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Abstract: The Jeffreys divergence is a renown arithmetic symmetrization of the oriented Kullback–
Leibler divergence broadly used in information sciences. Since the Jeffreys divergence between
Gaussian mixture models is not available in closed-form, various techniques with advantages and
disadvantages have been proposed in the literature to either estimate, approximate, or lower and
upper bound this divergence. In this paper, we propose a simple yet fast heuristic to approximate the
Jeffreys divergence between two univariate Gaussian mixtures with arbitrary number of components.
Our heuristic relies on converting the mixtures into pairs of dually parameterized probability densities
belonging to an exponential-polynomial family. To measure with a closed-form formula the goodness
of fit between a Gaussian mixture and an exponential-polynomial density approximating it, we
generalize the Hyvärinen divergence to α-Hyvärinen divergences. In particular, the 2-Hyvärinen
divergence allows us to perform model selection by choosing the order of the exponential-polynomial
densities used to approximate the mixtures. We experimentally demonstrate that our heuristic to
approximate the Jeffreys divergence between mixtures improves over the computational time of
stochastic Monte Carlo estimations by several orders of magnitude while approximating the Jeffreys
divergence reasonably well, especially when the mixtures have a very small number of modes.

Keywords: Gaussian mixture model; Jeffreys divergence; mixture family; exponential-polynomial
family; Maximum Likelihood Estimator; Score Matching Estimator; Hyvärinen divergence; relative
Fisher information; moment matrix; Hankel matrix

1. Introduction
1.1. Statistical Mixtures and Statistical Divergences

We consider the problem of approximating the Jeffreys divergence [1] between two finite
univariate continuous mixture models [2] m(x) = ∑k

i=1 wi pi(x) and m′(x) = ∑k′
i=1 w′i p

′
i(x)

with continuous component distributions pi’s and p′′i s defined on a coinciding support X ⊂ R.
The mixtures m(x) and m′(x) may have a different number of components (i.e., k 6= k′).
Historically, Pearson [3] first considered a univariate Gaussian mixture of two components for
modeling the distribution of the ratio of forehead breadth to body length of a thousand crabs
in 1894 (Pearson obtained a unimodal mixture).

Although our work applies to any continuous mixtures of an exponential family (e.g.,
Rayleigh mixtures [4] with restricted support X = R+), we explain our method for the
most prominent family of mixtures encountered in practice: the Gaussian mixture models
or GMMs for short. In the remainder, a univariate GMM m(x) = ∑k

i=1 wi pµi ,σi (x) with k
Gaussian components

pi(x) = pµi ,σi (x) :=
1

σi
√

2π
exp

(
− (x− µi)

2

2σ2
i

)
,

is called a k-GMM.

Entropy 2021, 23, 1417. https://doi.org/10.3390/e23111417 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-5728-0726
https://doi.org/10.3390/e23111417
https://doi.org/10.3390/e23111417
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23111417
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23111417?type=check_update&version=2


Entropy 2021, 23, 1417 2 of 22

The Kullback–Leibler divergence (KLD) [5,6] DKL[m : m′] between two mixtures m
and m′ is:

DKL[m : m′] :=
∫
X

m(x) log
(

m(x)
m′(x)

)
dx. (1)

The KLD is an oriented divergence since DKL[m : m′] 6= DKL[m′ : m].
The Jeffreys divergence (JD) [1] DJ [m, m′] is the arithmetic symmetrization of the

forward KLD and the reverse KLDs:

DJ [m, m′] := DKL[m : m′] + DKL[m′ : m], (2)

=
∫
X
(m(x)−m′(x)) log

(
m(x)
m′(x)

)
dx. (3)

The JD is a symmetric divergence: DJ [m, m′] = DJ [m′, m]. In the literature, the Jeffreys
divergence [7] has also been called the J-divergence [8,9], the symmetric Kullback–Leibler
divergence [10] and sometimes the symmetrical Kullback–Leibler divergence [11,12]. In
general, it is provably hard to calculate the definite integral of the KLD between two
continuous mixtures in closed-form: For example, the KLD between two GMMs has been
shown to be non-analytic [13]. Thus, in practice, when calculating the JD between two
GMMs, one can either approximate [14,15], estimate [16], or bound [17,18] the KLD between
mixtures. Another approach to bypass the computational intractability of calculating the
KLD between mixtures consists of designing new types of divergences that admit closed-
form expressions for mixtures. See, for example, the Cauchy–Schwarz divergence [19] or
the total square divergence [20] (a total Bregman divergence) that admit the closed-form
formula when handling GMMs. The total square divergence [20] is invariant to rigid
transformations and provably robust to outliers in clustering applications.

In practice, to estimate the KLD between mixtures, one uses the following Monte
Carlo (MC) estimator:

D̂Ss
KL[m : m′] :=

1
s

s

∑
i=1

(
log
(

m(xi)

m′(xi)

)
+

m′(xi)

m(xi)
− 1
)
≥ 0,

where Ss = {x1, . . . , xs} is s independent and identically distributed (i.i.d.) samples from
m(x). This MC estimator is by construction always non-negative and therefore consistent.
That is, we have lims→∞ D̂Ss

KL[m : m′] = DKL[m : m′] under mild conditions [21].
Similarly, we estimate the Jeffreys divergence via MC sampling as follows:

D̂Ss
J [m, m′] :=

1
s

s

∑
i=1

2
(m(xi)−m′(xi))

m(xi) + m′(xi)
log
(

m(xi)

m′(xi)

)
≥ 0, (4)

where Ss = {x1, . . . , xs} are s i.i.d. samples from the “middle mixture” m12(x) := 1
2 (m(x) +

m′(x)). By choosing the middle mixture m12(x) for sampling, we ensure that we keep the
symmetric property of the JD (i.e., D̂Ss

J [m, m′] = D̂Ss
J [m′, m]), and we also have consistency

under mild conditions [21]: lims→∞ D̂Ss
J [m, m′] = DJ [m, m′]. The time complexity to

stochastically estimate the JD is Õ((k + k′)s), with s typically ranging from 104 to 106 in
applications. Notice that the number of components of a mixture can be very large (e.g.,
k = O(n) for n input data when using Kernel Density Estimators [2]). KDEs may also
have a large number of components and may potentially exhibit many spurious modes
visualized as small bumps when plotting the densities.

1.2. Jeffreys Divergence between Densities of an Exponential Family

We consider approximating the JD by converting continuous mixtures into densities
of exponential families [22]. A continuous exponential family (EF) Et of order D is defined
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as a family of probability density functions with support X and the probability density
function:

Et :=

{
pθ(x) := exp

(
D

∑
i=1

θiti(x)− F(θ)

)
: θ ∈ Θ

}
,

where F(θ) is called the log-normalizer, which ensures the normalization of pθ(x) (i.e.,∫
X pθ(x)dx = 1):

F(θ) = log

(∫
X

exp

(
D

∑
i=1

θiti(x)

)
dx

)
.

