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Abstract

One of the most outstanding observations from next‐generation sequencing

approaches was that only 1.5% of our genes code for proteins. The biggest part is

transcribed but give rise to different families of RNAs without coding potential. The

functional relevance of these abundant transcripts remains far from elucidated.

Among them are the long non‐coding RNAs (lncRNAs), a relatively large and hetero-

geneous group of RNAs shown to be highly tissue‐specific, indicating a prominent

role in processes controlling cellular identity. In particular, lncRNAs have been linked

to both stemness properties and detrimental pathways regulating the aging process,

being novel players in the intricate network guiding tissue homeostasis. Here, we

summarize the up‐to‐date information on the role of lncRNAs that affect stemness

and hence impact upon aging, highlighting the likelihood that lncRNAs may repre-

sent an unexploited reservoir of potential therapeutic targets for reprogramming

applications and aging‐related diseases.
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1 | INTRODUCTION AND CONTEXT

The rapid progression of next‐generation sequencing (NGS) has pro-

duced an enormous amount of descriptive data on the expression

profiles of several coding and non‐coding transcripts (Carninci et al.,

2005). Different consortiums, namely the ENCODE project, mapped

expression data in a variety of cell types and conditions including

stem, progenitor, and somatic cells (Bernstein et al., 2012). One of

the first surprises came with the observation that the amount of

coding genes was lower than initially expected and was paralleled

with an exponential identification of RNA species lacking coding

potential. Additionally, high interspecies variance at the non‐coding
level was encountered, suggesting a role for non‐coding transcription

in determining species identity (Mattick & Makunin, 2006). Further-

more, it has been demonstrated that non‐coding RNAs present much

higher tissue specificity than protein‐coding genes, highlighting their

importance for tissue‐specific function/identity (Cabili et al., 2011).

Non‐coding RNAs play important regulatory roles in modulating tran-

scriptionally and post‐transcriptionally the coding transcriptome

(Angrand, Vennin, Bourhis, & Adriaenssens, 2015; Mattick & Maku-

nin, 2006), which starts to be unveiled in pathological conditions

such as cancer. However, how the non‐coding transcriptome

diverges from cellular stemness to tissue commitment and aging, and

they impact on those processes, remains elusive.*These authors contributed equally to this work.
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The non‐coding transcriptome encloses a variety of RNA species,

spanning from small non‐coding RNAs, including microRNAs (miR-

NAs), Piwi RNAs (piRNAs), and small nucleolar RNAs (snoRNAs) to

long non‐coding RNAs (lncRNAs), that are >200 bp long, but could

be as large as several kilobases and be subdivided into different cat-

egories. LncRNAs are transcribed majorly by Pol II and Pol I RNA

polymerases and are present throughout the genome, either as anti-

sense of coding genes (natural antisense transcripts—NATs), pseudo-

genes, or intergenic (long intergenic non‐coding RNAs‐lincRNAs),

additionally they could be bidirectional, arise from trans‐splicing or

adopt different structural forms which increase their stability

(Figure 1a) Several lncRNAs have been implicated in gene‐regulatory
networks performing roles such as chromosome dosage compensa-

tion, genomic imprinting, epigenetic regulation, cell cycle control,

splicing, and cell differentiation (Mercer, Dinger, & Mattick, 2009;

Rinn & Chang, 2012). Mutant mouse strains for different lncRNAs

(Fendrr, Peril, Mdgt, Brn1b, or Pint) revealed phenotypes ranging from

growth defects to abnormalities in the structure of the neocortex

(Sauvageau et al., 2013). This study and others were a proof of con-

cept that, similarly to coding genes, lncRNAs might play critical roles

in vivo (Li & Chang, 2014). However, considering that lncRNAs

account for 10% in mice and 24% in humans of all RNA transcripts

(Atianand & Fitzgerald, 2014), the number of lncRNAs with an

assigned function is still limited.

Aging is a biological process characterized by a cascade of bio-

chemical changes which result, ultimately, in an observable func-

tional decay (Lopez‐Otin, Blasco, Partridge, Serrano, & Kroemer,

2013) caused by the accumulation of senescent cells which are cells

with an irreversible proliferative arrest (de Jesus & Blasco, 2012).

