y −

3G2 ln
(
λy
)
λy

1 − λ3
y

]

− p

σ33 = 2λ− 1
y

⎧
⎨

⎩
C1 + C2

(
λ− 1

y + λ2
y

)
+ C3

(
λ− 1

y − 1
)
+

3G2 ln
(
λy
)
λy

(
1 − 2λ3

y

)

1 − λ3
y

⎫
⎬

⎭
− p

(A.14) 

Combined with Eq. (A.14), the stress is 

σ = σ22 − σ11 =2

[

C1 +C2λ− 1
y −

3G2 ln
(
λy
)
λy

1 − λ3
y

]
(

λ2
y − λ− 1

y

)
(A.15) 
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