Parameter θ ∈ Θ ⊂ RD is called the natural parameter, and the functions t1(x), . . .,
tD(x) are called the sufficient statistics [22]. Let Θ denote the natural parameter space:
Θ := {θ : F(θ) < ∞}, an open convex domain for regular exponential families [22]. The
exponential family is said to be minimal when the functions 1, t1(x), . . . , tD(x) are linearly
independent.

It is well-known that one can bypass the definite integral calculation of the KLD when
the probability density functions pθ and pθ′ belong to the same exponential family [23,24]:

DKL[pθ : pθ ] = BF(θ
′ : θ),

where BF(θ2 : θ1) is the Bregman divergence induced by the log-normalizer, a strictly
convex real-analytic function [22]. The Bregman divergence [25] between two parameters
θ1 and θ2 for a strictly convex and smooth generator F is defined by:

BF(θ1 : θ2) := F(θ1)− F(θ2)− (θ1 − θ2)
>∇F(θ2). (5)

Thus, the Jeffreys divergence between two pdfs pθ and pθ′ belonging to the same
exponential family is a symmetrized Bregman divergence [26]:

DJ [pθ : pθ ] = BF(θ
′ : θ) + BF(θ : θ′),

= (θ′ − θ)>(∇F(θ′)−∇F(θ)).

Let F∗(η) denote the Legendre–Fenchel convex conjugate of F(θ):

F∗(η) := sup
θ∈Θ
{θ>η − F(θ)}. (6)

The Legendre transform ensures that η = ∇F(θ) and θ = ∇F∗(η), and the Jeffreys
divergence between two pdfs pθ and pθ′ belonging to the same exponential family is:

DJ [pθ : pθ ] = (θ′ − θ)>(η′ − η). (7)

Notice that the log-normalizer F(θ) does not appear explicitly in the above formula.

1.3. A Simple Approximation Heuristic

Densities pθ of an exponential family admit a dual parameterization [22]: η = η(θ) :=
Epθ

[t(x)] = ∇F(θ), called the moment parameterization (or mean parameterization). Let
H denote the moment parameter space. Let us use the subscript and superscript notations
to emphasize the coordinate system used to index a density: In our notation, we thus write
pθ(x) = pη(x).

In view of Equation (7), our method to approximate the Jeffreys divergence between
mixtures m and m′ consists of first converting those mixtures m and m′ into pairs of
polynomial exponential densities (PEDs) in Section 2. To convert a mixture m(x) into
a pair (pθ̄1

, pη̄2) dually parameterized (but not dual because η̄2 6= ∇F(θ̄1)), we shall
consider “integral extensions” (or information projections) of the Maximum Likelihood
Estimator [22] (MLE estimates in the moment parameter space H = {∇F(θ) : θ ∈ Θ})
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and of the Score Matching Estimator [27] (SME estimates in the natural parameter space
Θ = {∇F∗(η) : η ∈ H}).

We shall consider polynomial exponential families [28] (PEFs) also called exponential-
polynomial families (EPFs) [29]. PEFs ED are regular minimal exponential families with
polynomial sufficient statistics ti(x) = xi for i ∈ {1, . . . , D}. For example, the exponential
distributions {pλ(x) = λ exp(−λx)} form a PEF with D = 1, t(x) = x and X = R+,
and the normal distributions form an EPF with D = 2, t(x) = [x x2]> and X = R, etc.
Although the log-normalizer F(θ) can be obtained in closed-form for lower order PEFs
(e.g., D = 1 or D = 2) or very special subfamilies (e.g., when D = 1 and t1(x) = xk,
exponential-monomial families [30]), a no-closed form formula is available for F(θ) of
EPFs in general as soon D ≥ 4 [31,32], and the cumulant function F(θ) is said to be
computationally intractable. Notice that when X = R, the leading coefficient θD is negative
for even integer order D. EPFs are attractive because these families can universally model
any smooth multimodal distribution [28] and require fewer parameters in comparison to
GMMs: Indeed, a univariate k-GMM m(x) (at most k modes and k− 1 antimodes) requires
3k − 1 parameters to specify m(x) (or k + 1 for a KDE with constant kernel width σ or
2k − 1 for a KDE with varying kernel widths, but then k = n observations). A density
of an EPF of order D is called an exponential-polynomial density (EPD) and requires D
parameters to specify θ, with, at most, D

2 modes (and D
2 − 1 antimodes). The case of the

quartic (polynomial) exponential densities E4 (D = 4) has been extensively investigated
in [31,33–37]. Armstrong and Brigo [38] discussed order-6 PEDs, and Efron and Hastie
reported and order-7 PEF in their textbook (see Figure 5.7 of [39]). Figure 1 displays two
examples of converting a GMM into a pair of dually parameterized exponential-polynomial
densities.

Unimodal 2-GMM Bimodal 2-GMM

Figure 1. Two examples illustrating the conversion of a GMM m (black) of k = 2 components (dashed
black) into a pair of polynomial exponential densities of order D = 4 (pθ̄SME

, pη̄MLE ). PED pθ̄SME
is

displayed in green, and PED pη̄MLE is displayed in blue. To display pη̄MLE , we first converted η̄MLE to
˜̄θMLE using an iterative linear system descent method (ILSDM), and we numerically estimated the
normalizing factors Z(θ̄SME) and Z(η̄MLE) to display the normalized PEDs.

Then by converting both mixture m and mixture m′ into pairs of dually natural/mo-
ment parameterized unnormalized PEDs, i.e., m→ (qθ̄SME

, qη̄MLE) and m′ → (qθ̄′SME
, q′η̄MLE

),
we approximate the JD between mixtures m and m′ by using the four parameters of the
PEDs

DJ [m, m′] ≈ (θ̄′SME − θ̄SME)
>(η̄′MLE − η̄MLE). (8)

Let ∆J denote the approximation formula obtained from the two pairs of PEDs:

∆J [pθSME , pηMLE ; pθ′SME
, pη′MLE ] := (θ′SME − θSME)

>(η′MLE − ηMLE). (9)
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Let ∆J(θSME, ηMLE; θ′SME, η′MLE) := ∆J [pθSME , pηMLE ; pθ′SME
, pη′MLE ]. Then we have

DJ [m, m′] ≈ D̃J [m, m′] := ∆J(θSME, ηMLE; θ′SME, η′MLE).