Manipulation of the number of senescent cells impacts in the aging

progression, demonstrating the feasibility of antisenescence thera-

pies for age‐associated syndromes (Baker et al., 2011, 2016 ;

Campisi & d'Adda di Fagagna, 2007; de Jesus & Blasco, 2012; Gil &

Withers, 2016; Itahana, Campisi, & Dimri, 2007). Similarly to the

lncRNA footprint existing and correlating with the complexity of dif-

ferent tissues, the percentage of expressed lncRNA genes during

senescence of primary human fibroblasts better reflects the different

cell identities, when compared with the expression of coding genes

(Figure 1b). Previously, a “footprint” of several senescence‐associated
lncRNAs (SAL‐RNAs) has been identified (Abdelmohsen et al., 2013),

highlighting a link between lncRNAs and aging. Furthermore, target-

ing of selected lncRNAs (e.g., SAL‐RNA1—XLOC_023166) was found

to actually delay senescence, suggesting a direct role for lncRNAs in

the acquisition and/or maintenance of senescence features.

Additionally to their sequence‐dependent role, lncRNAs may

adopt different structures with the same sequence, leading to differ-

ent biological properties. One example are the circular RNAs. One

curious example is the antisense transcript coexisting in the INK4a‐

ARF locus (a tumor suppressor associated to stemness, aging, and

cancer; Li et al., 2009) named ANRIL (Aguilo, Zhou, & Walsh, 2011;

Holdt et al., 2016). ANRIL could adopt a linear and/or circular form.

ANRIL has 19 exons (Burd et al., 2010; Pasmant et al., 2007) result-

ing in several alternatively spliced transcripts (Folkersen et al., 2009).

Interpreting the biological function of ANRIL has become increas-

ingly complicated. ANRIL has been shown, for instance, to regulate

neighbor tumor suppressor genes in cis by epigenetic mechanisms

(Lee, 2012) and to correlate with atherosclerotic vascular disease risk

through novel circular isoforms (cANRIL; Burd et al., 2010). These

studies correlate ANRIL structure and function, guiding to the possi-

bility that manipulation of specific ANRIL structure may alter specific

cellular processes such as aging. LncRNAs have also been shown to

actively participate directly or indirectly on other age‐related
pathways such as nutrient sensing (Dang, 2014; Meng et al., 2007;

Mourtada‐Maarabouni, Pickard, Hedge, Farzaneh, & Williams, 2009;

Wang, Pang, et al., 2014; Zhang, Zhu, et al., 2013), telomere dynam-

ics (Azzalin & Lingner, 2008; Azzalin, Reichenbach, Khoriauli,

Giulotto, & Lingner, 2007; Cao et al., 2009; Cusanelli & Chartrand,

2014; Montero, Lopez de Silanes, Grana, & Blasco, 2016; Schoeftner

& Blasco, 2008, 2009a, 2009b), and p53‐associated and epigeneti-

cally regulated senescence (Bracken et al., 2007; Dietrich et al.,

2007; Gil, Bernard, Martinez, & Beach, 2004; Jacobs, Kieboom,

Marino, DePinho, & Lohuizen, 1999; Marin‐Bejar et al., 2013;

Puvvula et al., 2014). The role of lncRNAs on these pathways has

been recently addressed by others (Degirmenci & Lei, 2016). In this

review, we focus on the role of lncRNAs on different cellular net-

works regulating stemness in aging and on the impact of aging in

cellular reprogramming processes.

2 | STEMNESS AND AGING

2.1 | Impact of aging on adult stem cells

Stem cells have the potential to self‐renew and to differentiate into

different lineages, being a source of different adult specialized cell

types and tissues (Watt & Hogan, 2000). Most adult organs retain a

limited regenerative capacity which seems to depend on the stem

cells reserves (which maintain self‐renewal and pluripotency poten-

tial after mobilization signals; Bianco & Robey, 2001; Korbling &

Estrov, 2003). Although stem cells have specialized characteristics

which protect them from external insults, aging impacts on stem cell

homeostasis, resulting in halted stem cell renewal and proliferation

(Ermolaeva, Neri, Ori, & Rudolph, 2018; Goodell & Rando, 2015).

Stem cells experienced aging‐dependent accumulation of DNA dam-

age and telomere shortening (Flores & Blasco, 2010; Flores et al.,

2008), directly impacting on stem cell function and ultimately on

lifespan (Ruzankina et al., 2007; Vilas et al., 2018). Interestingly, at

least some of the phenotypes of stem cell aging may be partially

delayed. An example is the anti‐aging effects of caloric restriction

(Mazzoccoli, Tevy, Borghesan, Delle Vergini, & Vinciguerra, 2014).

