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A B S T R A C T

Background: An artificial intelligence method could accelerate the clinical implementation of tumour-stroma
ratio (TSR), which has prognostic relevance in colorectal cancer (CRC). We, therefore, developed a deep learn-
ing model for the fully automated TSR quantification on routine haematoxylin and eosin (HE) stained whole-
slide images (WSI) and further investigated its prognostic validity for patient stratification.
Methods:We trained a convolutional neural network (CNN) model using transfer learning, with its nine-class
tissue classification performance evaluated in two independent test sets. Patch-level segmentation on WSI
HE slides was performed using the model, with TSR subsequently derived. A discovery (N=499) and valida-
tion cohort (N=315) were used to evaluate the prognostic value of TSR for overall survival (OS).
Findings: The CNN-quantified TSR was a prognostic factor, independently of other clinicopathologic charac-
teristics, with stroma-high associated with reduced OS in the discovery (HR 1.72, 95% CI 1.24-2.37, P=0.001)
and validation cohort (2.08, 1.26-3.42, 0.004). Integrating TSR into a Cox model with other risk factors
showed improved prognostic capability.
Interpretation:We developed a deep learning model to quantify TSR based on histologic WSI of CRC and dem-
onstrated its prognostic validity for patient stratification for OS in two independent CRC patient cohorts. This
fully automatic approach allows for the objective and standardised application while reducing pathologists'
workload. Thus, it can potentially be of significant aid in clinical prognosis prediction and decision-making.
Funding: National Key Research and Development Program of China, National Science Fund for Distinguished
Young Scholar, and National Science Foundation for Young Scientists of China.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Colorectal cancer (CRC), the third most common cancer world-
wide, has a high mortality burden [1]. Although the tumour node
metastasis (TNM) staging system serves as the basis for treatment
decision for CRC patients, diverse prognosis observed within each
stage calls for improved informative markers [2�4]. For decades, his-
topathology evaluation serves as the backbone for the definitive
diagnosis of CRC, and routine haematoxylin and eosin (HE) stained
tissue sections are indispensable to prognostic prediction [5]. Emerg-
ing evidence shows that tumour-stroma ratio (TSR), also known as
tumour-stroma percentage, has an independent prognostic relevance
in several oncologic diseases, including CRC [6�10]. TSR is conven-
tionally assessed on HE-stained sections, under a microscope, by
pathologists, visually [11]; with discrepancies reported among path-
ologists, and the process is not easily scalable [10�12]. With inter-
observer agreement ranging from 0.239 to 0.886 (Cohen's kappa)
[12], there exists the opportunity for improving the TSR evaluation.
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Research in context

Evidence before this study
Emerging evidence shows that tumour-stroma ratio (TSR)

has an independent prognostic relevance in several oncologic
diseases, including colorectal cancer (CRC). TSR is convention-
ally assessed on haematoxylin and eosin (HE) stained sections,
under a microscope, by pathologists, visually. With inter-
observer agreement ranging from 0.239 to 0.886 (Cohen's
kappa), there exists the opportunity for improving the TSR eval-
uation. We screened MEDLINE, Web of Science for relevant
articles on Aug 15, 2020, with the terms ("artificial intelligence"
OR "deep learning") AND "whole-slide images" AND "tumour-
stroma ratio" AND "colorectal cancer". And there was no study
to develop a deep learning model for the fully automated
tumour-stroma ratio quantification using whole-slide HE-
stained images of CRC.

Added value of this study
We presented a deep learning model for the fully automated

TSR quantification using whole-slide HE-stained images of CRC.
We further showed the CNN-based TSR as a prognostic factor of
overall survival in two independent CRC patient cohorts. Com-
bined into a prediction model, TSR demonstrated its potential
for integrating with the TNM staging system.

Implications of all the available evidence
This approach permits the standardisation and reproducibility

of TSR assessment on ubiquitously available HE-stained histologi-
cal images to eliminate variations documented with traditional
visual assessment while reducing the pathologists' workload. This
fully automatic workflow is well suited for its implementation in
clinical practice and could accelerate the clinical implication of
TSR for prognostication and decision making. The data sets and
model are publicly available to facilitate further validation and
use by other researchers and clinicians.
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Since reliable assessment is crucial for subsequent patient stratifica-
tion and follow-up, an automated method that could enable the
objective and standardised TSR quantification, with optimal repro-
ducibility, would have the scope of application.