Note that ∆J is not a proper divergence as it may be negative since, in general,
η̄MLE 6= ∇F(θ̄SME). That is, ∆J may not satisfy the law of the indiscernibles. Approximation
∆J is exact when k1 = k2 = 1, with both m and m′ belonging to an exponential family.

We experimentally show in Section 4 that the D̃J heuristic yields fast approximations
of the JD compared to the MC baseline estimations by several order of magnitudes while
approximating the JD reasonably well when the mixtures have a small number of modes.

For example, Figure 2 displays the unnormalized PEDs obtained for two Gaussian
mixture models (k1 = 10 components and k2 = 11 components) into PEDs of a PEF of order
D = 8. The MC estimation of the JD with s = 106 samples yields 0.2633 . . . , while the PED
approximation of Equation (8) on corresponding PEFs yields 0.2618 . . . (the relative error is
0.00585 . . . or about 0.585 . . . %). It took about 2642.581 milliseconds (with s = 106 on a Dell
Inspiron 7472 laptop) to MC estimate the JD, while it took about 0.827 milliseconds with
the PEF approximation. Thus, we obtained a speed-up factor of about 3190 (three orders
of magnitude) for this particular example. Notice that when viewing Figure 2, we tend to
visually evaluate the dissimilarity using the total variation distance (a metric distance):

DTV[m, m′] :=
1
2

∫
|m(x)−m′(x)|dx,

rather than by a dissimilarity relating to the KLD. Using Pinsker’s inequality [40,41], we
have DJ [m, m′] ≥ DTV[m, m′]2 and DTV[m, m′] ∈ [0, 1]. Thus, large TV distance (e.g.,
DTV[m, m′] = 0.1) between mixtures may have a small JD since Pinsker’s inequality yields
DJ [m, m′] ≥ 0.01.

Let us point out that our approximation heuristic is deterministic, while the MC
estimations are stochastic: That is, each MC run (Equation (4)) returns a different result,
and a single MC run may yield a very bad approximation of the true Jeffreys divergence.

q2
(x

)

x

q2

 0

 1

 2

 3

 4

 5

 6

-10 -8 -6 -4 -2  0  2  4

Figure 2. Two mixtures m1 (black) and m2 (red) of k1 = 10 components and k2 = 11 components
(left), respectively. The unnormalized PEFs qθ̄1

= p̃θ̄1
(middle) and qθ̄2

= p̃θ̄2
(right) of order D = 8.

Jeffreys divergence (about 0.2634) is approximated using PEDs within 0.6% compared to the Monte
Carlo estimate with a speed factor of about 3190. Notice that displaying pθ̄1

and pθ̄2
on the same PDF

canvas as the mixtures would require calculating the partition functions Z(θ̄1) and Z(θ̄2) (which we
do not in this figure). The PEDs qη̄1 and qη̄2 of the pairs (θ̄1, η̄1) and (θ̄2, η̄2) parameterized in the
moment space are not shown here.

We compare our fast heuristic D̃J [m, m′] = (θ′SME − θSME)
>(η′MLE − ηMLE) with two

more costly methods relying on numerical procedures to convert natural ↔ moment
parameters:

1. Simplify GMMs mi into pηMLE
i , and approximately convert the η̄MLE

i ’s into θ̃MLE
i ’s.

Then approximate the Jeffreys divergence as

DJ [m1, m2] ' ∆̃MLE
J [m1, m2] := (θ̃MLE

2 − θ̃MLE
1 )>(η̄MLE

2 − η̄MLE
1 ). (10)
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2. Simplify GMMs mi into pθ̄SME
i

, and approximately convert the θ̄SME
i ’s into η̃SME

i ’s.
Then approximate the Jeffreys divergence as

DJ [m1, m2] ' ∆̃SME
J (m1, m2) = (θ̄SME

2 − θ̄SME
1 )>(η̃SME

2 − η̃SME
1 ). (11)

1.4. Contributions and Paper Outline

Our contributions are summarized as follows:

• We explain how to convert any continuous density r(x) (including GMMs) into a
polynomial exponential density in Section 2 using integral-based extensions of the
Maximum Likelihood Estimator [22] (MLE estimates in the moment parameter space
H, Theorem 1 and Corollary 1) and the Score Matching Estimator [27] (SME estimates
in the natural parameter space Θ, Theorem 3). We show a connection between SME
and the Moment Linear System Estimator [28] (MLSE).

• We report a closed-form formula to evaluate the goodness-of-fit of a polynomial family
density to a GMM in Section 3 using an extension of the Hyvärinen divergence [42]
(Theorem 4) and discuss the problem of model selection for choosing the order D of
the polynomial exponential family.

• We show how to approximate the Jeffreys divergence between GMMs using a pair
of natural/moment parameter PED conversion and present experimental results
that display a gain of several orders of magnitude of performance when compared
to the vanilla Monte Carlo estimator in Section 4. We observe that the quality of
the approximations depend on the number of modes of the GMMs [43]. However,
calculating or counting the modes of a GMM is a difficult problem in its own [43].

The paper is organized as follows: In Section 2, we show how to convert arbitrary
probability density functions into polynomial exponential densities using the integral-
based Maximum Likelihood Estimator (MLE) and Score Matching Estimator (SME). We
describe a Maximum Entropy method to iteratively convert moment parameters into
natural parameters in Section 2.3.1. It is followed by Section 3, which shows how to calculate
in closed-form the order-2 Hyvärinen divergence between a GMM and a polynomial
exponential density. We use this criterion to perform model selection. Section 4 presents
our computational experiments that demonstrate a gain of several orders of magnitudes
for GMMs with a small number of modes. Finally, we conclude in Section 5.

2. Converting Finite Mixtures to Exponential Family Densities

We report two generic methods to convert a mixture m(x) into a density pθ(x) of an
exponential family: The first method extending the MLE in Section 2.1 proceeds using
the mean parameterization η, while the second method extending the SME in Section 2.2
uses the natural parameterization of the exponential family. We then describe how to
convert the moments parameters into natural parameters (and vice versa) for polynomial
exponential families in Section 2.3. We show how to instantiate these generic conversion
methods for GMMs: It requires calculating non-central moments of GMMs in closed-form.
The efficient computations of raw moments of GMMs is detailed in Section 2.4.