Caloric restriction was shown to prolong the capacity of stem cells

to self‐renew, proliferate, differentiate, and replace cells in several

adult tissues. Whether lncRNAs may be acting directly or indirectly

on stem cell homeostasis and be potential novel targets for stem cell

resistance to aging‐induced processes has been recently come to

stage (Chen, Zhu, et al., 2017; Bernardes de Jesus et al., 2018; Li

et al., 2017; Ramos et al., 2013).
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F IGURE 1 (a) Classification of lncRNAs.
lncRNAs can adopt different classifications
depending on its localization. LncRNAs can
be segments of protein‐coding transcripts
or being transcribed from the opposite
strand (natural antisense transcripts—
NATs). Antisense lncRNAs could be
complementary to the antisense strand of
protein‐coding or non‐coding genes.
lncRNAs could emerge from intergenic
regions (lincRNAs) or from introns of
coding genes. Protein‐coding exons shown
in dark blue and introns in light blue;
lncRNAs shown in red. Additionally,
IncRNAs can adopt a circular structure of
covalently closed loops (circRNAs; Nigro
et al., 1991; Rong et al., 2017). circRNAs
could be classified into several subtypes
depending on their positioning relatively to
the parental linear transcript or from the
integration of 1 or multiple introns and/or
exons (Qu et al., 2017; Westholm et al.,
2014; Zhang, Wang, et al., 2014; Zhang,
Zhang, et al., 2013). (b) Expression profiles
of different RNA species during
senescence of human skin fibroblasts.
Previously released RNA‐seq data from
human wt and senescent WI‐38 human
cells (Chen et al., 2012; Marthandan et al.,
2015) were analyzed with ISAT2(v2.1.0)/
Stringtie(v1.3.3b; Kim et al., 2015; Pertea,
Kim, Pertea, Leek, & Salzberg, 2016) using
Ensembl Homo sapiens GRCh37.74 release
as template for quantification. FPKM
values for each transcript were converted
to log2. The threshold value chosen to
identify expressed protein‐coding genes
was determined as previously described.
(Hart, Komori, LaMere, Podshivalova, &
Salomon, 2013) and for antisense and
lincRNAs when FPKM > 1. Plotted values
correspond to the percentage of expressed
genes. Two‐sided Student’s t test was used
for statistical analysis (***p < 0.001). (c)
lncRNAs involved in gut homeostasis. In
mammals, aging is associated with
decreased intestinal barrier function.
Differentially expressed lncRNAs may be
positively involved in the response of the
gut epithelium to the aging stress or, on
the other hand, exacerbate the impact of
aging on gut function (related to Table 1)
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Adult stem cells are a rare population of undifferentiated cells

capable of self‐renewal and to differentiate into lineage‐specific
tissues usually within the niche they reside (Dulak, Szade, Szade,

Nowak, & Jozkowicz, 2015). Adult stem cells replace damaged cells

due to tissue turnover or injury. High turnover organs are known to

be populated by adult stem cells, although it is believed several adult

tissues retain populations of adult stem cells even in the absence of

detectable proliferation (Dulak et al., 2015). Well‐characterized
examples of high turnover tissues are the intestine, blood, or muscle.

Here, adult stem cells play crucial roles in tissue homeostasis

(Wagers & Weissman, 2004). During the lifespan of a person, adult

stem cells also age, being this concomitant with a decline in their

properties (Ahmed, Sheng, Wasnik, Baylink, & Lau, 2017). Aging

affects mostly, but not only, high turnover tissues such as the bone

marrow‐derived mesenchymal stem cells and subsequently the

hematopoietic stem cells (HSCs), the skeletal muscle, or the intestine.

Whether lncRNAs play a role in adult stem cell aging remains to be

fully demonstrated. Hereafter, we will describe the role of known

lncRNAs in adult stem cells and their potential correlation with the

aging process in distinctive tissues.

