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Abstract: Fagonia indica is a rich source of pharmacologically active compounds. The variation in
the metabolites of interest is one of the major issues in wild plants due to different environmental
factors. The addition of chemical elicitors is one of the effective strategies to trigger the biosynthetic
pathways for the release of a higher quantity of bioactive compounds. Therefore, this study was
designed to investigate the effects of chemical elicitors, aluminum chloride (AlCl3) and cadmium
chloride (CdCl2), on the biosynthesis of secondary metabolites, biomass, and the antioxidant system
in callus cultures of F. indica. Among various treatments applied, AlCl3 (0.1 mM concentration)
improved the highest in biomass accumulation (fresh weight (FW): 404.72 g/L) as compared to the
control (FW: 269.85 g/L). The exposure of cultures to AlCl3 (0.01 mM) enhanced the accumulation of
secondary metabolites, and the total phenolic contents (TPCs: 7.74 mg/g DW) and total flavonoid
contents (TFCs: 1.07 mg/g DW) were higher than those of cultures exposed to CdCl2 (0.01 mM)
with content levels (TPC: 5.60 and TFC: 0.97 mg/g) as compared to the control (TPC: 4.16 and
TFC: 0.42 mg/g DW). Likewise, AlCl3 and CdCl2 also promoted the free radical scavenging activity
(FRSA; 89.4% and 90%, respectively) at a concentration of 0.01 mM, as compared to the control
(65.48%). For instance, the quantification of metabolites via high-performance liquid chromatography
(HPLC) revealed an optimum production of myricetin (1.20 mg/g), apigenin (0.83 mg/g), isorham-
netin (0.70 mg/g), and kaempferol (0.64 mg/g). Cultures grown in the presence of AlCl3 triggered
higher quantities of secondary metabolites than those grown in the presence of CdCl2 (0.79, 0.74,
0.57, and 0.67 mg/g). Moreover, AlCl3 at 0.1 mM enhanced the biosynthesis of superoxide dismutase
(SOD: 0.08 nM/min/mg-FW) and peroxidase enzymes (POD: 2.37 nM/min/mg-FW), while CdCl2
resulted in an SOD activity up to 0.06 nM/min/mg-FW and POD: 2.72 nM/min/mg-FW. From
these results, it is clear that AlCl3 is a better elicitor in terms of a higher and uniform productivity
of biomass, secondary cell products, and antioxidant enzymes compared to CdCl2 and the control.
It is possible to scale the current strategy to a bioreactor for a higher productivity of metabolites of
interest for various pharmaceutical industries.
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1. Introduction

Plant-based products have piqued the interest of many nutraceutical and pharma-
ceutical companies, who prefer them to synthetic medications [1]. Fagonia indica is one
of the most important medicinal plants that belong to the family Zygophyllaceae with
restricted global distribution and can be found in several parts of the world, including
Pakistan, India, and Afghanistan [2]. F. indica has been investigated extensively, and
its therapeutic properties are well documented. Saponins, alkaloids, terpenoids, sterols,
flavonoids, and trace elements are among the bioactive chemicals that give this plant its
therapeutic effects [3]. Its multiple therapeutic properties include anti-inflammatory [4],
hepato-protective [5], anticancer [6], anti-diabetic [7], antimicrobial [8], antioxidant [9],
antihemorrhagic, anthelminthic, and thrombolytic features [10].

Due to the medical value of F. indica, there has been a significant increase in market
demand for the plant in recent years. The natural supply of this valuable herb is insufficient
to meet the rising demand. Alternative approaches for balancing the supply and demand
chain should be pursued [11]. Plant cell factories have the advantage of establishing plant
in vitro cultures for the production of continuous, consistent, and healthy plant material
with long-term metabolite profiles [12]. The plant has been studied in vitro to generate
essential phytochemicals using various culture systems, to increase the production of
medicinally relevant secondary metabolites [11,13,14]. Elicitation in plant cell cultures has
proven to be one of the most effective ways for increasing medicinal chemical production,
and it has commercial implications [15,16]. In plant cell cultures, elicitors tend to trigger
multiple physiological events that eventually lead to the activation of a cascade of reactions
that include the expression of defense-related genes, the production of reactive oxygen
species (ROS), and the accumulation of important secondary metabolites such as polyphe-
nolics [17,18]. There are many different types of elicitors divided into two categories based
on their nature or origin: biotic and abiotic elicitors [19].

Previously, elicitors were used to optimize the synthesis of medicinally important
phytochemicals in numerous in vitro cultures, including callus and adventitious root
cultures of F. indica [19–21]. In vitro cultures of F. indica have been used to activate the
production of health-promoting secondary metabolites by adding elicitors or plant growth
regulators such as methyl jasmonate (Me-J), polyacrylic acid (PAA), and melatonin [11,20].
In addition, in callus cultures, changes in carbohydrate supply and fungal-derived chitosan
elicitors have been successfully used to elicit secondary metabolites in F. indica [19,20].
In addition to biotic elicitors, abiotic elicitors such as light, temperature, air, ultraviolet
radiation (UV), pH variations, and heavy metal salts have been used to generate optimal
metabolite concentrations in plant cell cultures over the last few decades [22,23].

Heavy metals among abiotic elicitors have been extensively utilized in several plant
species to boost growth, phytochemicals accumulation, and antioxidant potential [24–27].
Previously, the salts of cadmium (Cd2+) (generally applied as cadmium chloride (CdCl2))
and aluminum chloride (AlCl3) have been reported for the improved production of com-
pounds in the callus culture of Rauvolfia serpentina [28], suspension culture of Melissa
officinalis L. [29], and cell culture of Vitis vinifera [30]. However, heavy metals are seen to
possess toxicity in their application to plant cells under controlled conditions. Furthermore,
plants have a powerful antioxidant defense system that produce higher quantities of phe-
nolic compounds that, in turn, chelate metal ions and thus help in their sequestration [31].

AlCl3 has been shown to promote growth and stimulate secondary metabolites in plant
cultures, as well as cope with reactive oxygen species (ROS) by promoting the production
of antioxidative enzyme genes such as glutathione S-transferase, peroxidase (POD), and
superoxide dismutase (SOD) [32–34].

However, no previous studies on the impact of heavy metal salts on the generation of
medicinal substances in F. indica callus culture have been published. As a result, the current
study was designed to show how AlCl3 and CdCl2 affect cellular biomass, secondary cell
products, and the antioxidant system in F. indica callus cultures. In addition, the treated
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cultures were measured using high-performance liquid chromatography to determine the
bioactive metabolites.

2. Results and Discussion
2.1. Abiotic Elicitors-Induced Variation in Cellular Biomass in Calli Cultures of F. indica

Stem-derived callus cultures of F. indica optimized previously by our research group
were analyzed for AlCl3 and CdCl2 salts’ effects on biomass accumulation. Our inves-
tigations showed that lower concentrations of both elicitors had growth-promoting ef-
fects (Figure 1). The maximum biomass fresh weight (FW: 404.7 g/L) and dry weight
(DW: 14.5 g/L) was recorded in cultures inoculated on MS media augmented with AlCl3
(0.1 mM) as compared to the control (269.85 g/L). The biomass decreased with the concen-
tration of AlCl3 (Figure 2). It is interesting to note that our results are in agreement with
the previous reports [28,35], where lower concentrations of these elicitors are superior in
inducing higher cellular biomass in plant cell cultures. Similarly, the maximum biomass
accumulation induced by CdCl2 (0.01 mM) in terms of fresh weight (FW: 378.9 g/L) and
dry weight (DW: 14.3 g/L) was comparatively lowered than AlCl3, and likely, the mini-
mum cellular biomass accumulation (64.3 g/L-FW and 2.21 g/L-DW) was recorded when
cultures were exposed to 5.0 mM of CdCl2 (Figure 3). Furthermore, the callus cultures were
also investigated for morphological features under AlCl3 and CdCl2 inoculations.
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Figure 3. Cadmium chloride-elicited biomass accumulation (fresh and dry weight) in callus culture
of F. indica under seven different concentrations along with control. All the values are mean ± SE.

The callus cultures grown on both elicitors were observed to be compact and green at
lower concentrations while friable and brown at the highest concentrations (Figure 1). This
could be possibly due to the hypersensitivity induced by higher concentrations, i.e., leading
to cell death [36,37]. In previous investigations, lower concentrations of CdCl2 resulted
in increased biomass accumulation. In contrast, higher concentrations decreased several
growth indices in plant cultures such as Vigna radiata, i.e., mung bean [38], Vitis vinifera
cv. Cell suspension cultures [39], sugar cane callus cultures [40], hairy root cultures of
Brugmansia candida [41], and roots of Atropa belladonna [23], and a marked decline in cell
viability in Nicotiana tabacum L cells [42]. Many investigators have demonstrated inhibitory
effects of heavy metals on plant growth by measuring various growth parameters such as
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root elongation, protein concentration, phenolic biosynthesis, and fresh and dry cellular
biomass [43–45].

2.2. Effect of Elicitation on Total Phenolic and Flavonoid Biosynthesis

High doses of elicitor have been shown to cause hypersensitivity and cell death,
whereas a moderate level was required for optimal secondary metabolite induction [36,37].
Inorganic salts/chemicals such as AgNO3, CdCl2, AlCl3, and HgCl2 have been employed
widely in various plant species to trigger and increase the production of bioactive molecules
by altering secondary metabolism [27]. Callus cultures of F. indica elicited with different
concentrations of AlCl3 and CdCl2 showed a varying effect on total phenolics accumula-
tion. Cultures added with AlCl3 showed a maximum elicitation of total phenolic content
(TPC) (7.74 mg/g DW) and (7.64 mg/g DW) at 0.01 and 0.05 mM of AlCl3, respectively,
as compared with the control (4.159 mg/g DW) (Figure 4). Maximum levels for total
flavonoid content (TFC) (1.069 mg/g DW), (1.014 mg/g DW), and (0.998 mg/g DW) were
recorded at 0.1, 0.05, and 0.01 mM of AlCl3, respectively, while a further increase in AlCl3
resulted in a decrease in flavonoid productions as compared with the control (0.4225 mg/g
DW) (Figure 5). Furthermore, for cultures elicited with AlCl3, maximum values for total
flavonoid production (22.11 mg/L) and (18.6 mg/L) were observed at 0.01 and 0.1 mM
of AlCl3, respectively (Figure 5). In a similar study on root cultures of Gloriosa superba,
AlCl3 greatly enhanced the phenolic and flavonoid content, as well as the production of
colchicine [35]. An increase in reserpine content in response to low doses of AlCl3 has also
been reported [28].
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Figure 4. Total phenolic contents and phenolic production of F. indica calli elicited with seven different
concentrations of aluminum chloride and control. All the values are mean ± SE. Bars labeled with
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Similarly, callus cultures subjected to CdCl2 treatment had maximum total phenolic
contents of (5.590 mg/g DW) and (5.501 mg/g DW) at 0.01 and 0.05 mM, respectively, with
a similar maximum value (5.156 mg/g DW) at 0.1 mM of CdCl2. CdCl2 demonstrated a sub-
stantial inhibitory impact at higher concentrations, with the lowest total phenolic content
(1.104 mg/g DW) detected at 5.0 mM, compared to total phenolic content (1.792 mg/g DW)
and (1.762 mg/g DW) at 1.0 and 2.0 mM, respectively. The total phenolic synthesis in
callus cultures was triggered with CdCl2 doses, with the highest value (81.911 mg/L) seen
at 0.01 mM of CdCl2, followed by a similar maximum value (77.94 mg/L) at 0.05 mM of
CdCl2 (Figure 6).
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Furthermore, adding greater concentrations of CdCl2 to callus cultures (0.5, 0.1, 2.0,
and 5 mM) caused evident toxicity and a decrease in total phenolic synthesis. Maximum
comparable values for total flavonoid contents (1.062 mg/g DW), (1.010 mg/g DW), and
(0.976 mg/g DW) were found at respective treatments of 0.1, 0.05, and 0.01 mM of CdCl2,
as compared with the control. The higher concentrations of CdCl2 (0.5, 1.0, and 2.0 mM
of CdCl2) resulted in maximum possible flavonoids accumulations (0.730 mg/g DW),
(0.672 mg/g DW), and (0.591 mg/g DW), respectively. However, CdCl2 at 5.0 mM resulted
in the least value for total flavonoid content (0.432 mg/g DW), closely similar to that
of the control with (0.4225 mg/g DW) of total flavonoid content (Figure 7). For total
flavonoid production in CdCl2-treated calli, maximum values for total flavonoid production
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(14.322 mg/L), (14.306 mg/L), and (13.715 mg/L) were observed at 0.01, 0.05, and 0.1 mM
of CdCl2. Previously, many studies have shown CdCl2 as an effective elicitor for optimum
phytochemicals production in in vitro cultures of Salvia miltiorrhiza [18], Catharanthus
roseus [46], and Datura stramonium [47]. Similar results were also reported by [30,39].

2.3. Correlation of Total Phenolics and Flavonoids Content with Radical Scavenging Activity

Natural antioxidants are vital substances that can protect organisms from damage
caused by oxidative stress generated by free radicals [48]. As a result, plants have evolved
a variety of defense measures (antioxidant system) to scavenge the harmful radicals created
during oxidative stress, allowing them to survive [13,28,30,49,50]. Variable antioxidant
activity in response to heavy metals (AlCl3 and CdCl2) was examined to understand better
the influence of heavy metal elicitors on antioxidant activity. Calli elicited with AlCl3 and
CdCl2 significantly enhanced the radical scavenging activity by approximately 30% with
respect to control cultures (Figure 8). The addition of lower concentrations of AlCl3 to
the incubation medium caused a significant increase in antioxidant activity. It showed
maximum activities of 89.40%, 88.60%, 87.40%, and 86.10% at 0.01, 0.05, 0.1, and 0.5 mM of
AlCl3, respectively, as compared to the control (65.30%).
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Figure 7. Total flavonoids contents and flavonoids production of F. indica calli elicited with seven
different concentrations of cadmium chloride and control. All the values are mean ± SE. Bars labeled
with different letters (LSD values) exhibit significant variation (α < 0.05).

Lower doses of CdCl2 resulted in maximum activities of 90.0%, 90.8%, 90.8% and
89.2% in cultures, respectively, at 0.01, 0.05, 0.1, and 0.5 mM of CdCl2. Higher AlCl3 and
CdCl2 concentrations (1, 2, and 5 mM) increased the antioxidant activity less or not at
all compared to the control (Figure 8). The radical scavenging activity of both AlCl3 and
CdCl2 was found to be strongly correlated with the increase in phenolic and flavonoid
contents (Figures 9 and 10). The plants either use antioxidant enzymes to scavenge the toxic
products of ROS or the synthesis of compounds to combat stress conditions. Currently, the
addition of AlCl3 and CdCl2 induced stress conditions. Therefore, the plant cell activated
the defense system and released polyphenolics, especially phenolics and flavonoids that
protect the plant cells from damaging agents. Thus, these salts are directly correlated with
the defense system of plants and activate it to produce phenolics to protect plant cells.



Molecules 2021, 26, 6340 8 of 19

Molecules 2021, 26, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 7. Total flavonoids contents and flavonoids production of F. indica calli elicited with seven 
different concentrations of cadmium chloride and control. All the values are mean ± SE. Bars labeled 
with different letters (LSD values) exhibit significant variation (α < 0.05). 

2.3. Correlation of Total Phenolics and Flavonoids Content with Radical Scavenging Activity 
Natural antioxidants are vital substances that can protect organisms from damage 

caused by oxidative stress generated by free radicals [48]. As a result, plants have evolved 
a variety of defense measures (antioxidant system) to scavenge the harmful radicals cre-
ated during oxidative stress, allowing them to survive [13,28,30,49,50]. Variable antioxi-
dant activity in response to heavy metals (AlCl3 and CdCl2) was examined to understand 
better the influence of heavy metal elicitors on antioxidant activity. Calli elicited with 
AlCl3 and CdCl2 significantly enhanced the radical scavenging activity by approximately 
30% with respect to control cultures (Figure 8). The addition of lower concentrations of 
AlCl3 to the incubation medium caused a significant increase in antioxidant activity. It 
showed maximum activities of 89.40%, 88.60%, 87.40%, and 86.10% at 0.01, 0.05, 0.1, and 
0.5 mM of AlCl3, respectively, as compared to the control (65.30%). 

 
Figure 8. DPPH free radicals scavenging activity of F. indica calli elicited with seven different con-
centrations of cadmium chloride and aluminum chloride and control. All the values are mean ± SE.
Bars labeled with different letters (LSD values) exhibit significant variation (α < 0.05).

Molecules 2021, 26, x FOR PEER REVIEW 8 of 18 
 

 

Figure 8. DPPH free radicals scavenging activity of F. indica calli elicited with seven different con-
centrations of cadmium chloride and aluminum chloride and control. All the values are mean ± SE. 
Bars labeled with different letters (LSD values) exhibit significant variation (α < 0.05). 

Lower doses of CdCl2 resulted in maximum activities of 90.0%, 90.8%, 90.8% and 
89.2% in cultures, respectively, at 0.01, 0.05, 0.1, and 0.5 mM of CdCl2. Higher AlCl3 and 
CdCl2 concentrations (1, 2, and 5 mM) increased the antioxidant activity less or not at all 
compared to the control (Figure 8). The radical scavenging activity of both AlCl3 and 
CdCl2 was found to be strongly correlated with the increase in phenolic and flavonoid 
contents (Figures 9 and 10). The plants either use antioxidant enzymes to scavenge the 
toxic products of ROS or the synthesis of compounds to combat stress conditions. Cur-
rently, the addition of AlCl3 and CdCl2 induced stress conditions. Therefore, the plant cell 
activated the defense system and released polyphenolics, especially phenolics and flavo-
noids that protect the plant cells from damaging agents. Thus, these salts are directly cor-
related with the defense system of plants and activate it to produce phenolics to protect 
plant cells. 

 
Figure 9. Radical scavenging activity (DPPH %) in comparison with total phenolic contents (TPCs) 
and total flavonoid contents (TFCs) (correlation ‘r’ DPPH vs. TPC = 0.815 and DPPH vs. TFC = 0.838) 
in F. indica callus culture elicited with seven different concentrations of aluminum chloride along 
with control. Bars labeled with different letters (LSD values) exhibit significant variation (α < 0.05). 

 
Figure 10. Radical scavenging activity (DPPH %) in comparison with total phenolic contents (TPCs) 
and total flavonoid contents (TFCs) (correlation ‘r’ DPPH vs. TPC = 0.727 and DPPH vs. TFC = 0.925) 

Figure 9. Radical scavenging activity (DPPH %) in comparison with total phenolic contents (TPCs)
and total flavonoid contents (TFCs) (correlation ‘r’ DPPH vs. TPC = 0.815 and DPPH vs. TFC = 0.838)
in F. indica callus culture elicited with seven different concentrations of aluminum chloride along
with control. Bars labeled with different letters (LSD values) exhibit significant variation (α < 0.05).

2.4. Effect of AlCl3 and CdCl2 on Antioxidant Enzyme Activities

Cellular membranes, nucleic acids, proteins, lipids, and chlorophyll can be damaged
by reactive oxygen species (ROS). As four principal active oxygen species formed in plant
tissues, the most common ROSs are O2 (superoxide radical), H2O2 (hydrogen peroxide), OH
(hydroxyl radical), and singlet oxygen [30,51,52]. Plants have evolved a well-organized anti-
oxidative enzymatic system to deal with stress and damage caused by ROS, with superoxide
dismutase (SOD) and peroxidase (POD) serving as the first line of defense [43,45,53]. In
this study, the activities of SOD and POD were measured in callus cultures of F. indica to
assess their role in heavy metal (AlCl3 and CdCl2) salt stress. Our research revealed that
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callus cultures had stronger superoxide dismutase (SOD) and peroxidase (POD) activities
than control cultures did.
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Figure 10. Radical scavenging activity (DPPH %) in comparison with total phenolic contents (TPCs)
and total flavonoid contents (TFCs) (correlation ‘r’ DPPH vs. TPC = 0.727 and DPPH vs. TFC = 0.925)
in F. indica callus cultures elicited with seven different concentrations of cadmium chloride along
with control. Bars labeled with different letters (LSD values) exhibit significant variation (α < 0.05).

Highest superoxide dismutase (SOD: 0.088 nM/min/mg FW) and peroxidase enzyme
activities (POD: 2.372 nM/min/mg FW) were recorded in culture with AlCl3 elicitation
(concentrations of 0.1 mM), respectively, in comparison with the control: SOD: 0.025
and POD: 1.69 nM/min/mg FW (Figure 11). Similarly, the antioxidant enzyme activ-
ities for cultures inoculated with CdCl2 were SOD (0.058 nM/min/mg FW) and POD
(2.721 nM/min/mg FW) with CdCl2 elicitation at a 0.1 mM concentration and CdCl2
(0.5 mM) respectively, when compared to the control (Figure 12). The increased enzymatic
activities in cultures provoked with heavy metal salts have been previously proved to be
due to inducing ROSs that further increase the expression levels of several genes encoding
antioxidative enzymes such as glutathione S-transferase and peroxidase, and superoxide
dismutase [45,54,55].
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Figure 12. Superoxide dismutase and peroxidase activity of F. indica calli elicited with seven different
concentrations of cadmium chloride along with control. Bars labeled with different letters (LSD
values) exhibit significant variation (α < 0.05).

Moreover, the least activities observed were (SOD: 0.045 nM/min/mg FW and
POD: 1.895 nM/min/mg FW) in AlCl3 and (SOD: 0.038 nM/min/mg FW and POD:
0.053 nM/min/mg FW) with CdCl2 recorded at a concentration of (5.0 mM) of both elic-
itors (Figures 11 and 12). Overall, lower doses of both metals as elicitors resulted in
increased activities, whereas higher concentrations inhibited the lowest SOD and POD
activities. Inactivation of the enzymes due to overproduction of ROS or inactivation of
the enzyme by H2O2 in various compartments could explain the reduction in enzymes
at higher metal concentrations [56]. Similar results have been reported in different plants
where a specific level of Cd produces increases in SOD and POD activities, with higher
increases causing a drop in enzymatic activities [52,55,57–60].

2.5. Quantification of the Main Phytochemicalsin-Treated Callus Cultures of F. indica

HPLC is an essential tool for evaluating secondary metabolites that provide a robust
fingerprint analysis of plant therapeutic compounds [11]. This study used HPLC analysis
to look into 11 different phenolic compounds in F. indica callus cultures provoked with
AlCl3 and CdCl2 heavy metal salts (Table A1). In response to all AlCl3 concentrations,
there was a significant increase in myricetin content. In reaction to 0.05 mM, the maxi-
mum enhancement (1.70-fold) was reported (Figure 13). Apigenin was enhanced similarly
(1.37-fold, compared to control). Higher AlCl3 concentrations raised kaempferol levels
(1.48-fold, compared to control). Isorhamnetin levels rose in response to reduced AlCl3
concentrations (1.33-fold, compared to control) (Figure 13). The content of kaempferol and
apigenin was significantly increased at all CdCl2 doses. At 0.05, the maximum enhance-
ment for kaempferol (1.31-fold compared to control) was reached, whereas, at 2 mM, the
maximum enhancement for apigenin (1.41-fold compared to control) was achieved. The
content of myricetin was marginally enhanced when the CdCl2 concentration was raised
(1.13-fold, compared to control). Higher concentrations of CdCl2 increased isorhamnetin
levels, although only to a lesser extent (1.08-fold, compared to control) (Figure 14). These
four phenolics are all polyphenols, which are also known as flavonoids. The rest of the
phenolics (simple phenols), also known as phenolic acids, showed no significant rise or
decrease in response to the heavy metal amounts studied. These results show that AlCl3
and CdCl2 have enhancing effects on flavonoids. In diverse cancer cell lines, phenolic
substances such as myricetin, apigenin, catechin, kaempferol, and isorhamnetin decrease
oncogenes, reduce antioxidative stress, induce apoptosis, and stop the cell cycle [13].
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Figure 13. HPLC-based quantification of phenolic compounds in F. indica calli elicited with seven 
different concentrations of aluminum chloride along with control. Mean values with standard errors 
(± SE) and bars labeled with different letters (LSD values) exhibit significant variation (α < 0.05). 
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Figure 14. HPLC-based quantification of phenolic compounds in F. indica calli elicited with seven 
different concentrations of cadmium chloride along with control. Mean values with standard errors 
(± SE) and bars labeled with different letters (LSD values) exhibit significant variation (α < 0.05). 
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callogenesis, as described by [13]. The explants were collected and aseptically cultured on 
an MS medium containing 3% sucrose and 0.8% agar, and augmented with 1.0 mg/L of 
thidiazuron (TDZ) at pH level 5.6 to induce callus formation. The medium was autoclaved 
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3. Materials and Methods
3.1. Elicitation of Callus Culture with AlCl3 and CdCl2

Stems from one-month-old in vitro-germinated plantlets grown on solid MS (Murashige
and Skoog 1962) medium (hormone-free) were selected as an explant source for callogenesis,
as described by [13]. The explants were collected and aseptically cultured on an MS medium
containing 3% sucrose and 0.8% agar, and augmented with 1.0 mg/L of thidiazuron (TDZ)
at pH level 5.6 to induce callus formation. The medium was autoclaved at 121 ◦C for
20 min. The cultures were maintained at a 25 ± 2 ◦C temperature with a 70% relative
humidity and a 16/8 h (light/dark) photoperiod providing an average illumination of
40 µmol/m2/s (Philips TLD 35 white light tubes). Fresh calli (0.5 g FW) were obtained
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and grown on MS media supplemented with AlCl3 and CdCl2 at 7 different doses (0.01,
0.05, 0.1, 0.5, 1.0, 2.0, and 5.0 mM) along with 1.0 mg/L of TDZ. The calli on the same MS
medium fortified with TDZ (1.0 mg/L) only were used as the control group. The cultures
were placed at 25 ± 2 ◦C in a growth room having a 16/8 h photoperiod, light intensity of
40 µmol/m2/s, and approximately 70% relative humidity. After 35 days of growth, the
calli were harvested and gently kept on filter paper to detach media or normalize water
content before fresh weight determination. After that, calli were oven-dried for dry weight
determination and subsequently ground for further phytochemical analysis.

3.2. Determination of Total Phenolic Content (TPC) and Flavonoid Content (TFC)

The sample extraction for phytochemical analysis, i.e., total phenolic contents (TPCs)
and total flavonoid contents (TFCs), was performed according to the protocol described
by [61]. Dried samples (50 mg) were ground into powder, immersed in 500 µL of MeOH
(Sigma Aldrich, Saint Quentin Fallavier, France), and sonicated for 60 min at 25 ◦C with
a 45 kHz ultrasonic frequency (ElmaTM E plus 40H, Elma Schmidbauer GmbH, Singen,
Germany). Vortexing for 5 min was used to collect extract, followed by centrifugation at
10,000 rpm for 15 min (SpectrafugeTM 24D microcentrifuge, Labnet international, Edison,
NJ, USA). The supernatant was filtered using a syringe and decanted into sterile storage
tubes (1.5 mL Eppendorf tubes) at 4 ◦C.

The Folin–Ciocalteu reagent method (FCRM) was used for the assessment of total
phenolic contents (TPCs), as per the method of [62]. For TPC determination, 90 µL of the
Folin–Ciocalteu reagent (10× diluted in deionized distilled water) was added to each well of
96-well microplates containing 20 µL of the samples and allowed to react. This was followed
by adding 90 µL of sodium carbonate (6 g/100 mL of distilled water) to each sample
mixture, swirled gently, and finally allowed to stand for 90 min at room temperature. After
incubation, the absorbance of the reaction mixture was measured spectrophotometrically at
630 nm using a microplate reader (ELx800BioTek, BioTek Instruments, Colmar, France). To
plot the calibration curve (R2 = 0.967), gallic acid (0–50 µg/mL) was employed as standard.
TPC was expressed as gallic acid equivalent (mg GAE/g) of DW.

Total phenolic production was calculated by using the following formula and ex-
pressed in mg/L.

Total phenolic production (mg/L) = DW (g/L) × TPC (mg/g) (1)

Total flavonoids content was determined according to the aluminum chloride colori-
metric method described by [63]. Briefly, 10 µL of aluminum trichloride solution (10 g/L
of distilled water) and 10 µL (1 M) of potassium acetate (98.15 g/L of distilled water) were
added to the reaction wells of a 96-well plate, containing 20 µL of the samples. The final
reaction volume was raised to 200 µL by adding 160 µL of distilled water and incubated
for 30 min at room temperature. The solution was mixed well, and finally, the change
in absorbance was recorded at 415 nm with a microplate reader (ELx800BioTek, BioTek
Instruments, Colmar, France). To plot the graph, quercetin (0–50 µg/mL) was used for
standardized calibration (R2 = 0.967). TFC was taken as quercetin equivalents (mg QE)/g
for expression of DW.

Total flavonoid production was calculated by using the following formula and ex-
pressed in mg/L.

Total flavonoid production (mg/L) = DW (g/L) × TFC (mg/g) (2)

3.3. Determination of SOD and POD Activities

Extraction from a fresh sample was performed using the protocol of [64]. Briefly,
fresh callus samples (0.1 g) were grounded in a mortar and pestle with 1 mL of extracting
K-buffer (50 mM, pH 7) containing 1% polyvinylpyrrolidone (PVP). Acquired extracts
were homogenized and subsequently centrifuged at 14,000 rpm for 30 min to separate the
supernatant from cell debris. The supernatant was carefully removed with a micropipette
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and transferred into a new Eppendorf tube, and the remaining pellet was discarded. The
supernatant fraction collected after centrifugation was then analyzed for analysis of POD
and SOD.

Peroxidase (OD) assay was assessed by using the protocol of [65] with slight mod-
ifications. The reaction mixture of 200 µL was prepared by mixing 40 µL (50 mM) of
K-phosphate buffer (pH 7), 20 µL of (100 mM) guaiacol (10×), 100 µL of distilled water, and
20 µL (27.5 mM) of H2O2 (10×), along with 20 µL of enzyme extract. An equal amount of
all reagents was used as a control, excluding sample extract. After that, absorbance activity
was determined spectrophotometrically at 470 nm with a 20 s gap using a microplate
reader (ELx800BioTek, BioTek Instruments, Colmar, France). The enzymatic activity was
measured using the formula given below:

A = ELC, (3)

where A = absorbance, E = extinction coefficient (6.39 mM−1 cm−1), L = length of each wall
(0.25 cm), C = concentration of enzyme (value of C measured in mM/min/mg-FW), and
FW = fresh weight of the sample.

Superoxide dismutase activity (SOD) was carried out using Giannoplolitis and Ries’
protocol [66]. The reaction mixture of 200 µL was prepared in a 96-well microplate con-
taining all the required reagents that include 78 µL (50 mM) of phosphate buffer of pH 7,
20 µL (1 mM) of EDTA, 20 µL (130 mM) of methionine, 20 µL (0.75 mM) of NBT, and 2 µL
(0.02 mM) of riboflavin, along with 60 µL of enzyme extract. Similarly, a blank was also
prepared by mixing these chemicals, excluding fresh sample extract. This reaction mixture
was exposed to fluorescent light for 7 min followed by OD measurement at 660 nm using a
microplate reader (ELx800BioTek, BioTek Instruments, Colmar, France). The Equation (3)
was opted for measuring enzymatic activity.

3.4. Determination of Free Radical Scavenging Assay (DPPH)

Free radical scavenging activity (FRSA) was measured using 2,2-diphenyl-1-picryl
hydrazyl (DPPH) for the determination of antioxidant potential, as described by [67]. The
stock reagent solution was prepared by dissolving 3.2 mg of DPPH in 100 mL of methanol
and stored in a refrigerator until use. Briefly, 180 µL of 2,2-diphenyl-1-picrylhydrazyl
(DPPH) reagent was added to the entire row of wells containing 20 µL of the samples to
obtain the final concentrations of 200 µL. The OD was recorded at 517 nm using a microplate
reader (ELx800BioTek, BioTek Instruments, Colmar, France) after 1 h of incubation in
the dark at room temperature. The antioxidant potential of each biological sample was
calculated as % DPPH discoloration, calculated by the following formula:

% scavenging = (Abc − Abs/Abc) × 100 (4)

where Abc = absorbance of the control and Abs = absorbance of the sample

3.5. HPLC Quantification

High-performance liquid chromatography (HPLC) was employed to quantify the
presence of pharmaceutically important phenolic and flavonoid compounds in calli cultures
of F. indica. The powdered calli samples, harvested at week 5, were analyzed through HPLC.
An extract of dried material was prepared in 80% v/v (20 mL) methanol (aqueous). Then,
extraction was carried out in an ultrasonic bath, USC 1200TH (Prolabo Prolabo, Fontenay-
sous-Bois, France) with inner dimension: 300 mm × 240 mm × 200 mm, equipped with
an electrical power of 400 W (i.e., acoustic power of 1 W/ cm2), a maximal heating power
of 400 W and variable frequencies, equipped with a digital timer, and a frequency and a
temperature controller having a 30 kHz frequency for 1 h at 25 ± 2 ◦C. Following extraction,
centrifugation of the samples was performed, and the supernatant was filtered with a
0.45 µm syringe filter (Millipore) before HPLC analysis. Phytochemical analysis was carried
out using a Varian liquid chromatographic system (Varian, Les Ulis, France) composed of a
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Varian Prostar 230 pump, Metachem Degasit, Varian Prostar 410 autosampler, and Varian
Prostar 335 Photodiode Array Detector (PAD), and it was controlled by Galaxie version
1.9.3.2 software. The reference standards used were gallic acid, caffeic acid, myricetin,
catechin, kaempferol, isorhamnetin, apigenin, nahagenin, hederagenin, ursolic acid, and
betulinic acid, purchased from Sigma Company, USA. A Purospher (Merck Chemical,
Saint-Quentin Fallavier, France) RP-18 column (250 mm × 4.0 mm. id; 5 µm) was utilized
for separation, and separation was performed at 35 ◦C. The mobile phase consisted of two
solvents, solvent A (0.2% acetic acid in water) and solvent B (methanol). For mobile phase
variation, a nonlinear gradient was applied with a flow rate of 0.8 mL/min as follows:
from 0 to 40 min of A–B: 90:10 (v/v) to 30:70 (v/v), from 41 to 50 min of A–B: 30:70 (v/v) to
0:100 (v/v), and A–B: 0:100 (v/v) from 51 to 60 min. A UV-Vis spectrophotometer performed
detection at 260 nm for simple phenolics, 360 nm for flavonoids, and 210 nm for saponins
(Figure 15). The phenolic compounds were identified based on their comparison with
the retention time and UV spectra to reliable reference standards. Quantification was
performed using 5-points calibration curves of each standard with a correlation coefficient
of at least 0.998. The quantifications were recorded using calibration curves and retention
times of corresponding reference standards. All the samples were assayed in triplicate, and
the results were expressed as micrograms per milligram of DW of the sample.
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Figure 15. Typical HPLC chromatogram showing the presence of simple phenolics (gallic acid (1)
and caffeic acid (2) recorded at 260 nm), flavonoids (catechin (3), myricetin (4), kaempferol (5),
isorhamnetin (6), and apigenin (7) recorded at 360 nm), and saponins (hederagenin (8), betulinic acid
(9), ursolic acid (10), and nahagenin (11) recorded at 210 nm) in in vitro (callus) culture of F. indica.
5-methoxyflavone (0.2 µg/mL) was used as an internal standard (detection set at 360 nm).

3.6. Experimental Design and Data Analysis

To investigate the effect of AlCl3 and CdCl2 elicitors on callus culture, seven concen-
trations of each elicitor and two controls as treatments were adopted under a randomized
complete block design. All experimental results were means of three independent repli-
cates. One-way ANOVA was used to test statistical differences, followed by Tukey’s
HSD for post hoc analysis (Minitab statistical package 17, State College, PA, USA). Differ-
ences were considered significant at p < 0.05. Data were also evaluated using Pearson’s
correlation coefficients to identify relationships between phenolic contents and selected
antioxidant activities of F. indica calli. All the figures were made using the Origin Pro 2017
package (OriginLab, Northampton, MA, USA). All the data were represented as mean with
standard error.

4. Conclusions

This study aimed to develop an effective elicitation technique for inducing biomass
and metabolite biosynthesis in F. indica callus cultures. Heavy metal salts AlCl3 and
CdCl2 were discovered to have considerable effects on biomass and phytochemicals, as
well as antioxidative enzyme activity. Overall, AlCl3 produced the maximum amount
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of fresh weight biomass, phenolics, and flavonoids. HPLC examination revealed that
AlCl3-mediated cultures accumulated the most chemicals compared to CdCl2 and control
cultures. Similarly, AlCl3 was found to produce more free radical scavenging activities and
antioxidant enzyme activities (SOD and POD) than cadmium chloride. Higher quantities
of both elicitors, on the other hand, were found to have inhibitory effects on practically
all of the parameters studied. As a result of this study’s practical approach, instead of
direct extraction from the wild, key phytochemicals can be produced, reducing the risk of
extinction for this species. To remove hazardous metals, chemical precipitation or filtering
is currently employed in industry. As a result, we anticipate that if industrial use is desired,
these techniques will be able to remove residues of metals in the extracts. However, further
high-throughput investigations are needed to decode the molecular mechanisms that
increase metabolite synthesis when heavy metals are elicited.
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Appendix A

Table A1. HPLC-based quantification of pharmacologically important phenolic compounds in F. indica.

Compounds Quantified
(µg/mg-DW)

0.01 mM 0.05 mM 0.1 mM 0.5 mM 1.0 mM 2.0 mM 5.0 mM 0mM

AlCl3 CdCl2 AlCl3 CdCl2 AlCl3 CdCl2 AlCl3 CdCl2 AlCl3 CdCl2 AlCl3 CdCl2 AlCl3 CdCl2 Control

GALLIC ACID 0.062
± 0.022

0.061
± 0.005

0.055
± 0.001

0.055
± 0.001

0.056
± 003

0.062
± 0.001

0.056
± 0.017

0.044
± 0.0012

0.057
± 0.023

0.035
± 0.001

0.054
± 0.009

0.033
± 0.019

0.051
± 0.008

0.033
± 0.022

0.053
± 0.011

CAFFEIC ACID 0.097
± 0.012

0.094
± 0.008

0.082
± 0.002

0.081
± 0.007

0.084
± 0.010

0.095
± 0.001

0.083
± 0.0057

0.059
± 0.0064

0.086
± 0.028

0.040
± 0.032

0.080
± 0.011

0.037
± 0.020

0.073
± 0.012

0.037
± 0.033

0.077
± 0.081

MYRICETIN 0.655
± 0.014

0.799
± 0.023

1.199
± 0.020

0.609
± 0.013

0.827
± 0.019

0.771
± 0.002

1.129
± 0.017

0.777
± 0.0058

0.662
± 0.034

0.725
± 0.009

0.831
± 0.072

0.583
± 0.076

0.980
± 0.015

0.796
± 0.051

0.702
± 0.021

CATECHIN 0.522
± 0.09

0.476
± 0.013

0.547
± 0.013

0.415
± 0.009

0.623
± 0.023

0.444
± 0.0023

0.533
± 0.021

0.566
± 0.0031

0.589
± 0.017

0.560
± 0.051

0.588
± 0.016

0.443
± 0.012

0.632
± 0.018

0.464
± 0.060

0.578
± 0.025

KAEMPHEROL 0.560
± 0.016

0.476
± 0.019

0.509
± 0.017

0.574
± 0.019

0.456
± 0.021

0.481
± 0.0038

0.605
± 0.0057

0.528
± 0.0018

0.626
± 0.011

0.523
± 0.068

0.644
± 0.026

0.530
± 0.069

0.595
± 0.028

0.551
± 0.062

0.435
± 0.013

ISORHAMNETIN 0.674
± 0.08

0.422
± 0.011

0.701
± 0.018

0.486
± 0.008

0.567
± 0.031

0.408
± 0.0013

0.641
± 0.0036

0.662
± 0.0017

0.499
± 0.026

0.670
± 0.015

0.569
± 0.029

0.513
± 0.072

0.522
± 0.044

0.568
± 0.013

0.524
± 0.012

APIGENIN 0.883
± 0.010

0.601
± 0.015

0.720
± 0.013

0.574
± 0.012

0.660
± 0.002

0.626
± 0.0028

0.804
± 0.011

0.681
± 0.0015

0.626
± 0.034

0.670
± 0.018

0.737
± 0.022

0.739
± 0.021

0.632
± 0.065

0.691
± 0.016

0.524
± 0.033

NAHAGENIN 0.142
± 0.020

0.146
± 0.029

0.110
± 0.001

0.121
± 0.001

0.118
± 0.005

0.145
± 0.0023

0.120
± 0.024

0.065
± 0.0019

0.127
± 0.051

0.031
± 0.027

0.110
± 0.038

0.028
± 0.016

0.098
± 0.011

0.028
± 0.019

0.112
± 0.018

HEDERAGENIN 0.028
± 0.017

0.028
± 0.002

0.024
± 0.004

0.025
± 0.003

0.025
± 0.009

0.028
± 0.0015

0.025
± 0.023

0.018
± 0.0040

0.026
± 0.011

0.013
± 0.025

0.024
± 0.041

0.012
± 0.011

0.022
± 0.010

0.012
± 0.028

0.024
± 0.041

URSOLIC ACID 0.201
± 0.001

0.114
± 0.010

0.143
± 0.025

0.122
± 0.007

0.148
± 0.011

0.135
± 0.0017

0.134
± 0.031

0.173
± 0.0034

0.087
± 0.026

0.195
± 0.022

0.139
± 0.034

0.203
± 0.052

0.155
± 0.021

0.130
± 0.035

0.094
± 0.030

BETULINIC ACID 0.338
± 0.005

0.349
± 0.003

0.260
± 0.003

0.288
± 0.006

0.280
± 0.009

0.348
± 0.0011

0.286
± 0.0057

0.146
± 0.0011

0.304
± 0.0173

0.061
± 0.020

0.259
± 0.033

0.056
± 0.038

0.230
± 0.049

0.054
± 0.011

0.266
± 0.022
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