2.1. Conversion Using the Moment Parameterization (MLE)

Let us recall that in order to estimate the moment or mean parameter η̂MLE of a density
belonging an exponential family

Et :=
{

pθ(x) = exp
(

t(x)>θ − F(θ)
)}



Entropy 2021, 23, 1417 7 of 22

with a sufficient statistic vector t(x) = [t1(x) . . . tD(x)]> from an i.i.d. sample set x1, . . . , xn,
the Maximum Likelihood Estimator (MLE) [22,44] yields

max
θ

n

∏
i=1

pθ(xi), (12)

≡ max
θ

n

∑
i=1

log pθ(xi), (13)

= max
θ

E(θ) :=

(
n

∑
i=1

t(xi)
>θ

)
− nF(θ), (14)

⇒ η̂MLE =
1
n

n

∑
i=1

t(xi). (15)

In statistics, Equation (14) is called the estimating equation. The MLE exists under
mild conditions [22] and is unique since the Hessian ∇2E(θ) = ∇2F(θ) of the estimating
equation is positive-definite (log-normalizers F(θ) are always strictly convex and real
analytic [22]). The MLE is consistent and asymptotically normally distributed [22]. Further-
more, since the MLE satisfies the equivariance property [22], we have θ̂MLE = ∇F∗(η̂MLE),
where ∇F∗ denotes the gradient of the conjugate function F∗(η) of the cumulant function
F(θ) of the exponential family. In general, ∇F∗ is intractable for PEDs with D ≥ 4.

By considering the empirical distribution

pe(x) :=
1
n

s

∑
i=1

δxi (x),

where δxi (·) denotes the Dirac distribution at location xi, we can formulate the MLE
problem as a minimum KLD problem between the empirical distribution and a density of
the exponential family:

min
θ

DKL[pe : pθ ] = min−H[pe]− Epe [log pθ(x)],

≡ max
θ

1
n

n

∑
i=1

log pθ(xi),

since the entropy term H[pe] is independent of θ.
Thus, to convert an arbitrary smooth density r(x) into a density pθ of an exponential

family Et, we have to solve the following minimization problem:

min
θ∈Θ

DKL[r : pθ ].

Rewriting the minimization problem as:

min
θ

DKL[r : pθ ] = −
∫

r(x) log pθ(x)dx +
∫

r(x) log r(x)dx,

≡ min
θ
−
∫

r(x) log pθ(x)dx,

= min
θ

∫
r(x)(F(θ)− θ>t(x))dx,

= min
θ

Ē(θ) = F(θ)− θ>Er[t(x)],

we obtain
η̄MLE(r) := Er[t(x)] =

∫
X

r(x)t(x)dx. (16)

The minimum is unique since ∇2Ē(θ) = ∇2F(θ) � 0 (positive-definite matrix). This
conversion procedure r(x) → pη̄MLE(r)(x) can be interpreted as an integral extension of
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the MLE, hence the¯̇notation in η̄MLE. Notice that the ordinary MLE is η̂MLE = η̄MLE(pe)
obtained for the empirical distribution: r = pe: η̄MLE(pe) =

1
n ∑n

i=1 t(xi).

Theorem 1. The best density pη̄(x) of an exponential family Et = {pθ : θ ∈ Θ} minimizing the
Kullback–Leibler divergence DKL[r : pθ ] between a density r and a density pθ of an exponential
family Et is η̄ = Er[t(x)] =

∫
X r(x)t(x)dx.

Notice that when r = pθ , we obtain η̄ = Epθ
[t(x)] = η so that the method η̄MLE(r) is

consistent (by analogy to the finite i.i.d. MLE case): η̄MLE(pθ) = η = ∇F(θ).
The KLD right-sided minimization problem can be interpreted as an information

projection of r onto Et. As a corollary of Theorem 1, we obtain:

Corollary 1 (Best right-sided KLD simplification of a mixture). The best right-sided KLD
simplification of a homogeneous mixture of exponential families [2] m(x) = ∑k

i=1 wi pθi (x) with
pθi ∈ Et, i.e., minθ∈Θ DKL[m : pθ ], into a single component pη(x) is given by η = η̂MLE(m) =

Em[t(x)] = ∑k
i=1 ηi = η̄.

Equation (16) allows us to greatly simplify the proofs reported in [45] for mixture
simplifications that involved the explicit use of the Pythagoras’ theorem in the dually flat
spaces of exponential families [42]. Figure 3 displays the geometric interpretation of the
best KLD simplification of a GMM with ambient space the probability space (R,B(R), µL),
where µL denotes the Lebesgue measure and B(R) the Borel σ-algebra of R.

m(x) =
∑k
i=1 wipθi(x)

Gaussian Mixture Model

Normal Exponential Family

e-flat {pθ}θ∈Θ = {pη}η∈H

m-geodesic

pη̄

η̄ =
∑k
i=1 wiηi

orthogonal m-projection:
minθDKL[m : pθ]

Figure 3. The best simplification of a GMM m(x) into a single normal component pθ∗ (minθ∈Θ DKL[m :
pθ ] = minη∈H DKL[m : pη ]) is geometrically interpreted as the unique m-projection of m(x) onto the
Gaussian family (a e-flat): We have η∗ = η̄ = ∑k

i=1 ηi.

Let us notice that Theorem 1 yields an algebraic system for polynomial exponential
densities, i.e., Em[xi] = η̄i for i ∈ {1, . . . , D}, to compute η̄MLE(m) for a given GMM m(x)
(since raw moments Em[xi] are algebraic). In contrast with this result, the MLE of i.i.d.
observations is in general not an algebraic function [46] but a transcendental function.

2.2. Converting to a PEF Using the Natural Parameterization (SME)
Integral-Based Score Matching Estimator (SME)

To convert the density r(x) into an exponential density with sufficient statistics t(x),
we can also use the Score Matching Estimator [27,47] (SME). The Score Matching Estimator
minimizes the Hyvärinen divergence DH (Equation (4) of [47]):

DH [p : pθ ] :=
1
2

∫
‖∇x log p(x)−∇x log pθ(x)‖2 p(x)dx.



Entropy 2021, 23, 1417 9 of 22

The Hyvärinen divergence is also known as half of the relative Fisher information in
the optimal transport community (Equation (8) of [48] or Equation (2.2) in [49]), where it is
defined for two measures µ and ν as follows:

I[µ : ν] :=
∫
X

∥∥∥∥∇ log
dµ

dν

∥∥∥∥2
dµ = 4

∫
X

∥∥∥∥∥∇
√

dµ

dν

∥∥∥∥∥
2

dν.

Moreover, the relative Fisher information can be defined on complete Riemannian
manifolds [48].

That is, we convert a density r(x) into an exponential family density pθ(x) using the
following minimizing problem:

θSME(r) = min
θ∈Θ

DH [r : pθ ].

Beware that in statistics, the score sθ(x) is defined by ∇θ log pθ(x), but in Score
Matching, we refer to the “data score” defined by ∇x log pθ(x). Hyvärinen [47] gave
an explanation of the naming “score” using a spurious location parameter.