2.1.1 | lncRNAs in adult skeletal muscle stem cells

Adult skeletal muscle retains partial capacity to regenerate (Ahmed et al.,

2017; Brack & Munoz‐Canoves, 2016; Garcia‐Prat, Sousa‐Victor, &

Munoz‐Canoves, 2013), thanks to the existence of adult muscle stem

cells also known as satellite cells. The impaired capacity of skeletal muscle

to regenerate, in particular after injury during aging, may be due to the

decline of tissue function and muscle stem cells properties. Indeed during

aging, satellite cells display a delayed response to activating stimuli result-

ing in a reduced proliferative response (Brack et al., 2007; Conboy,

Conboy, Smythe, & Rando, 2003; Garcia‐Prat et al., 2013; Schultz &

Lipton, 1982; Taylor‐Jones et al., 2002). Several lncRNAs have been

described in the processes regulating muscle differentiation and regener-

ation (Hagan et al., 2017). LncRNAs involved in myogenesis include

Malat1, linc‐RAM, MUNC, lnc‐mg, and linc‐31. Using both in vitro and

in vivo assays, Chen et al. demonstrate that Malat1 regulates gene

expression during myogenic differentiation (Chen, He, et al., 2017). The

molecular mechanism proposes that in the proliferating myoblasts,

Malat1 is highly abundant and leads to trimethylation of the histone 3

lysine 9 (H3K9me3) and subsequent repression of the target gene

expression by recruiting Suv39h1 to MyoD‐binding loci. During differen-

tiation, Malat1 is degraded, thus destabilizing the repressive complex and

leading to target gene activation. Together, Chen et al. identified a regula-

tory axis in myogenesis controlled by Malat1, showing an inhibitory role

for Malat1 during myogenic differentiation. Linc‐RAM is involved in the

differentiation stage of myogenesis by regulating the transcription of

MyoG (Yu et al., 2017). The lncRNA MUNC targets RNAs such as myo-

genin and Myh3 involved in myogenic differentiation (Mueller et al.,

2015). Lnc‐mg is specifically enriched in skeletal muscle and is essential

for muscle cell differentiation and skeletal muscle development (Zhu

et al., 2017). Lastly, Dimartino et al show that lnc‐31, a lncRNA required

for myoblast proliferation, stabilizes the YB‐1 factor, allowing its positive

effect on Rock1 mRNA translation (Dimartino et al., 2018; see Table 1).

Other muscle‐specific lncRNAs include the LincMD1, which controls mus-

cle differentiation by acting as a competitive endogenous RNA (ceRNA)

of miR‐133 and miR‐135 regulating the expression of MAML1 and

MEF2C (Cesana et al., 2011). Overexpression of linc‐MD1 correlates with

the anticipation of the muscle differentiation program. Although they

proved involvement in muscle regeneration programs, the correlation of

muscle lncRNAs with the aging process is still missing. Recently, a novel

lncRNA (Chronos) has been identified in aged muscle (Neppl, Wu, &

Walsh, 2017). Chronos is regulating the process leading to the gradual loss

of muscle mass occurring with advancing age. Chronos is positively regu-

lated with age. Inhibition of Chronos induces hypertrophy of the muscle

through the modulation of Bmp7 signaling (Neppl et al., 2017).

2.1.2 | LncRNAs and HSC

Hematopoietic stem cells (HSCs) are specialized blood‐forming stem

cells (Birbrair & Frenette, 2016) which maintain self‐renewal during

an entire lifespan. HSCs also produce immune cells assuring immune

protection. HSCs activity is regulated by cell‐intrinsic and cell‐
extrinsic mechanisms. Aging affects this regulatory network, leading

to a decrease in number of HSC characterized by impaired function

(Pietras, Warr, & Passegue, 2011). Luo and colleagues compared

lncRNA expression between different HSC ages (aged HSCs exhibit

a repopulation defect) and between WT and DNA methylation‐
deficient Dnmt3a KO HSCs (Dnmt3a−/− HSCs exhibit defective dif-

ferentiation) (Challen et al., 2011). They focused on two lncRNAs,

LncHSC‐1 and LncHSC‐2, which are highly expressed in WT HSC, but

absent in Dnmt3a KO HSCs. Additionally, they also identified a small

subset of lncRNAs (29 out of 159) with altered expression between

4mo and 24mo HSCs. Surprisingly, the lncRNAs whose expression

was changed with aging were not characterized (Luo et al., 2015).

Whether the aging‐related lncRNAs may play a similar role in

increasing colony formation in the context of aging is currently

unknown (Figure 1c). Recently, Delás and colleagues characterized a

subset of mouse lncRNAs with potentially relevant expression during

hematopoietic differentiation. Among the candidates was identified

one lncRNA, Spehd, which silencing lead to myeloid progenitors defi-

ciency in their oxidative phosphorylation pathway (Delás et al.,

2018). With the increasing interest in lncRNAs and the advent of

novel technologies, we believe the future will bring major findings

on the biology of lncRNAs on HSC dynamics during aging.