On the other hand, the recent trend in digitalised pathology work-
flow also calls for automated evaluation methods with standardised
protocol [10,13]. Automated histopathological analysis improves
both efficiency and consistency compared with traditional evaluation
[14,15]. For TSR, a few studies have applied computational image
analysis to explore the possibility of classifying stroma and tumour
epithelial cells using small parts of tissue samples [10,11,16]. How-
ever, fully automated TSR assessment that could be applied on
whole-slide images (WSI) is yet unavailable [16�18]. The recent
availability of digital WSI and the stunning success of convolutional
neural networks (CNNs) in medical imaging, presents an opportunity
for fully automatic pathologic assessment of CRC [19,20].

The deep learning model for digital whole-slide HE-stained image
analysis could eliminate � or at least reduce � the variations in TSR
assessment results, observed among pathologists. Therefore, we
aimed to develop a deep learning model for the fully automated TSR
assessment on HE-stained WSI and to validate its prognostic utility in
independent patient cohorts with CRC.

2. Methods

2.1. Patients

This retrospective study included a discovery and validation
cohort, with follow-up information, to evaluate the prognostic value
of a CNN-scored TSR (Supplementary Fig. 1a). Patients were recruited
between March 2008 and May 2015. For the discovery cohort
(Guangdong Provincial People's Hospital) and validation cohort
(Yunnan Cancer Hospital), consecutive CRC patients who underwent
surgery with curative intent, with available paraffin-embedded
tumour samples, were enrolled. The Institutional Review Board (the
Research Ethics Committee of Guangdong Provincial People's Hospi-
tal, the Institutional Review Boards of Yunnan Cancer Hospital) of
each participating hospital approved the use of human tissues, with
the need of informed consent waived for this retrospective study.
Exclusion criteria were neo-adjuvant therapy (radiotherapy, chemo-
therapy) and death within 30 days of surgery. The outcome of inter-
est was overall survival (OS), defined as the time from surgery to
death due to any cause. Patients were followed-up using abdominal
computed tomography every 6 to 12 months for the first two years,
and then annually. The follow-up duration was measured from the
time of surgery to the last follow-up date, with information regarding
survival status at the last follow-up documented. Clinicopathological
characteristics information (age at diagnosis, sex, TNM stage, and
tumour anatomic site [colon or rectum]), were collected. TNM staging
was performed according to the Union for International Cancer Con-
trol (UICC) guideline [3]. Patients with missing clinical information
(on mortality or time) were excluded, and no imputation was used in
this study. Image quality control was conducted, excluding blurry,
artefacts, and over- or light-stained HE images.

2.2. Procedures

Routine HE-stained sections showing the most invasive part of the
primary tumour were chosen from the tissue block for analysis by an
experienced pathologist in each institute (S.Y. in Guangdong Provin-
cial People's Hospital and L.W. in Yunnan Cancer Hospital) on con-
ventional microscopy examination. The selection procedure was
blinded to patient clinical information and outcome. The selected HE-
stained tissue sections were imaged using digital Whole Slide Scan-
ning (Leica, Aperio-AT2, USA) at 40 £ magnification, and 0.252 mm/
pixel resolution.

Inspired by the study conducted by Kather et al., CRC tissues were
grouped into nine classes [20] (except BACK class, for different defini-
tion), including adipose (ADI), background (BAC), debris (DEB), lym-
phocytes (LYM), mucus (MUC), smooth muscle (MUS), normal
mucosa (NOR), stroma (STR), and tumour epithelium (TUM). Image-
Scope (version 12.4.3, Leica, USA) was used for image annotation of
the nine tissue class. Then image patches with size 224 £ 224 pixel2

(20 £ magnification) were extracted from annotation regions (Sup-
plementary Fig. 2).