• Generic solution: It can be shown that for exponential families [47], we obtain the
following solution:

θSME(r) = −(Er[A(x)])−1 × (Er[b(x)]), (17)

where
A(x) := [t′i(x)t′j(x)]ij

is a D× D symmetric matrix, and

b(x) = [t′′1 (x) . . . t′′D(x)]>

is a D-dimensional column vector.

Theorem 2. The best conversion of a density r(x) into a density pθ(x) of an exponential family
minimizing the right-sided Hyvärinen divergence is

θSME(r) = −
(

Er[[t′i(x)t′j(x)]ij]
)−1
×
(

Er[[t′′1 (x) . . . t′′D(x)]]>
)

.

• Solution instantiated for polynomial exponential families:
For polynomial exponential families of order D, we have t′i(x) = ixi−1 and t′′i (x) =
i(i− 1)xi−2, and therefore, we have

AD = Er[A(x)] =
[
ij µi+j−2(r)

]
ij,

and
bD = Es[b(x)] =

[
j(j− 1) µj−2(r)

]
j,

where µl(r) := Er[Xl ] denotes the l-th raw moment of distribution X ∼ r(x) (with
the convention that m−1(r) = 0). For a probability density function r(x), we have
µ1(r) = 1.
Thus, the integral-based SME of a density r is:

θSME(r) = −
([

ijµi+j−2(r)
]

ij

)−1
×
[
j(j− 1)µj−2(r)

]
j. (18)
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For example, matrix A4 is 
µ0 2µ1 3µ2 4µ3

2µ1 4µ2 6µ3 8µ4
3µ2 6µ3 9µ4 12µ5
4µ3 8µ4 12µ5 16µ6

.

• Faster PEF solutions using Hankel matrices:
The method of Cobb et al. [28] (1983) anticipated the Score Matching method of
Hyvärinen (2005). It can be derived from Stein’s lemma for exponential families [50].
The integral-based Score Matching method is consistent, i.e., if r = pθ , then θ̄SME = θ:
The probabilistic proof for r(x) = pe(x) is reported as Theorem 2 of [28]. The integral-
based proof is based on the property that arbitrary order partial mixed derivatives
can be obtained from higher-order partial derivatives with respect to θ1 [29]:

∂i1
1 . . . ∂iD

D F(θ) = ∂
∑D

j=1 jij

1 F(θ),

where ∂i := ∂
∂θi

.
The complexity of the direct SME method is O(D3) as it requires the inverse of the
D× D-dimensional matrix AD.
We show how to lower this complexity by reporting an equivalent method (originally
presented in [28]) that relies on recurrence relationships between the moments of
pθ(x) for PEDs. Recall that µl(r) denotes the l-th raw moment Er[xl ].
Let A′ = [a′i+j−2]ij denote the D × D symmetric matrix with a′i+j−2(r) = µi+j−2(r)
(with a′0(r) = µ0(r) = 1), and b′ = [bi]i the D-dimensional vector with b′i(r) =

(i + 1)µi(r). We solve the system A′β = b′ to obtain β = A′−1b′. We then obtain the
natural parameter θ̄SME from the vector β as

θ̄SME =



− β1
2

...
− βi

i+1
...

− βD
D+1


. (19)

Now, if we inspect matrix A′D =
[
µi+j−2(r)

]
, we find that matrix A′D is a Hankel

matrix: A Hankel matrix has constant anti-diagonals and can be inverted in quadratic-
time [51,52] instead of cubic time for a general D×D matrix. (The inverse of a Hankel
matrix is a Bezoutian matrix [53].) Moreover, a Hankel matrix can be stored using
linear memory (store 2D − 1 coefficients) instead of quadratic memory of regular
matrices.
For example, matrix A′4 is:

A′4 =


µ0 µ1 µ2 µ3
µ1 µ2 µ3 µ4
µ2 µ3 µ4 µ5
µ3 µ4 µ5 µ6

,
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and requires only 6 = 2× 4− 2 coefficients to be stored instead of 4× 4 = 16. The
order-d moment matrix is

A′d := [µi+j−2]ij =


µ0 µ1 . . . µd

µ1 µ2 . . .
...

...
. . .

...
µd . . . . . . µ2d

,

is a Hankel matrix stored using 2d + 1 coefficients:

A′d =: Hankel(µ0, µ1, . . . , µ2d).

In statistics, those matrices A′d are called moment matrices and well-studied [54–56].
The variance Var[X] of a random variable X can be expressed as the determinant of
the order-2 moment matrix:

Var[X] = E[(X− µ)2] = E[X2]− E[X]2 = µ2 − µ2
1 = det

([
1 µ1

µ1 µ2

])
≥ 0.

This observation yields a generalization of the notion of variance to d + 1 random
variables: X1, . . . , Xd+1 ∼iid FX ⇒ E

[
∏j>i(Xi − Xj)

2
]
= (d + 1)! det(Md) ≥ 0. The

variance can be expressed as E[ 1
2 (X1 − X2)

2] for X1, X2 ∼iid FX. See [57] (Chapter 5)
for a detailed description related to U-statistics.
For GMMs r, the raw moments µl(r) to build matrix AD can be calculated in closed-
form, as explained in Section 2.4.

Theorem 3 (Score matching GMM conversion). The Score Matching conversion of a GMM
m(x) into a polynomial exponential density pθSME(m)(x) of order D is obtained as

θSME(m) = −
([

ij mi+j−2
]

ij

)−1
×
[
j(j− 1)mj−2

]
j,

where mi = Em[xi] denote the ith non-central moment of the GMM m(x).

2.3. Converting Numerically Moment Parameters from/to Natural Parameters

Recall that our fast heuristic approximates the Jeffreys divergence by

D̃J [m, m′] := (θ̄SME(m′)− θ̄SME(m))>(η̄MLE(m′)− η̄MLE(m)).

Because F and ∇F∗ are not available in closed form (except for the case D = 2 of the
normal family), we cannot obtain θ from a given η (using θ = ∇F∗(η)) nor η from a given
θ (using η = ∇F(θ)).

However, provided that we can approximate numerically η̃ ' ∇F(θ) and θ̃ ' ∇F∗(η),
we also consider these two approximations for the Jeffreys divergence:

∆̃MLE
J [m1, m2] := (θ̃MLE

2 − θ̃MLE
1 )>(η̄MLE

2 − η̄MLE
1 ),

and
∆̃SME

J [m1, m2] = (θ̄SME
2 − θ̄SME

1 )>(η̃SME
2 − η̃SME

1 ).

We show how to numerically estimate θ̃MLE ' ∇F(η̄MLE) from η̄MLE in Section 2.3.1.
Next, in Section 2.3.2, we show how to stochastically estimate η̃SME ' ∇F∗(θ̄SME).

2.3.1. Converting Moment Parameters to Natural Parameters Using Maximum Entropy

Let us report the iterative approximation technique of [58] (which extended the method
described in [35]) based on solving a maximum entropy problem (MaxEnt problem). This
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method will be useful when comparing our fast heuristic D̃J [m, m′] with the approximations
∆̃MLE

J [m, m′] and ∆̃SME
J [m, m′].

The density pθ of any exponential family can be characterized as a maximum entropy
distribution given the D moment constraints Epθ

[ti(x)] = ηi: Namely, maxp h(p) subject
to the D + 1 moment constraints

∫
ti(x)p(x)dx = ηi for i ∈ {0, . . . , D}, where we added

by convention η0 = 1 and t0(x) = 1 (so that
∫

p(x)dx = 1). The solution of this MaxEnt
problem [58] is p(x) = pλ, where λ are the D + 1 Lagrangian parameters. Here, we adopt
the following canonical parameterization of the densities of an exponential family:

pλ(x) := exp

(
−

D

∑
i=0

λiti(x)

)
.

That is, F(λ) = λ0 and λi = −θi for i ∈ {1, . . . , D}. Parameter λ is a kind of
augmented natural parameter that includes the log-normalizer in its first coefficient.

Let Ki(λ) := Epθ
[ti(x)] = ηi denote the set of D + 1 non-linear equations for i ∈

{0, . . . , D}. The Iterative Linear System Method [58] (ILSM) converts pη to pθ iteratively.
We initialize λ(0) to θ̄SME (and calculate numerically λ

(0)
0 = F(θ̄SME)).

At iteration t with current estimate λ(t), we use the following first-order Taylor ap-
proximation:

Ki(λ) ≈ Ki(λ
(t)) + (λ− λ(t))∇Ki(λ

(t)).

Let H(λ) denote the (D + 1)× (D + 1) matrix:

H(λ) :=

[
∂Ki(λ)

∂θj

]
ij

.

We have
Hij(λ) = Hji(λ) = −Epθ

[ti(x)tj(x)].

We update as follows:

λ(t+1) = λ(t) + H−1(λ(t))

 η0 − K0(λ
(t))

...
ηD − KD(λ

(t))

. (20)

For a PEF of order D, we have

Hij(λ) = −Epθ
[xi+j−2] = −µi+j−2(pθ).

This yields a moment matrix Hλ (Hankel matrix), which can be inverted in quadratic
time [52]. In our setting, the moment matrix is invertible because |H| > 0, see [59].

Let λ̃T(η) denote θ(T) after T iterations (retrieved from λ(T)) and the corresponding
natural parameter of the PED. We have the following approximation of the JD:

DJ [m, m′] ≈ (θ̃T(η
′)− θ̃T(η))

>(η′ − η).

The method is costly because we need to numerically calculate µi+j−2(pθ) and the
Ki’s (e.g., univariate Simpson integrator). Another potential method consists of estimating
these expectations using acceptance-rejection sampling [60,61]. We may also consider
the holonomic gradient descent [29]. Thus, the conversion η → θ method is costly. Our
heuristic ∆̃J bypasses this costly moment-to-natural parameter conversion by converting
each mixture m to a pair (pθSME , pηMLE) of PEDs parameterized in the natural and moment
parameters (i.e., loosely speaking, we untangle these dual parameterizations).
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2.3.2. Converting Natural Parameters to Moment Parameters

Given a PED pθ(x), we have to find its corresponding moment parameter η (i.e.,
pθ = pη). Since η = Epθ

[t(x)], we sample s i.i.d. variates x1, . . . , xs from pθ using acceptance-
rejection sampling [60,61] or any other Markov chain Monte Carlo technique [62] and
estimate η̂ as:

η̂ =
1
s

s

∑
i=1

t(xi).

2.4. Raw Non-Central Moments of Normal Distributions and GMMs

In order to implement the MLE or SME Gaussian mixture conversion procedures, we
need to calculate the raw moments of a Gaussian mixture model. The l-th moment raw
moment E[Zl ] of a standard normal distribution Z ∼ N(0, 1) is 0 when l is odd (since the
normal standard density is an even function) and (l− 1)!! = 2−

l
2 l!
(l/2)! when l is even, where

n!! =
√

2n+1

π Γ( n
2 + 1) = ∏

d n
2 e−1

k=0 (n− 2k) is the double factorial (with (−1)!! = 1 by con-
vention). Using the binomial theorem, we deduce that a normal distribution X = µ + σZ
has finite moments:

µl(pµ,σ) = Epµ,σ [X
l ] = E[(µ + σZ)l ] = E[(µ + σZ)l ] =

l

∑
i=0

(
l
i

)
µl−iσiE[Zi].

That is, we have

µl(pµ,σ) =
b l

2 c

∑
i=0

(
l
i

)
(2i− 1)!! µl−2iσ2i, (21)

where n!! denotes the double factorial:

n!! =
d n

2 ]−1

∏
k=0

(n− 2k) =

{
∏

n
2
k=1(2k) n is even,

∏
n+1

2
k=1(2k− 1) n is odd.

By the linearity of the expectation E[·], we deduce the l-th raw moment of a GMM
m(x) = ∑k

i=1 wi pµi ,σi (x):

µl(m) =
k

∑
i=1

wiµl(pµI ,σi ).

Notice that by using [63], we can extend this formula to truncated normals and GMMs.
Thus, computing the first O(D) raw moments of a GMM with k components can be done
in O(kD2) using the Pascal triangle method for computing the binomial coefficients. See
also [64].

3. Goodness-of-Fit between GMMs and PEDs: Higher Order Hyvärinen Divergences

Once we have converted a GMM m(x) into an unnormalized PED qθm(x) = p̃θm(x),
we would like to evaluate the quality of the conversion, i.e., D[m(x) : qθm(x)], using a
statistical divergence D[· : ·]. This divergence shall allow us to perform model selection by
choosing the order D of the PEF so that D[m(x) : pθ(x)] ≤ ε for θ ∈ RD, where ε > 0 is a
prescribed threshold. Since PEDs have computationally intractable normalization constants,
we consider a right-sided projective divergence [42] D[p : q] that satisfies D[p : λq] =
D[p : q] = D[p : q̃] for any λ > 0. For example, we may consider the γ-divergence [65]
that is a two-sided projective divergence: Dγ[λp : λ′q] = D[p : q] = D[ p̃ : q̃] for any
λ, λ′ > 0 and converge to the KLD when γ → 0. However, the γ-divergence between a
mixture model and an unnormalized PEF does not yield a closed-form formula. Moreover,
the γ-divergence between two unnormalized PEDs is expressed using the log-normalizer
function F(·) that is computationally intractable [66].
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In order to a get a closed-form formula for a divergence between a mixture model and
an unnormalized PED, we consider the order-α (for α > 0) Hyvärinen divergence [42] as
follows:

DH,α[p : q] :=
∫

p(x)α (∇x log p(x)−∇x log q(x))2dx, α > 0. (22)

The Hyvärinen divergence [42] (order-1 Hyvärinen divergence) has also been called
the Fisher divergence [27,67–69] or relative Fisher information [48]. Notice that when α = 1,
DH,1[p : q] = DH [p : q], the ordinary Hyvärinen divergence [27].

The Hyvärinen divergences DH,α is a right-sided projective divergence, meaning
that the divergence satisfies DH,α[p : q] = DH,α[p : λq] for any λ > 0. That is, we
have DH,α[p : q] = DH,α[p : q̃]. Thus, we have DH,α[m : pθ ] = DH,α[m : qθ ] for an
unnormalized PED qθ = p̃θ . For statistical estimation, it is enough to have a sided projective
divergence since we need to evaluate the goodness of fit between the (normalized) empirical
distribution pe and the (unnormalized) parameteric density.

For univariate distributions, ∇x log p(x) = p′(x)
p(x) , and p′(x)

p(x) = p̃′(x)
p̃(x) , where p̃(x) is the

unnormalized model.
Let Pθ(x) := ∑D

i=1 θixi be a homogeneous polynomial defining the shape of the EPF:

pθ(x) = exp(Pθ(x)− F(θ)).

For PEDs with the homogeneous polynomial Pθ(x), we have p′(x)
p(x) = (log Pθ(x))′ =

∑D
i=1 iθixi−1.

Theorem 4. The Hyvärinen divergence DH,2[m : qθ ] of order 2 between a Gaussian mixture m(x)
and a polynomial exponential family density qθ(x) is available in closed form.

Proof. We have DH,2[m : q] =
∫

m(x)2
(

m′(x)
m(x) −∑D

i=1 iθixi−1
)2

dx with

m′(x) = −
k

∑
i=1

wi
x− µi

σ2
i

p(xi; µi, σi),

denoting the derivative of the Gaussian mixture density m(x). It follows that:

DH,2[m : q] =
∫

m′(x)dx− 2
D

∑
i=1

iθi

∫
xi−1m′(x)m(x)dx +

D

∑
i,j=1

ijθiθj

∫
xi+j−2m(x)2dx,

where ∫
xim′(x)m(x)dx = −∑ wawb

∫ x− µa

σ2
a

xi p(x; µa, σa)p(x; µb, σb)dx.

Therefore, we have

DH,2[m : q] =
∫

m′(x)dx− 2
D

∑
i=1

iθi

∫
xi−1m′(x)m(x)dx +

D

∑
i,j=1

ijθiθj

∫
xi+j−2m(x)2dx

with m′(x) = −∑ wa
x−µa

σ2
a

p(x; µa, σa).
Since pa(x)pb(x) = κa,b p(x; µab, σab), with

µab = σ2
a σ2

b (σ
2
b µa + σ2

a µb),

σab =
σaσb√
σ2

a + σ2
b

,

κa,b = exp(F(µab, σab)− F(µa, σa)− F(µb, σb)),
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and

F(µ, σ) =
µ2

2σ2 +
1
2

log(2πσ2),

the log-normalizer of the Gaussian exponential family [42].
Therefore, we obtain ∫

pa(x)pb(x)xldx = κa,bml(µab, σab).

Thus, the Hyvärinen divergence DH,2 of order 2 between a GMM and a PED is
available in closed-form.

For example, when k = 1 (i.e., mixture m is a single Gaussian pµ1,σ1 ) and pθ is a normal
distribution (i.e., PED with D = 2, qθ = pµ2,σ2), we obtain the following formula for the
order-2 Hyvärinen divergence:

DH,2[pµ1,σ1 : pµ2,σ2 ] =
(σ2

1 − σ2
2 )

2 + 2(µ2 − µ1)
2σ2

1
8
√

πσ3
1 σ4

2
.

4. Experiments: Jeffreys Divergence between Mixtures

In this section, we evaluate our heuristic to approximate the Jeffreys divergence
between two mixtures m and m′:

D̃J [m, m′] := (θ̄SME(m′)− θ̄SME(m))>(η̄MLE(m′)− η̄MLE(m)).

Recall that stochastically estimating the JD between k-GMMs with Monte Carlo sam-
pling using s samples (i.e., D̂J,s[m : m′]) requires Õ(ks) and is not deterministic. That is,
different MC runs yield fluctuating values that may be fairly different. In comparison,
approximating DJ by D̃J using ∆J by converting mixtures to D-order PEDs require O(kD2)
time to compute the raw moments and O(D2) time to invert a Hankel moment matrix.
Thus, by choosing D = 2k, we obtain a deterministic O(k3) algorithm that is faster than
the MC sampling when k2 � s. Since there are, at most, k modes for a k-GMM, we choose
order D = 2k for the PEDs.

To obtain quantitative results on the performance of our heuristic D̃J , we build random
GMMs with k components as follows: m(x) = ∑k

i=1 wi pµi ,σi (x), where wi ∼ Ui, µi ∼
−10 + 10U′1 and σi ∼ 1 + U′2, where the Ui’s, and U′1 and U′2 are independent uniform
distributions on [0, 1). The mixture weights are then normalized to sum up to one. For each
value of k, we make 1000 trial experiments to gather statistics and use s = 105 for evaluating

the Jeffreys divergence D̂J by Monte Carlo samplings. We denote by error := |D̂J−∆J |
D̂J

the

error of an experiment. Table 1 presents the results of the experiments for D = 2k: The
table displays the average error, the maximum error (minimum error is very close to zero,
of order 10−5), and the speed-up obtained by our heuristic ∆J . Those experiments were
carried out on a Dell Inspiron 7472 laptop (equipped with an Intel(R) Core(TM) i5-8250U
CPU at 1.60 GHz).

Table 1. Comparison of ∆̃J(m1, m2) with D̂J(m1, m2) for random GMMs.

k D Average Error Maximum Error Speed-Up

2 4 0.1180799978221536 0.9491425404132259 2008.2323536011806
3 6 0.12533811294546526 1.9420608151988419 1010.4917042114389
4 8 0.10198448868508087 5.290871019594698 474.5135294829539
5 10 0.06336388579897352 3.8096955246161848 246.38780782640987
6 12 0.07145257192133717 1.0125283726458822 141.39097909641052
7 14 0.10538875853178625 0.8661463142793943 88.62985036546912
8 16 0.4150905507007969 0.4150905507007969 58.72277575395611
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Notice that the quality of the approximations of D̃J depend on the number of modes of
the GMMs. However, calculating the number of modes is difficult [43,70], even for simple
cases [71,72].

Figure 4 displays several experiments of converting mixtures to pairs of PEDs to
obtain approximations of the Jeffreys divergence.

D = 2

D = 8

D = 16

Figure 4. Experiments of approximating the Jeffreys divergence between two mixtures by considering
pairs of PEDs. Notice that only the PEDs estimated using the Score Matching in the natural parameter
space are displayed.

Figure 5 illustrates the use of the order-2 Hyvärinen divergence DH,2 to perform model
selection for choosing the order of a PED.
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Figure 5. Selecting the PED order D my evaluating the best divergence order-2 Hyvärinen divergence
(for D ∈ {4, 8, 10, 12, 14, 16}) values. Here, the order D = 10 (boxed) yields the lowest order-2
Hyvärinen divergence: The GMM is close to the PED.

Finally, Figure 6 displays some limitations of the GMM to PED conversion when the
GMMs have many modes. In that case, running the conversion η̄MLE to obtain θ̃T(η̄MLE)
and estimate the Jeffreys divergence by

∆̃MLE
J [m1, m2] = (θ̃MLE

2 − θ̃MLE
1 )>(η̄MLE

2 − η̄MLE
1 ),

improves the results but requires more computation.
Next, we consider learning a PED by converting a GMM derived itself from a Kernel

Density Estimator (KDE). We use the duration of the eruption for the Old Faithful geyser
in Yellowstone National Park (Wyoming, USA): The dataset consists of 272 observations
(https://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat) (access date: 25
October 2021) and is included in the R language package ‘stats’. Figure 7 displays the
GMMs obtained from the KDEs of the Old Faithful geyser dataset when choosing for
each component σ = 0.05 (left) and σ = 0.1. Observe that the data are bimodal once the
spurious modes (i.e., small bumps) are removed, as studied in [32]. Barron and Sheu [32]
modeled that dataset using a bimodal PED of order D = 4, i.e., a quartic distribution. We
model it with a PED of order D = 10 using the integral-based Score Matching method.
Figure 8 displays the unnormalized bimodal density q1 (i.e., p̃1) that we obtained using the
integral-based Score Matching method (with X = (0, 1)).

https://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat
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D = 32 D = 30

Figure 6. Some limitation examples of the conversion of GMMs (black) to PEDs (grey) using the
integral-based Score Matching estimator: Case of GMMs with many modes.
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Figure 7. Modeling the Old Faithful geyser by a KDE (GMM with k = 272 components, uniform
weights wi =

1
272 ): Histogram (#bins = 25) (left), KDE with σ = 0.05 (middle), and KDE with σ = 0.1

with less spurious bumps (right).
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Figure 8. Modeling the Old Faithful geyser by an exponential-polynomial distribution of order
D = 10.

5. Conclusions and Perspectives

Many applications [7,73–75] require computing the Jeffreys divergence (the arithmetic
symmetrization of the Kullback–Leibler divergence) between Gaussian mixture models.
Since the Jeffreys divergence between GMMs is provably not available in closed-form [13],
one often ends up implementing a costly Monte Carlo stochastic approximation of the
Jeffreys divergence. In this paper, we first noticed the simple expression of the Jeffreys
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divergence between densities pθ and pθ′ of an exponential family using their dual natural
and moment parameterizations [22] pθ = pη and pθ′ = pη′ :

DJ [pθ , pθ′ ] = (θ′ − θ)>(η′ − η),

where η = ∇F(θ) and η′ = ∇F(θ′) for the cumulant function F(θ) of the exponential family.
This led us to propose a simple and fast heuristic to approximate the Jeffreys divergence
between Gaussian mixture models: First, convert a mixture m to a pair (pθ̄SME , pη̄MLE

) of
dually parameterized polynomial exponential densities using extensions of the Maximum
Likelihood and Score Matching Estimators (Theorems 1 and 3), and then approximate the
JD deterministically by

DJ [m1, m2] ' D̃J [m1, m2] = (θ̃MLE
2 − θ̃MLE

1 )>(η̄MLE
2 − η̄MLE

1 ).

The order of the polynomial exponential family may be either prescribed or selected
using the order-2 Hyvärinen divergence, which evaluates in closed form the dissimilarity
between a GMM and a density of an exponential-polynomial family (Theorem 4). We ex-
perimentally demonstrated that the Jeffreys divergence between GMMs can be reasonably
well approximated by D̃J for mixtures with a small number of modes, and we obtained an
overall speed-up of several order of magnitudes compared to the Monte Carlo sampling
method. We also propose another deterministic heuristic to estimate DJ as

D̃MLE
J [m1 : m2] = (θ̃MLE

2 − θ̃MLE
1 )>(η̄MLE

2 − η̄MLE
1 ),

where θ̃MLE ≈ ∇F(η̄MLE) is numerically calculated using an iterative conversion procedure
based on maximum entropy [58] (Section 2.3.1). Our technique extends to other univariate
mixtures of exponential families (e.g., mixtures of Rayleigh distributions, mixtures of
Gamma distributions, or mixtures of Beta distributions, etc). One limitation of our method
is that the PED modeling of a GMM may not guarantee obtaining the same number of
modes as the GMM even when we increase the order D of the exponential-polynomial
densities. This case is illustrated in Figure 9 (right).

Same number of modes (D = 4) Different number of modes (D = 30)

Figure 9. GMM modes versus PED modes: (left) same number and locations of modes for the GMM
and the PED; (right) 4 modes for the GMM but only 2 modes for the PED.

Although PEDs are well-suited to calculate Jeffreys divergence compared to GMMs,
we point out that GMMs are better suited for sampling, while PEDs require Monte Carlo
methods (e.g., adaptive rejection sampling or MCMC methods [62]). Furthermore, we
can estimate the Kullback–Leibler divergence between two PEDs using rejection sam-
pling (or other McMC methods [62]) or by using the γ-divergence [76] with γ close to
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zero [66] (e.g., γ = 0.001). The web page of the project is https://franknielsen.github.io/
JeffreysDivergenceGMMPEF/index.html (accessed on 25 October 2021).

This work opens up several perspectives for future research: For example, we may con-
sider bivariate polynomial-exponential densities for modeling bivariate Gaussian mixture
models [29], or we may consider truncating the GMMs in order to avoid tail phenomena
when converting GMMs to PEDs [77,78].
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