2.1.3 | Gut

The gut epithelium is a self‐renewing tissue dependent on an intri-

cate process including mobilization, proliferation and differentiation

of basal stem cells. The fast division and mobilization of novel cells

need to be counterbalanced by a well‐regulated apoptotic process

(Wang & Xiao, 2017). This balance is regulated by internal and exter-

nal cues. Disruption of the gut epithelial may occur in patients with

serious diseases, leading to the passage of toxic substances to the

blood. Similarly to other genotoxic signals, aging leads to a severe
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change in the gut homeostasis (Wang & Xiao, 2017). In Drosophila,

aging results in an increased number and proliferation of dysfunc-

tional stem cells (Moorefield et al., 2017; Tran & Greenwood‐
Van Meerveld, 2013). In mammals, aging is associated with

decreased intestinal barrier function (Tran & Greenwood‐Van
Meerveld, 2013) and impaired nutrient absorption (Holt, 2007).

Mouse models of accelerated aging indicate phenotypic changes in

the gut epithelium including faulty regeneration, deregulation of

stem cell division capacity (Fox, Magness, Kujoth, Prolla, & Maeda,

2012), and altered canonical Wnt signaling (Liu & Rando, 2011), a

pathway involved in stem cell maintenance and mobilization.

Giakountis et al. (2016) described an lncRNA named WiNTRLINC1

which positively regulates the expression of ASCL2, a transcription

factor that controls intestinal stem cell fate. WiNTRLINC1 and ASCL2

form a feed‐forward regulatory loop that controls stem cell‐related

gene expression. This regulatory circuitry was shown to participate

in colorectal cancer progression. Whether it may have a role in aging

is still unknown. Other classes of RNAs involved in gut homeostasis

are the lncRNAs transcribed from ultra‐conserved regions (T‐UCRs).
Xiao and colleagues described the expression patterns of T‐UCRs in

the intestinal epithelium (Xiao et al., 2018). T‐UCRs exhibited distinct

dynamics after food starvation. Here, T‐UCR uc.173 stimulated

growth of the small intestinal mucosa. Due to the conservation

observed by this class of transcripts, these findings may provide a

venue for therapeutic strategies stimulating the regeneration of the

intestinal mucosa such as during aging (Xiao et al., 2018). Other

lncRNAs participating in the gut biology are the lncRNA H19 and

the lncRNA SPRY4‐IT1. H19 is a conserved lncRNA transcribed from

the imprinted H19/Igf2 gene cluster. H19 is highly expressed during

embryogenesis, but its levels decrease during aging (Fu et al., 2008).

H19 is a molecular sponge or bind to different miRNAs (Kallen et al.,

2013). H19 abundance disrupts the gut epithelial function probably

by enhancing the degradation and repressing the translation of

zonula occludens protein 1 (ZO‐1) and E‐cadherin mRNAs (Zou et al.,

2016), two proteins with functional roles in forming and regulating

the epithelial barrier (Bhatt, Rizvi, Batta, Kataria, & Jamora, 2013;

Furuse, Izumi, Oda, Higashi, & Iwamoto, 2014; Tian et al., 2011; Zou

et al., 2016). Other studies further demonstrate that ectopically

expression of H19 induces the levels of several miRNAs (miR‐675‐3p
or miR‐675‐5p) in intestinal epithelial cells (IECs) (Dey, Pfeifer, &

Dutta, 2014). Epithelial barrier dysfunction may be a response to

increased levels of those miRNAs. Similarly to the scenario observed

in cancer, loss of imprinting of the IGF2‐H19 locus during aging (Fu

et al., 2008) may be leading to an abnormal expression of H19, and

other genes in this locus, leading to a dysfunctional mobilization of

gut stem cells (Grammatikakis, Panda, Abdelmohsen, & Gorospe,

2014). Another example is SPRY4‐IT1, a lncRNA widely expressed

among different human tissues including the intestinal mucosa

(Khaitan et al., 2011). SPRY4‐IT1 enhances the gut epithelial barrier

function by increasing tight junctions (Xiao et al., 2016). SPRY4‐IT1 is

highly expressed in gut stem cells. Silencing of SPRY4‐IT1 inhibits

expression of several tight junctions’ proteins disrupting the epithe-

lial barrier function. Lentiviral expression of SPRY4‐IT1 (Scherr et al.,

2007) protects the gut barrier in mice exposed to external stresses.

Interestingly, mucosal SPRY4‐IT1 levels decrease in patients diag-

nosed with increased gut permeability (IGP) comparing to normal‐
mucosal samples from controls (Wang & Xiao, 2017). SPRY4‐IT1

levels correlate with repressed levels of tight junctions guiding to

the potential role for this lncRNA in reverting altered mucosa pheno-

types (Wang & Xiao, 2017). Manipulation of these lncRNAs may

prove beneficial for age‐dependent gut loss of homeostasis.

3 | AGING ROADBLOCKS DURING
CELLULAR REPROGRAMMING—A ROLE FOR
LNCRNAS?

Several alternatives in vitro methodologies have been optimized for

the reprogramming and/or expansion of embryonic‐like stem cells

TABLE 1 LncRNAs regulating stem cells in adult organs

Names Mechanism References

Adult skeletal muscle stem cells

MALAT1 MyoD suppression through

Suv39h1/HP1β/HDAC‐1
Chen, He, et al.

(2017))

linc‐RAM Enhance MyoG

transcription through

MyoD‐Baf60c‐Brg1

Yu et al. (2017)

MUNC Increase myogenic‐related
mRNAs

Mueller et al.

(2015)

lnc‐mg Myogenic signaling (IGF2) Zhu et al. (2017)

Linc‐31 Required for myoblast

proliferation

Dimartino et al.

(2018)

linc‐MD1 Controls muscle

differentiation (ceRNA)

Cesana et al. (2011)

Chronos Induces hypertrophy

of the muscle through the

modulation of Bmp7

Neppl et al. (2017)

Adult hematopoietic stem cells

lncHSC‐1 Regulate HSC differentiation

via cell cycle and chromatin

regulators

Luo et al. (2015)

lncHSC‐2 Regulate HSC differentiation

via cell cycle and chromatin

regulators

Luo et al. (2015)

Spehd Silencing lead to defective

multilineage

differentiation

Delás et al. (2018)

Gut

WiNTRLINC1 Controls intestinal stem

cell fate through ASCL2

Giakountis et al.

(2016)

T‐UCR uc.173 Stimulates growth of the

small intestinal mucosa

Xiao et al. (2018)

H19 Disrupts the gut epithelium

by degradation of ZO‐1
and E‐cad mRNAs

Zou et al. (2016)

SPRY4‐IT1 Controls the expression

of several tight junctions’
proteins

Scherr et al. (2007)
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from adult tissue. In particular, Yamanaka and colleagues found that

expression of four transcription factors, namely Sox2, Klf4, Oct4, and

c‐Myc, in adult human and mice skin fibroblasts converts them to a

“stem‐like” condition named induced pluripotent stem cells (iPSCs;

Takahashi & Yamanaka, 2006; Yamanaka, 2009). The possibility to

replace the original retroviral and lentiviral vectors through the use

of nonintegrative strategies was tested and is being used since then

(Sun, Longaker, & Wu, 2010), and this included non‐coding RNA

players. Indeed, soon after the release of the initial iPSC reprogram-

ming protocol, a report revealed that introducing miRNA mimics of

embryonic stem cells (ESCs) specific miRNAs enhanced mouse iPSC

derivation and replaced the function of c‐Myc during reprogramming

(Judson, Babiarz, Venere, & Blelloch, 2009). Scrutinizing the differen-

tial distribution of the coding and non‐coding transcriptome between

stem and differentiated cells may unveil novel targetable reprogram-

ming barriers. Due to the gain of regenerative potential during cellu-

lar reprogramming, it has been thought as useful to the aging field

(Ocampo, Reddy, & Belmonte, 2016; Soria‐Valles & Lopez‐Otin,

2016). Induced pluripotent cells obtained during cellular reprogram-

ming of aged tissue reset their stress‐ and senescence‐associated
epigenetic marks (Lapasset et al., 2011; Liu et al., 2011; Zhang et al.,

2011). Erasure of the aging marks is a crucial step during cellular and

tissue regeneration strategies.

Aging has been identified as an obstacle in the iPSC reprogram-

ming process. Indeed, reprogramming of aged cells into iPSCs is a

very inefficient process, resulting in cells which do not pass the

intermediate states and do not fully acquire pluripotency characteris-

tics. Several barriers have been described in aged cells which could

account to this limitation. Among the pathways involved, cellular

senescence may be one of the key barriers, at least in mice (Banito

et al., 2009; Hong et al., 2009; Kawamura et al., 2009; Li et al.,

2009; Marion et al., 2009; Tat, Sumer, Pralong, & Verma, 2011; Uti-

kal et al., 2009; Zhao et al., 2008). Senescent cells are characterized

by an irreversible cell cycle arrest, higher expression of the ink4a/

ARF locus, and several changes at the cellular characteristics such as

chromatin condensation and secretory phenotypes (Campisi &

d'Adda di Fagagna, 2007; de Jesus & Blasco, 2012; Kuilman, Micha-

loglou, Mooi, & Peeper, 2010). Cellular reprogramming was shown to

be strictly dependent on the division capacity of cells (Hanna et al.,

2009; Hanna, Saha, & Jaenisch, 2010), being this loss an hallmark of

senescence. Another barrier detected during aging that may be

affecting the efficiency of cellular reprogramming is changes affect-

ing the mTOR (target of rapamycin) pathway. TOR inhibitors may act

by facilitating a mesenchymal‐to‐epithelial transition (MET; Chen

et al., 2011), as cells of mesenchymal origin such as adult fibroblast

undergo MET during cellular reprogramming (Li et al., 2010; Sama-

varchi‐Tehrani et al., 2010). Indeed, expression of Zeb2 (Beltran

et al., 2008; Wang, Guo, et al., 2013), an EMT factor, is shown to

increase with aging and to be a barrier for cellular reprogramming

(Bernardes de Jesus et al., 2018). Downregulation of Zeb2 in aged/

old adult fibroblasts greatly impacts on their reprogramming effi-

ciency (Bernardes de Jesus et al., 2018). The reduced efficiency of

reprogramming of aged cells might indicate failure of many cells to

fully commit to the stem‐like state. Furthermore, whether iPSCs

from aged‐derived cells present the same hallmarks of pluripotency

as young‐derived ones has not been systematically analyzed. In this

respect, old donor cells have been found to be resistant to the nor-

mal demethylation during human reprogramming, resulting in ~5%

increase in global methylation levels (Lo Sardo et al., 2017). This

points out for the likelihood of iPSCs from older donor cells to accu-

mulate more stochastic epigenetic errors during reprogramming,

which might impact on the expression of imprinted lncRNAs and

result in iPSCs of reduced pluripotent potential.

3.1 | LncRNAs as part of the stem cell network

LncRNAs have long been associated with cellular stemness (Loewer

et al., 2010) with more than 100 lncRNAs known to bind to pluripo-

tency transcription factors (Sheik Mohamed, Gaughwin, Lim, Robson,

& Lipovich, 2010). Several lncRNAs showed direct involvement in the

maintenance of pluripotency, regulating directly the levels of transcrip-

tion factors (TFs), or participating in the reprogramming process

(Guttman et al., 2011; Loewer et al., 2010). The synergy between

lncRNAs and stemness is further confirmed by the direct association

of pluripotency TFs, such as Oct4, Sox2, or Nanog to lncRNAs promot-

ers, suggesting a direct regulation of lncRNAs levels in cell reprogram-

ming and stemness preservation (Loewer et al., 2010). One example is

the lncRNA‐RoR which was shown to participate in the reprogramming

conversion (Wang, Xu, et al., 2013). lncRoR works as a miRNA sponge,

protecting pluripotency TFs from miRNA targeting. A pluripotency

candidate directly regulated by lncRNAs is the oncogene c‐Myc.

Although it was traditionally associated with cancer (Dang, 2012) and,

possibly, a secondary player during somatic cell reprogramming, the

presence of c‐Myc in the reprogramming cocktail increases the yield of

iPSCs. Recently, it has been described that a non‐coding transcript,

named PVT1 lncRNA, present in the vicinity of the c‐Myc locus,

appears to increase stability of the c‐Myc protein by, protecting c‐Myc

protein from phosphorylation‐mediated degradation, maintaining high

levels of Myc (Tseng et al., 2014).

Regulation of stem cell differentiation toward committed lineages

by lncRNAs is yet poorly characterized. Murine ESCs remain undif-

ferentiated in the presence of leukemia inhibitory factor (LIF), which

works through activation of the signal transducer and activator of

transcription 3 (STAT3; Cartwright et al., 2005). Recently, it was

observed that down‐regulation of lncDC, a novel lncRNA expressed

in human conventional dendritic cells (DCs; Wang, Xue, et al., 2014),

impaired DC differentiation from mouse bone marrow cells, both

in vitro and in vivo. These effects were mediated by the activation

of the transcription factor STAT3, through direct binding of lncDC to

STAT3 in the cytoplasm, which promoted STAT3 phosphorylation.

These findings are in line with previous studies demonstrating a role

for lncRNAs beyond chromatin remodeling. The identification of

stem cell‐specific lncRNAs may lead to the characterization

of lncRNAs important in stem cell identity and in the identification

of novel barriers limiting the reprogramming process in particular of

aged cells.
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3.2 | lncRNAs and epigenetic rewiring during
reprogramming

Before the discovery of the extensive non‐coding transcription across

the genome from high‐throughput studies, lncRNAs were long known

to be players in the epigenetic processes of X‐chromosome inactiva-

tion (XCI) and genomic imprinting (Lee & Bartolomei, 2013). Genomic

imprinting is an epigenetic phenomenon that renders a subset of genes

to be mono‐allelically expressed according to their parental origin

(Barlow & Bartolomei, 2014). These genes are frequently located in

the same genomic regions, commonly known as imprinted clusters, an

organization implying a common mechanism of imprinting regulation.

Indeed, all imprinted clusters have cis‐acting imprinting control regions

(ICRs) which are epigenetically differentially marked by DNA CpG

methylation in the two parental alleles. Interestingly, most imprinted

clusters have at least one lncRNA which is mono‐allelically expressed

and regulated by CpG DNA methylation. These lncRNAs can be inter-

genic or antisense to reciprocally imprinted genes. They are believed

to regulate imprinted expression of the neighboring genes through the

act of transcription itself or by the recruitment of chromatin‐modifying

complexes, as has been referred to the cases of Airnc, Kncq1ot1, and

Meg3 lncRNAs (Kaneko, Son, Bonasio, Shen, & Reinberg, 2014; Latos

et al., 2012; Nagano et al., 2008; Terranova et al., 2008). Such studies

paved the way for the investigation of the role of many lncRNAs and

their link with the epigenetic machinery namely methylating/demethy-

lating enzymes and chromatin‐modifying complexes for instance

(Quinn et al., 2016). Epigenetically related lncRNAs may be involved in

the aging process. For example, Xist lncRNA is known to become

downregulated during senescence in vitro (Abdelmohsen et al., 2013).

Recent genome‐wide studies clearly pointed out for an epigenetic

clock in both mouse and human tissues based on aging‐related DNA

methylation changes (Hannum et al., 2013; Horvath, 2013; Stubbs

et al., 2017; Weidner et al., 2014). Indeed, a DNA methylation signa-

ture of aging was uncovered and capable of predicting the chronologi-

cal age and functional decline of a given tissue (Horvath, 2013; Stubbs

et al., 2017). Whether such epigenetic changes are a cause or a conse-

quence of the aging process still needs to be uncovered.

During iPSC reprogramming, a massive epigenetic rewiring of the

differentiated program into the stem‐like state occurs in a short time

window. Aged cells encounter an extra layer of epigenetic rewiring

since it requires not only an epigenetic resetting of the donor cell

memory, but also of their aging‐specific characteristics (Hochedlinger

& Plath, 2009; Mertens et al., 2015). This might explain their

decreased efficiency in reprogramming, as elucidated clearly from

mouse cells studies (Mahmoudi & Brunet, 2012). For instance, while

full reversal of aging‐specific epigenetic features is believed to occur

(Mertens et al., 2015), some might persist (Lo Sardo et al., 2017),

which might hinder the pluripotency capacity and quality of iPSCs

derived from aged donor cells.

Another aspect is that epigenetic‐sensitive loci such as imprinted

regions could be deregulated during this process. Indeed, imprinting

errors have been documented in both mouse and human iPSCs (Ma

et al., 2014; Nazor et al., 2012; Stadtfeld et al., 2010; Sun et al.,

2012), giving rise to inappropriate silencing or biallelic expression of

imprinted genes, including imprinted lncRNAs. In particular, these

errors are recurrent at the Dlk1‐Dio3 imprinted cluster, where hyper-

methylation leads to the loss of expression of several imprinted non‐
coding transcripts including the Meg3 and Meg8 lncRNAs (Ma et al.,

2014; