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ABSTRACT

The current ecosystem of single-cell RNA-seq platforms is rapidly expanding, but robust solutions for single-cell and single-
molecule full-length RNA sequencing are virtually absent. A high-throughput solution that covers all aspects is necessary to
study the complex life of mRNA on the single-cell level. The Nanopore platform offers long read sequencing and can be
integrated with the popular single-cell sequencing method on the 10× Chromium platform. However, the high error-rate
of Nanopore reads poses a challenge in downstream processing (e.g., for cell barcode assignment). We propose a solution
to this particular problem by using a hybrid sequencing approach on Nanopore and Illumina platforms. Our software
ScNapBar enables cell barcode assignment with high accuracy, especially if sequencing saturation is low. ScNapBar uses
unique molecular identifier (UMI) or Naïve Bayes probabilistic approaches in the barcode assignment, depending on the
available Illumina sequencing depth. We have benchmarked the two approaches on simulated and real Nanopore data
sets. We further applied ScNapBar to pools of cells with an active or a silenced nonsense-mediated RNA decay pathway.
OurNanopore read assignment distinguishes the respective cell populations and reveals characteristic nonsense-mediated
mRNA decay events depending on cell status.
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INTRODUCTION

Full-length cDNA sequencing allows us to investigate the
differential isoforms of transcripts, which is especially use-
ful in studying the complex life of mRNA. Compared to the
Illumina sequencing approaches, third-generation se-
quencing generates much longer reads and thus avoids
artifacts from transcriptome assembly, but often has limita-
tions such as low throughput and poor base-calling accura-
cy. Two principal third-generation sequencing platforms
exist: Oxford Nanopore Technologies (ONT) and Pacific
Biosciences (PacBio) (Volden et al. 2018). Others and we
chose the ONT platform to study full-length mRNA tran-
scripts due to its better scalability and flexibility (Lebrigand
et al. 2020). Full-length transcriptome sequencing can be
taken to the single level by sequencing barcoded 10× Ge-

nomics cDNA libraries. However, this brings about certain
challenges, which we address in our work.
First, the native error rate of Nanopore DNA sequencing

is <5% on the latest R10.3 platform (http://nanoporetech
.com) as opposed to the typical Illumina error rate of
0.1%. Due to its high error rate, barcode identification
and assignment are challenging for single-cell sequenc-
ing. In the 10× Genomics single-cell protocol, about
99% barcode sequences from Illumina sequencing can
be exactly matched to the 16-bp cell barcodes, while
with Nanopore sequencing, the exact matches are <50%
(0.99916 vs. 0.9516). Many experimental and computa-
tional approaches have been developed to correct Nano-
pore data. For example, the rolling circle to concatemeric
consensus (R2C2) approach can produce two million full-
length cDNA sequences per MinION flow cell and
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achieved 98% accuracy (Volden et al.
2018; Cole et al. 2020; Volden and
Vollmers 2020). Single-cell Nanopore
sequencing with UMIs (ScNaUmi-seq)
can assign cellular barcodes with
99.8% accuracy (Lebrigand et al.
2020). However, R2C2 requires suffi-
cient sequencing coverage to call con-
sensus reads, and ScNaUmi-seq
requires high sequencing depth to
guarantee an adequate overlap of
UMI sequences between Illumina
and Nanopore libraries.

On the other hand, end-to-end so-
lutions for barcode demultiplexing
and read quality filtering on the ONT
platform are still in its infancy. For ex-
ample, Mandalorion uses BLAT (Kent
2002) for barcode demultiplexing
(Byrne et al. 2017). Porechop (https://
github.com/rrwick/Porechop) uses
SeqAn (Döring et al. 2008) for adapter
removal and barcode demultiplexing
in Nanopore sequencing, but it is
based on the best alignment, which
could be error-prone. Minibar (Kre-
henwinkel et al. 2019), Deep-binner (Wick et al. 2018),
and DeePlexiCon (Smith et al. 2020) are only suitable
for multiplexing a few barcoded samples rather than the
single-cell library which contains several thousands of
barcodes.

Therefore, we developed a software tool called
ScNapBar (single-cell Nanopore barcode demultiplexer)
that demultiplexes Nanopore barcodes and is particularly
suited for low depth Illumina and Nanopore sequencing.
We evaluated the performance of ScNapBar and demon-
strated its high accuracy in cell barcode assignment for sim-
ulated and real Nanopore data. Our workflow is presented
in Figure 1.

RESULTS

Benchmarking the two ScNapBar run modes

ScNapBar offers two runmodes. The first one uses cell bar-
code and UMI information without any additional model-
ing aspect. The second one introduces a probabilistic
model, which performs very well in cases of low sequenc-
ing saturation (i.e., UMI coverage in Illumina data).

The UMI approach of ScNapBar

The UMI approach requires a matching cell barcode and
UMI tag and was first developed in Sicelore (Lebrigand
et al. 2020). Any cell barcode predictions that are support-

ed by the presence of both, barcode and UMI alignment,
are very reliable. We performed an in silico benchmark of
cell barcode assignment when both, cell barcode and
UMI, are found in the Nanopore read. We observed an av-
erage specificity of 99.9% (ScNapBar) and 99.8% (Sicelore)
over 100 averaged simulation runs (Fig. 2A). As expected,
sensitivity heavily depends on Illumina sequencing satura-
tion (Fig. 2A). As the UMI approach relies on consistent ge-
nomic mappings for the Illumina and Nanopore reads,
other challenges include insufficient or inaccurate genome
annotations causing wrong gene assignment; chimeric or
super-long Nanopore reads assigned to multiple genes in-
crease the risk of assigning a false UMI.

The probabilistic approach of ScNapBar

Complementary to the UMI approach, we implemented a
Bayesian approach in ScNapBar, which covers the situation
of low Illumina sequencing saturation. In our second ap-
proach, UMI alignments are no longer used. ScNapBar
evaluates probability scores for each barcode alignment
instead. Illumina sequencing saturation measures the
uniqueness of the transcripts detected in the Illumina
library. Given that we have performed Illumina and Nano-
pore sequencing in our approach, the Illumina sequencing
saturation limits the overlap of cell barcodes and UMIs with
the low depth Nanopore libraries. To explore more realis-
tic saturation scenarios, we estimated the Illumina se-
quencing saturation for our pilot data set with the Cell

FIGURE 1. Combined single-cell Illumina and Nanopore sequencing strategy. GFP+/− cells
are pooled and sequenced on the Illumina and Nanopore platform. The Nanopore platform
generates long cDNA sequencing reads that are used in barcode calling and estimating
read error parameters. The Illumina data are used to estimate the total number of cells in se-
quencing and the represented cell barcodes. The simulated data are then used to parameter-
ize a Bayesian model of barcode alignment features to discriminate correct versus false
barcode assignments. This model is then used on the real data to assign cell barcodes to
Nanopore reads. The GFP label and known NMD transcripts can be used to validate this
assignment.
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Ranger software. Herein, sequencing saturation is calculat-
ed as

Saturation = 1− (ndeduped reads/nreads), (1)

where ndeduped reads is the number of unique (valid cell-bar-
code, valid UMI, gene) combinations among confidently
mapped reads and nreads is the total number of confidently
mapped, valid cell-barcode, valid UMI reads. For example,
we have observed a saturation of 11.3% for our pilot
data set.
We have simulated one million Nanopore reads with an

error model, which was estimated from our reference
Nanopore libraries (see Materials and Methods) using
the same gene-barcode-UMI composition as given by
the Illumina library and a sequencing saturation of 100%.
We trained a Naïve Bayes classifier (see Materials and
Methods) from barcode and adapter alignments of one
Nanopore library and applied the model for computing
the likelihood of thematched barcodes P (r|bi) on the other
library. Then we used the frequencies of the given bar-
codes in the Illumina library as prior probabilities P (bi)
and calculated the posterior probability P (bi|r) from the
likelihood and prior probabilities.We scored each barcode
alignment by multiplying the P (bi|r) by 100 and assigned
the best matching barcode with the highest score (>50)
as the predicted barcode assignment. Using the probabil-
ity scores as mentioned, ScNapBar correctly assigned
65.8% barcodes from one million simulated Nanopore
reads, of which 26.5% contains at least one mismatch or
indel (Supplemental Fig. S1).
We estimate a user data specific error model, simulate

data from which users pick the Bayes score cutoff, which
meets their requirements on sensitivity and specificity, re-
spectively. We inspected the densities of the probability
scores by examining the ground-truth barcodes and con-
firmed that the correct barcode assignments are enriched
in high scoring barcodes (Supplemental Fig. S2b).

Our probabilistic model outper-
forms Sicelore for cases where UMI in-
formation is sparse and cannot be
used to assign cell barcodes. In the
absence of UMIs, ScNapBar reaches
97.1% specificity while Sicelore reach-
es only 57.1% (Fig. 2B).

We examined performance metrics
of cell barcode assignment over a
range of score cutoffs (from 1 to 99),
and the specificity increases while
the sensitivity decreases along with
the increased thresholds (Supplemen-
tal Fig. S3). We pooled the simulated
results from FC1 and FC2 together
and use the Sicelore assignments as
baselines. At some cutoff thresholds,
ScNapBar has better F1 scores than

Sicelore (e.g., cutoff = 50), and ScNapBar score >90 is as
accurate as Sicelore with UMI from the receiver-operating
characteristic (ROC) graph (Fig. 2C).

The runtime performance of ScNapBar

ScNapBar is based on the Needleman–Wunsch algorithm
(gap-end free, semiglobal sequence alignment) of
FLEXBAR (Dodt et al. 2012; Roehr et al. 2017), and
Sicelore is based on the “brute force approach,” which
hashes all possible sequence tag variants (including indels)
up to a certain edit distance (2 or 3) of the given barcode
sequences. The time complexity of ScNapBar and
Sicelore can be represented as Equations 2a and 2b, re-
spectively:

T (n)/ (l pos + lcb)lcbncb, (2a)

T (n)/ (npos + lcb)!
ned!

l posncb, (2b)

where npos is the number of nucleotides downstream from
the adapter, and lpos= 2npos+1 as Sicelore typically
searches the same number of nucleotides upstream and
downstream from the ending position of the adapter. ncb
stands for the number of barcodes in the whitelist from
Illumina sequencing. ned is typically two or three as larger
edit distances increase runtime drastically and are not nec-
essarily due to the increasing error rate. lcb is the length of
the barcode and is 16 in this study.
We compared the runtime between ScNapBar and

Sicelore with regards to start positions of barcodes (num-
ber of nucleotides between adapter and barcode). We dis-
covered that Sicelore may be orders of magnitude slower
than ScNapBar given the same search space (2052 cellular
barcodes, edit distance=3), but also its runtime increases
exponentially as the barcode start position increases (Fig.
3B). Sincelore by default searches ±1-nt from the end of
the adapter, which may limit the nucleotides search space

BA C

FIGURE 2. Sensitivity and specificity of ScNapBar and Sicelore on 100 Illumina libraries with
different levels of saturation. (A) Barcode assignment with UMI matches. (B) Barcode assign-
ment without UMI matches (ScNapBar score >50). (C ) Benchmark of the specificity and sensi-
tivity of the Illumina library with 100% saturation. We compared the barcode assignments with
ScNapBar score >1–99, and the assignments from Sicelore with UMI support are roughly
equivalent to the ScNapBar score >90.

Single-cell full-length transcriptome sequencing
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and could cause false assignments. Importantly, we did
observe that 7.7% of all ground-truth barcodes have off-
sets >1-nt in the simulated read set, and 7.8% of all bar-
code assignments with ScNapBar score ≥50 in real
Nanopore reads. We assessed the impact of various fac-
tors (e.g., indels≥3 against <3) on cell barcode assignment
accuracy using Fisher’s test (see Supplemental Table S1).
Our findings imply that larger offsets could effectively re-
duce the false-positive rate, which is feasible in less time
with ScNapBar.

We also performed real runtime comparison on barcode
assignment on the previously simulated one million Nano-
pore reads. In this test, we provided ScNapBar with ten
barcode white lists, which contain from 1000 to 10,000
of the most abundant barcodes, and ScNapBar’s runtime
is only dependent on the number of barcodes to search
given the other factors are fixed in
this study (Fig. 3A). Then we tested
Sicelore with searching parameters of
barcode edit distance between two
and three, barcode start position from
±2 bp to ±4 bp, and UMI edit distance
of 0. ScNapBar requires only one-fifth
CPU time than Sicelore when barcode
start position=±4 bp and barcode
edit distance=3 are considered in
both programs (Fig. 3B).

The performance of ScNapBar
on the real data

The performance of ScNapBar on an
Illumina library with high sequencing
saturations

We tested our ScNapBar software
with the UMI approach (option 1) on

the data set from the Sicelore paper
(NCBI GEO GSE130708). Herein,
Illumina sequencing saturation reach-
es 90.5%. Similar to Sicelore, we ex-
tracted the UMI whitelists for each
gene or genomic window (500 bp)
from the Illumina library. The 500 bp
threshold is useful when a matched
UMI is found in Illumina data for the
same genomic region but not for the
same gene. This situation may arise
from incomplete gene annotations
or mapping ambiguities. We ob-
served that 99% of the Nanopore
reads are within this 500 bp window
when comparing the mapping posi-
tions of the Illumina and Nanopore
reads that have the same UMIs in

this data set. We set the minimum length of an UMI
match to 7 in ScNapBar. In summary, Sicelore and
ScNapBar assigned barcodes to 84.3% and 77.2% of
the 9,743,819 Nanopore reads (Supplemental Fig. S4),
respectively. 88.4% of the assigned barcodes are
identical.

The performance of ScNapBar on an Illumina library with
low sequencing saturations

We ran ScNapBar with the Bayesian approach (option 2) on
our NMD data set, which only has an Illumina saturation of
11.3%. ScNapBar assigns 35.0% and 36.3% of the
Nanopore reads to cell barcodes with probability score
>50, while Sicelore assigns 40.8% and 42.5% without us-
ing UMIs (“Assigned to barcode” in Fig. 4) and only

BA

FIGURE 3. Sicelore and ScNapBar CPU time comparison. (A) ScNapBar CPU time depends on
the number of whitelist barcodes (allowing an edit distance of >2 and and offset of up to 4 bp
between adapter and barcode). Gray area represents the standard deviation for 10 runs. (B)
Comparison of ScNapBar and Sicelore CPU times. Benchmark was measured using onemillion
barcode sequences and 2052 barcodes in the whitelist.

FIGURE 4. Number of the Nanopore reads identified by ScNapBar and Sicelore at each pro-
cessing step. We inspected each processing step on real data (low lllumina saturation of
11.3%). The first two steps are identical for both workflows. Total Reads: Number of input
reads, aligned to genome:Number of reads aligned to genome. The next three steps arework-
flow-specific: Aligned to adapter: Number of reads with identified adapter sequence, aligned
to barcode: Number of reads with aligned barcode sequence, Assigned to barcode: Number
of predictions by each workflow. The last step is a validation of the previous assignment step
after additional Illumina sequencing, which increases the Illumina saturation to 52%, and using
UMI matches, see main text.
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assigns 4.0% and 4.2% of the Nano-
pore reads using the UMI approach
for FC1 and FC2, respectively. The
correlations of the number of gene/
UMIs for each cell between Illumina
and Nanopore imply good matches
from the ScNapBar assignments (Sup-
plemental Fig. S5).
In order to validate the correctness

of our cell barcode assignments, we
have sequenced ≈485 million addi-
tional Illumina reads from the same li-
brary. The saturation reaches 52%
after combining both Illumina se-
quencing data (80.8 million reads
from primary run and 485 million from secondary run).
We searched UMIs in the Nanopore reads from the com-
bined Illumina runs using both ScNapBar and Sicelore.
We ran ScNapBar by allowing up to three edit distances
between the UMIs of the Nanopore and Illumina reads,
and ran Sicelore with the default parameters (–maxUMIfal-
seMatchPercent 1 –maxBCfalseMatchPercent 5). CBCs
and UMIs must be matched for the same genomic region
within a window of 500 nt as the Illumina library. We ob-
served ≈50% of the barcode assignments by ScNapBar
have matched UMIs (“Assigned to barcode+UMI” in
Fig. 4).

Single-cell clustering and splicing in a pool of wild-type
and NMD mutant cells

Although alternative splicing increases the coding poten-
tial of the human genome, aberrant isoforms are frequent-
ly generated that contain premature termination codons
(PTCs) (Lewis et al. 2003). Regular stop codons are normal-
ly located in the last exon of a transcript or at most 50 nt
upstream of the last exon–exon junction (Lindeboom
et al. 2019). Alternative splicing can result in PTCs by
exon inclusion/exclusion events or can convert normal
stop codons into PTCs by splicing in the 3′-UTR.
Transcripts harboring PTCs are rapidly degraded by the
nonsense-mediated mRNA decay (NMD) machinery, not
only to remove faulty mRNAs, but also to fine-tune and
regulate the transcriptome. 5%–40% of all expressed hu-
man genes are directly or indirectly altered in expression
levels, splicing pattern, or isoform composition by the
NMD pathway (Boehm et al. 2020). We have sequenced
a pool of NMD active and inactive cells and expect to
see an enrichment of transcripts with PTCs in GFP− cells.
We use theGFP label as an independent confirmation of

cellular NMD status and pooled data from both experi-
ments (FC1 and FC2). For the Nanopore data, Seurat iden-
tifies 13,807 expressed genes across 1850 cells. We
extracted theGFP+ barcodes from the Illumina readsmap-
ping and rendered the corresponding cells in different col-

ors in the t-SNE plots (Fig. 5). The locations of the GFP+
cells appear in distinct subclusters in the Illumina and
Nanopore t-SNE plots.
We characterized the structural changes of the assem-

bled Nanopore transcripts based on our customized tran-
scriptome annotations using NMD Classifier (Hsu et al.
2017). The pool of SMG7-KO/SMG6-KD (GFP−) cells har-
bors almost twice as many inclusion/exclusion events,
which lead to the formation of a PTC (Supplemental Fig.
S6a). We quantified the expression level of 14,185 known
NMD transcripts annotated by Ensembl release 101. After
removing the nonexpressed transcripts from both flow cell
runs, the remaining 6423 NMD transcripts have shown sig-
nificantly higher NMD transcript expression in the SMG7-
KO/SMG6-KD (GFP−) cells than the WT (GFP+) cells
(Supplemental Fig. S6b). We reason that the lowered
NMD response is clearly visible by the enrichment of
PTC-containing transcripts in the pool of SMG7-KO/
SMG6-KD (GFP−) cells. Consequently, the cell barcode as-
signments meet our “biological” expectations.
We investigated a well-established NMD target SRSF2

in detail (Sureau et al. 2001). The wild-type isoforms are
present in both GFP+/− cells, while in the GFP− cells,
the PTC-containing isoforms are more abundant in the
GFP− cells (Supplemental Fig. S7a). The view on the
SRSF2 genome locus confirmed the different splicing
junctions between two cell types (Supplemental Fig.
S7b). The inclusion of exon 3 (middle) is clearly favored
GFP− cells.

DISCUSSION

The current ecosystem of single-cell RNA-seq platforms is
rapidly expanding, but robust solutions for single-cell and
single-molecule full-length RNA sequencing are virtually
absent. In our manuscript, we combined Oxford
Nanopore single-molecule sequencing of 10× Genomics
cDNA libraries and developed a novel software tool to ar-
rive at single-cell, single-molecule, full cDNA length

BA

FIGURE 5. The t-SNE plots of gene-cell count matrices. (A) Illumina. (B) Nanopore.
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resolution. In contrast to Lebrigand et al. (2020), our
Bayesianmethod for cell barcode assignment performs su-
periorly in situations of low sequencing saturation. Even in
the light of expected improvements of ONT sequencing
error rates, ScNapBar offers improved performance in
the aforementioned use case (see Supplemental Fig. S8).
In summary, we could track in a well-controlled setting,
that is, by using GFP labeled cells and strong transcrip-
tome perturbations, full-length transcript information at a
single-cell level. We have identified differential RNA splic-
ing linked to NMD pathway activity across our cell popula-
tion. Our high-throughput full-length RNA sequencing
solution is a necessary step forward toward studying the
complex life of mRNA on a single-cell level. This opens
up unprecedented opportunities in low saturation settings
such as multiplexed CRISPR-based screens.

MATERIALS AND METHODS

Single-cell samples preparation and experiment

We performed an experiment using two different Flp-In-T-REx-
293 cell lines: the wild-type cell line with stably integrated
FLAG-emGFP and a SMG7 knockout (KO) cell line (generated
and established in Boehm et al. 2020). Wild-type cells (GFP+)
were transfected with siRNA against Luciferase and the SMG7
KO cells (GFP−) were transfected with an siRNA against SMG6.
Two days after siRNA transfection, we mixed both cell types at
a 1:1 ratio with a target of 2000 cells in total. cDNA was prepared
according to the 10×Genomics Chromium Single Cell 3′ Reagent
Kit User Guide (v3 Chemistry) from the pool of ≈2000 cells with a
yield of 1.68 µg cDNA (42 ng/µL concentration, 40 µL volume)
and a fragment size of 1.5 kbp. At this point, all cDNA fragments
carry the 16 nt cellular barcode and 12 nt UMI at the Poly (dT) end.
25% (10 µL) of this cDNA solution continued with the original 10×
Genomics protocol to create an Illumina 3′ mRNA library with P5
and P7 Illumina adapters, and paired-end reads of this library will
present cellular barcodes and UMI with the first read and a 90 nt
second read containing 3′ mRNA sequence. Further on, we pro-
duced two ONT libraries with 200 ng each of the same cDNA
(0.2 pmoles) with the ONT Direct cDNA Sequencing Kit SQK-
DCS109 protocol according to themanufactures’ standard proce-
dures. We sequenced each library on one GridIon flowcell (FLO-
MIN106D R9 Version/R9.4.1) creating reads of full cDNA length
that contained the same compositions of≈2000 cellular barcodes
as the Illumina data (based on the same cells) but a different com-
position of UMIs (different transcripts).

Illumina reads processing and identification
of cellular barcodes

We used 10× Genomics Cell Ranger 3.1 (https://github.com/
10XGenomics/cellranger) to map the Illumina reads onto the ref-
erence genome. In our NMD data set, the DNA sequences of lu-
ciferase were appended to the reference genome, and therefore
the GFP+ cells can be called from Cell Ranger. Cell Ranger also
corrects the sequencing errors in the barcode and unique molec-

ular identifier (UMI) sequences. Cell Ranger estimates the number
of cells using a Good-Turing frequency estimation model (https://
support.10xgenomics.com) and characterized the identified bar-
codes into the cell-associated and background-associated bar-
codes. We used the cell-associated barcode sequences as the
cellular barcode whitelist in the following analyses. Our Cell
Ranger analysis estimated 2052 sequenced cells (Supplemental
Table S2). The read counts per cell of the estimated cell barcodes
are shown in Supplemental Figure S9.

Nanopore reads processing, mapping, and gene
assignment

We sequenced the two independently prepared Nanopore librar-
ies from the same cDNAon twoNanoporeR9.4GridION flow cells
(FC1 and FC2). The base-calling of Nanopore reads was done us-
ing Guppy v3.3.3, resulting in 13,126,013 and 11,923,896 reads,
respectively. We aligned the Nanopore reads onto the corre-
sponding reference genome using minimap2 v2.17 (Li 2018) in
the spliced alignment mode (-ax splice). The two Nanopore runs
yielded 11,158,994 and 10,164,820 mappable reads, respective-
ly. We further assigned gene names to Nanopore reads using the
“TagReadWithGeneExon” program from the Drop-seq tools
(Macosko et al. 2015). We assembled all the Nanopore reads
and extended transcriptome annotations using StringTie v2.1.1
(Pertea et al. 2015). The FPKM level of the assembled transcripts
were quantified using Ballgown v2.14.1 (Frazee et al. 2015).

Identification of the adapter, barcode, UMI,
and poly(A)-tail sequences from Nanopore reads

We removed the cDNA sequences from Nanopore reads and ex-
tracted up to 100 bp from both ends. We developed a modified
version of FLEXBAR (Dodt et al. 2012; Roehr et al. 2017) to align
P1 primer adapter sequence with the following parameters (“-ao
10 -ae 0.3 -ag -2 -hr T -hi 10 -he 0.3 -be 0.2 -bg -2 -bo 5 -ul 26 -kb 3
-fl 100”). Then we aligned the Nanopore reads that have valid
adapters to the cellular barcodes which have been previously
identified by Cell Ranger. We scanned the poly(A) sequences us-
ing the homopolymer-trimming function of FLEXBAR down-
stream from the cell barcode. Once the poly(A) sequences were
found, the UMI sequences between the poly(A) and barcode
were searched using MUMmer 4.0 (Marçais et al. 2018) (with pa-
rameters “-maxmatch -b -c -l 7 -F”) and in-house scripts against
the Illumina UMIs of the same cell and the same gene or genomic
regions (±500 bp from each end of the reads). In the end,
ScNapBar output the alignment score of the adapter, the number
of mismatches and indel from the barcode alignment, the length
of poly(A) and UMI sequences, as well as the length of the gap be-
tween the barcode and adapter. We use these features to esti-
mate the likelihood of the barcode assignment in the steps
shown in Figure 1.

Simulation and engineering of discriminative
features from the barcode and adapter alignments

We characterized the correct and false barcode assignment by
simulating Nanopore reads. We created some artificial template
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sequences which contain only the P1 primer, cellular barcode,
and UMI sequences at the same frequencies as the Illumina li-
brary, followed by 20 bp oligo(dT) and 32 bp cDNA sequences.
In the next step, we first used NanoSim (Yang et al. 2017) to esti-
mate the error profile of our Nanopore library, then we generated
one million Nanopore reads from the artificial template using the
NanoSim simulator with the previously estimated error profile.We
aligned the simulated Nanopore reads to the adapter and bar-
code sequences using ScNapBar. We compared the sequences
in the simulated Nanopore reads and the sequences from the ar-
tificial template and labeled the assigned barcode as correct or
false accordingly. By comparing sequence and alignment fea-
tures [adaptor score, poly(T) length, barcode indel, barcode mis-
match, barcode start] of correct and false assignments, we found
that the two categories (false, true) could be discriminated by
these features (Supplemental Fig. S10c). We then assessed the
importance of each feature toward the correctness of the assign-
ment (Supplemental Fig. S10a). As these features are uncorrelat-
ed (Supplemental Fig. S10b), we train a Naïve Bayes model from
these features to predict the likelihood of the correctness of a bar-
code assignment.

Calculate cell barcode posterior probability using
prior probabilities from the Illumina data set

We denote b1, b2, …, bn as barcodes that match to read r and
define P (b1|r) as the probability that barcode b1 was sequenced
given r is observed. Following Bayes’ theorem, P (b1|r) could be
computed as in Equation 3a, and further computed as in
Equation 3b according to the total probability theorem:

P(b1|r ) = P(r |b1)P(b1)
P(r )

, (3a)

= P(r |b1)P(b1)
P(r |b1)P(b1)+ . . .+ P(r |bn)P(bn)

, (3b)

where P (r|b1) and P (r|bn) are computed by the Naïve Bayes pre-
dictor, and priors P (b1) and P (bn) can be estimated from the ob-
served barcode counts in Illumina sequencing. For practical
reasons, as the probabilities for the unaligned barcodes that
contain a lot of mismatches are pretty low, we add a pseudo-
count of one to the denominator to represent them. Because
we have sequenced the same library twice using the Nanopore
and Illumina sequencer, we assume prior probabilities P (b) are
the same for the Nanopore and the Illumina platform (Supple-
mental Fig. S2a).

Quality assessment and clustering of the single-cell
libraries

A metagene body coverage analysis confirmed the near full-
length character of the Nanopore approach (Supplemental Fig.
S11a). After assigning gene names and cell barcodes to the
Nanopore reads, weprocessed the gene-barcode expressionma-
trix using Seurat v3.1.1 (Butler et al. 2018) by keeping all genes
that are expressed in at least three cells, and cells with more
than 200 genes expressed. We then scaled the expression matrix
by a factor of 10,000 and log-normalized and performed the t-
SNE analysis.

DATA DEPOSITION

All sequencing data were deposited in NBCI’s BioProject data-
base (BioProject ID PRJNA722142). ScNapBar workflow (code
and tutorial) is available at https://github.com/dieterich-lab/
single-cell-nanopore.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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