2.3. Data sets composition

The following four datasets (a training set, two test sets, and an
evaluation set) were used for the training of the CNN model and the
assessment of its tissue classification performance (Supplementary
Fig. 1b). The training set used to train the CNN model, included
283.1k image patches, including HE slides of CRC tissue randomly
selected from those retrieved from The Cancer Genome Atlas (train-
ing set part 1, 89.1k patches from 85 slides). The dataset was released
with Kather et al. 's paper [19] (NCT-HE-100K dataset excluding
BACK class, the training set part 2, 88.9k patches), and those ran-
domly selected from the discovery cohort (training set part 3, 105.1k
patches from 106 slides). Two independent test sets (test sets 1 and 2)
were used to assess the classification performance of the trained CNN
model. Dataset released with Kather et al. 's paper (CRC-VAL-HE-7K)
was used to form the test set 1 (6.3k patches, excluding the BACK
class), and those randomly chosen from validation cohort were used
to establish the test set 2 (22.5k patches from 48 slides). The evalua-
tion set, used for the TSR consistency analysis, included 126 image
blocks (1 mm £ 1 mm) from regions that only consisted of TUM and
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STR tissue classes. These image blocks were extracted from 42 ran-
domly selected slides in the discovery cohort. Pixel-level annotation
by a pathologist (S.Y.) was performed on these image blocks, as the
ground truth.

2.4. Training, testing, assessment of the neural network and TSR
calculation

The full procedure is shown in Fig. 1. First, a CNN model (VGG-19)
[21] was pre-trained on the ImageNet dataset (www.image-net.org).
The final classification layer was replaced by a nine-category layer
(corresponding to nine tissue classes). This model was then trained
on the training dataset to classify different tissue types in pathologic
CRC images using transfer learning with stochastic gradient descent
with momentum (SGDM). We trained the network on a desktop
workstation with two Nvidia 1080Ti GPUs, with a mini-batch size of
128 and a fixed learning rate of 3 £ 10�4 for four epochs. The classifi-
cation accuracy of the CNN model was assessed in two independent
test sets (test sets 1 and 2) using metrics of accuracy and Cohen's
kappa. The tSNE method was used for the visualisation of the CNN
model deep layer activations (45-layer, fully connected layer).

After testing the trained CNN model, we performed patch-level
segmentation on WSI with the CNN model in two cohorts. A sliding
ImageNet
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Fig. 1. Study design of the CNN model development and application. (a) A CNN model (VGG
CNN model with the training set. Two independent image data sets were used to assess the
mented by the CNN model with sliding window methods. Eight tissue classes (excluding BA
the tumour-stroma ratio was also obtained. CNN, convolutional neural network; HE, haem
LYM, lymphocyte aggregates; MUC, mucus; MUS, muscle; NOR, normal mucosa; STR, stroma
window with size 224 £ 224 pixel2 was used to extract partially
overlapping tiles from WSI HE images at 20 £ magnification. The
step size of the sliding window was set at 84 pixels. As the sliding
window traversed the entire WSI, each image tile was input into the
CNN model to generate a prediction probability. The final classifica-
tion result of the image tile was set as the tissue class with the maxi-
mum prediction probability. The entire process used GPUs for
accelerated computation. Distinct colours for visualisation repre-
sented output nine classes. Lastly, tissue class ratio was calculated for
each tissue types based on each tissue area. The TSR is defined as are
aSTR=ðareaTUM þ areaSTRÞ � 100%.

TSR consistency analysis was performed on the evaluation set by
assessing the concordance in TSR estimation between the CNNmodel
and pathologist annotation. The correlation coefficient (Pearson r)
and intra-class correlation coefficient (ICC) were calculated. The
agreement in TSR estimation between the CNN model and patholo-
gist annotation was determined using the Bland�Altman plot.

2.5. Evaluation of the prognostic value of TSR

Potential cut-off of the TSR, to distinguish between stroma-high
and stroma-low patients, associated with OS differences, were deter-
mined using maximally selected rank statistics [22] in the discovery
CNN model
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-19) was pre-trained on ImageNet dataset, and transfer learning was used to train the
classification accuracy of the model. (b) HE WSI image (20 £ magnification) was seg-
C class) ratio was calculated by counting each tissue area in the segmented result, and
atoxylin�eosin; WSI, whole-slide image; ADI, adipose; BAC, background; DEB, debris;
; TUM, tumour epitheliu.
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Table 1
The distributions of demographic and clinicopathologic characteristics of colorectal
cancer patients in the two cohorts.

Discovery cohort Validation cohort
(158/499)* (72/315)* P

Age <0.001
� 60 year 195 (39.1%) 180 (57.1%)
> 60 year 304 (60.9%) 135 (42.9%)

Sex 0.914
Male 301 (60.3%) 188 (59.7%)
Female 198 (39.7%) 127 (40.3%)

T-stage <0.001
T1 14 (2.8%) 0 (0%)
T2 76 (15.2%) 0 (0%)
T3 360 (72.1%) 261 (82.9%)
T4 49 (9.8%) 54 (17.1%)

N-stage 0.039
N0 264 (52.9%) 141 (44.8%)
N1 145 (29.1%) 117 (37.1%)
N2 90 (18.0%) 57 (18.1%)

Stage <0.001
I 71 (14.2%) 0 (0%)
II 191 (38.3%) 142 (45.1%)
III 228 (45.7%) 173 (54.9%)
IV 9 (1.8%) 0 (0%)

Tumour site 0.147
Colon 287 (57.5%) 164 (52.1%)
Rectum 212 (42.5%) 151 (47.9%)

Median follow-up time
(95% CI)

89 (79-96) 51 (50-53)

1-year survival rate (95%
CI)

93.2% (91.0%-95.4%) 96.8% (94.9%-98.8%) 0.038

3-year survival rate (95%
CI)

80.0% (76.5%-83.6%) 83.5% (79.5%-87.7%) 0.243

5-year survival rate (95%
CI)

74.3% (70.6%-78.3%) 72.5% (66.1%-79.5%) 0.590

Note: P value was performed by Kruskal�Wallis or x2 test where appropriate.
* Numbers in parentheses are number of events/total number of patients.

Abbreviation: CI, confidence interval.
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cohort. Kaplan�Meier survival analysis was applied for the analysis
of the survival curves, and log-rank statistics were used to test the
differences in survival distributions. Stratified analyses were con-
ducted to investigate the association between TSR and OS within sub-
groups of stage and clinicopathologic risk factors (age, sex, tumour
site, and stage) on the entire discovery and validation cohort
patients.

Uni- and multivariate survival analyses were performed using the
Cox proportional hazard model, on the discovery and validation
cohorts, for TSR and clinicopathological variables (age, sex, stage, and
tumour site). We used Cox regression coefficients in multivariate
analysis for the discovery cohort to generate a prediction model (TSR
model). To investigate whether TSR could provide incremental value
for clinicopathologic risk factors, we developed a reference model,
which incorporating independent clinicopathologic factors only,
except TSR.

The discrimination performance of the prediction models was
assessed using the Harrell's C-statistics (C-index) and the integrated
area under the ROC curve (iAUC). Time-dependent area under the
curve (tAUC) was computed and plotted over time.

2.6. Statistical analysis

All statistical analyses were performed in R unless otherwise
noted (R version 3.6.1) using the following R packages: survival, surv-
miner, survcomp, rms, timeROC, MASS, BlandAltmanLeh, irr, and prod-
lim. P < 0.05 was considered statistically significant. The Student t
test for dependent samples was used to compare two C-indices (and
two time-dependent AUCs), and iAUCs comparison was conducted
by a Wilcoxon rank sum test for dependent samples [23]. Neural net-
work training and deployment were done in MATLAB (R2019a, Math-
Works, USA).

2.7. Role of the funding source

The funder had no role in study design, data collection, data analy-
sis, data interpretation, or writing of the report. The corresponding
author had full access to all the data in the study and had final
responsibility for the decision to submit for publication.

3. Results

3.1. Patients

Table 1 summarises the baseline clinicopathological characteris-
tics of the discovery and validation cohorts. In the discovery cohort,
of 499 patients, 158 deaths occurred, in a median follow-up of 89
(95% confidence interval [CI] 79�96) months, and a five-year survival
rate of 74.3% (95% CI 70.6�78.3%). In the validation cohort, of 315
patients, 72 deaths occurred, in a median follow-up of 51 (95% CI
50�53) months, and a five-year survival rate of 72.5% (95% CI
66.1�79.5%). And significant differences were found between two
cohorts on age, T-stage, N-stage, and TNM stage (P < 0.05, Table 1).

3.2. TSR automated assessment

Supplementary Fig. 3 showed example images and the nine-class
tissue distribution from the training dataset and two test sets. When
we examined the internal features learned by the CNN using t-SNE,
we observed that tissue classes naturally aggregated in separate clus-
ters, especially in the test set 2 with more images (Supplementary
Fig. 4). Representative examples of segmentation when the CNN
model was applied to the stroma-low and stroma-high WSI are
shown in Fig. 2.

High CNN-based classification performance was achieved in all
tissue classes (test set 1: 0.9572, 95% CI 0.9519�0.9621; test set 2:
0.9746, 0.9725�0.9766), which could be observed from the confusion
matrixes of the CNN-based classification (Supplementary Fig. 5).

For TSR consistency analysis, Fig. 3a shows examples of manual
pathologist annotation and automatic tissues segmentation by the
CNNmodel. Good concordance was observed in the tissues' classifica-
tion between the CNN model prediction and the pathologist annota-
tion (Fig. 3b). Strong correlation occurred between TSR estimated by
the CNN model and pathologist annotation (Pearson r = 0.939, 95% CI
0.914�0.957). A high agreement occurred between the annotated
and predicted TSR (ICC = 0.937, 95% CI 0.911�0.955). Bland�Altman
plot showed good agreement between TSR predicted by CNN model
and that annotated by the pathologist (Fig. 3c). The mean difference
of TSRs (annotation vs segmentation) was 0.01 (95% CI -0.12�0.14).

3.3. Evaluation of the prognostic value of TSR

Patients were classified into stroma-low (TSR < 48.8%) or stroma-
high (TSR � 48.8%) groups based on the optimal cut-off point deter-
mined for the discovery cohort (Fig. 4a). Stroma-high was identified
in 140 (28%) and 162 (51%) patients in the discovery and validation
cohort, respectively.

In discovery cohort, stroma-low and stroma-high groups’ median
OS were 72 (interquartile range [IQR] 60-101) and 67 (28-99)
months, respectively, with unadjusted hazard ratio (HR) of 1.79 (95%
CI 1.30�2.47; log-rank test P < 0.001; Fig. 4b). In the validation
cohort, these were 49 (IQR 40-58) and 46 (38-55) months, respec-
tively, with unadjusted HR of 2.21 (1.35�3.63; P = 0.002; Fig. 4c). Fur-
thermore, in both cohorts, stroma-low was associated with higher
five-year survival rate (stroma-low vs stroma-high: 78.3% vs 64.3% in
the discovery cohort; 80.5% vs 70.4% in the validation cohort). Fur-
thermore, when we explored the feasibility of applying TSR to
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various patient subgroups, based on all discovery and validation
cohort patients, the predictor remained a statistically significant
prognostic factor when stratified by age, sex, and tumour site, and
demonstrates marginal significance for the prediction when stratified
by stage (Supplementary Fig. 6).

The univariate association of clinicopathological characteristics
with OS is presented in Table 2. The prognostic association of TSR
with OS was maintained in multivariate analysis, independently of
TNM stage, age, sex, and tumour site, with stroma-high associated
with reduced OS in the discovery (HR 1.72, 95% CI 1.24�2.37,
P = 0.001) and validation cohort (2.08, 1.26�3.42, P = 0.004; Table 2).

3.4. Construction and evaluation of prediction models

As TSR, stage, and age were identified as independent predictors
of OS in multivariate analysis in the discovery cohort, we developed a
prediction TSR model incorporating the above independent predic-
tors, and a reference model with only stage and age incorporated.

The TSR model showed better discrimination performance than
the reference model (C-index: 0.721 [95% CI 0.684�0.759] vs 0.704
[0.667�0.742], P < 0.001; Supplementary Table S1). The resulting
time-dependent AUC plotted over time are presented in Fig. 5. The
TSR model showed higher AUC across the most time-points com-
pared to the reference model.

4. Discussion

In this study, we presented a deep learning model for the fully
automated TSR quantification using whole-slide HE-stained images
of CRC. We further showed the CNN-based TSR as a prognostic factor
of OS in two independent CRC patient cohorts. Combined into a pre-
diction model, TSR demonstrated its potential for integrating with
the TNM staging system. To the best of our knowledge, this is the first
study to establish a deep learning model for the fully automated TSR
quantification on WSI, with its prognostic utility validated in large
multicentre patient cohorts. This approach permits the standardisa-
tion and reproducibility of TSR assessment on ubiquitously available
HE-stained histological images to eliminate variations documented
with traditional visual assessment while reducing the pathologists'
workload. This fully automatic workflow is well suited for its imple-
mentation in clinical practice and could accelerate the clinical impli-
cation of TSR for prognostication and decision making.

TSR has gained increasing attention in cancer prognosis prediction
fields [6,10,24,25]. By validating the prognostic relevance of TSR in
two independent cohorts of patients, our study further elucidated
TSR as a strong predictor of CRC patients' survival. Despite certain
patient characteristic imbalance between the two patient cohorts,
especially regarding TNM stage, results showed that TSR achieved
comparable prognostic performance in two cohorts, which reflect the
independent prognostic relevance of TSR. Multivariate analysis fur-
ther confirmed that the derived TSR remained a stage-independent
prognostic factor of reduced OS, which is concordant with previous
studies [6�8,10]. The evolving knowledge that tumour-stroma plays
an active role in cancer progression, since it interacts with tumour
and non-malignant cells at different stages, from tumour onset to
invasion and metastasis [26,27], explains the results of our work.
That is, a high proportion of stroma corresponds to reduced OS in dis-
covery and validation cohorts.

Having assessed TSR prognostic validity, we present a prediction
model to enable a step forward for individualised prognostic predic-
tion. The proposed prediction model incorporates TSR, with indepen-
dent risk factors (stage and age), and results showed that the model
provides significant clinical values for patients' prognosis. TSR model
provided adequate prediction, with high accuracy (iAUC 0.759 vs
0.728), and satisfied discriminative ability (C-index 0.721 vs 0.689),
in discovery and validation cohorts, respectively. Furthermore, the
finding that TSR integration into the prediction model showed
improved prognostic capability compared with the reference model
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(Fig. 5) indicated that this biomarker could be a potential supplement
to the TNM staging system while facilitating improved risk stratifica-
tion. These results provided more evidence of recent discussion of
the TNM Evaluation Committee (UICC) and the College of American
Pathologists (CAP), on the potential of TSR integration in TNM staging
system [10].

Despite the prognostic value of and consequently high interest of
TSR in CRC, standardised, objective, and easily implemented assess-
ment method is yet unavailable. Automated TSR assessment holds
the potential to increase the reproducibility of this biomarker.
Although recently, automatic discrimination of tissue image of epi-
thelium and stroma in CRC was performed by traditional machine
learning using handcrafted features of images [16,17], the vast
amount of information in WSI remains a great computational chal-
lenge that lies ahead of the fully automated TSR assessment pipeline
development [10]. Through making use of more abstract representa-
tion of input data, deep learning has achieved superior performance
to traditional machine learning and holds promise in retrieving addi-
tional information from histopathology images, with continuous
breakthroughs in medical image domain of CNNs [13,28,29].

Regarding efforts, leveraging deep learning, which aims for
tumour "stroma" quantification based on WSI, two studies have
yielded encouraging results [19,30]. Kather et al. trained a deep neu-
ral network to achieve tissue decomposition into tissue parts that
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could further be aggregated in a prognostic "deep stroma score" for
CRC [19]. Their work supports the hypothesis that deep learning
could be a significant aid in clinical prognostic settings. However, the
clinical translation of their approach is still hampered by its semi-
automatic nature (manual tumour region extraction form WSI was
involved in their workflow), making it less objective and reproduc-
ible. It is noteworthy that they defined "stroma score" as the
weighted sum of various non-tumour tissues (desmoplastic stroma,
lymphocytes, and adipose tissue). Hence, being unable to provide
clear biological insights into the computational "black boxes" is
another weakness of their methodology. In Geessink et al. 's semi-
automated TSR assessment method using deep learning, the derived
TSR could serve as an independent prognosticator for patients with
rectal cancer [30]. However, the study limitation was the need for
human input for choosing user-provided hot-spot. Further automa-
tion at the WSI level, beyond the limited hot-spot area, is still war-
ranted.

The strengthening of our work is that it fills the gap by providing a
fully automated method that requires no manual input on HE-stained
WSI to facilitate an objective and fast TSR assessment. By reducing
pathologists' workload, this fully automatic workflow is well suited
for its implementation in clinical practice. With success in recent



Table 2
Uni- and multivariate analyses including age, sex, stage, tumour site, and TSR for OS in the two cohort.

Univariate analysis Multivariate analysis
Discovery cohort Validation cohort Discovery cohort Validation cohort
HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P

Age 1.02(1.01-1.04) <0.001 1.01 (0.99-1.03) 0.184 1.02 (1.01-1.04) <0.001 1.02 (1.00-1.03) 0.103
Sex
Male 1
Female 0.93 (0.68-1.28) 0.664 1.44 (0.90-2.28) 0.125

Stage
I 1 1
II 2.70 (1.15-6.37) 0.023 1 2.40 (1.02-5.68) 0.046 1
III 7.20 (3.16-16.4) <0.001 3.10 (1.80-5.35) <0.001 6.47 (2.84-14.8) <0.001 2.98 (1.73-5.15) <0.001
IV 24.3 (8.40-70.0) <0.001 24.7 (8.47-71.7) <0.001

Tumour site
Colon 1 1
Rectum 0.99 (0.72-1.39) 0.998 1.12 (0.71-1.78) 0.625

TSR
Stroma-low 1 1 1 1
Stroma-high 1.79 (1.30-2.47) <0.001 2.17 (1.32-3.57) 0.002 1.72 (1.24-2.37) 0.001 2.08 (1.26-3.42) 0.004

Abbreviations: OS, overall survival; HR, hazard ratio; CI, confidence interval; TSR, tumour-stroma ratio.
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studies that applied CNNs to reveal prognostic biomarkers directly
from digitalised WSI, our work further supports the hypothesis that
with deep-learning algorithms, conventional histopathology images
could be better used to facilitate the extraction of prognostic informa-
tion to enable more accurate clinical prediction and decision-making.

This work has the typical baggage inherent in retrospective stud-
ies; thus, prospective studies are warranted to validate the automatic
scored TSR for routine clinical use. Secondly, one of the flaws in this
study is that we only aimed at the OS, without analysing the prognos-
tic value of the TSR in terms of disease-free survival (DFS), which also
is an essential outcome-of-interest for CRC prognosis. Additional
analysis on the CNN-quantified TSR for DFS prediction is among our
further goals. Moreover, for fast annotation and given the vast
availability of released open-source image data, the segmentation
methodology in this work was based on image patch. However, this
methodology could only achieve rough segmentation without fully-
obtained tissue structure details. Hence, the pixel-wise methodology
refinement to improve the classification accuracy is among our future
research goals [31].

In summary, we present a deep learning model for the fully auto-
mated TSR quantification using whole-slide HE-stained images of
CRC. The application to independent patient CRC cohorts confers
prognostic relevance to our approach. The present study suggests
that with deep learning, automated histopathology images analysis
can potentially be of significant aid to clinical prognosis prediction
and decision-making.
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Data sharing
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training set part 1, the training set part 3, the test set 2, and the TSR
evaluation set. The source code and the trained CNN model are also
openly available online (doi: 10.5281/zenodo.4023999).
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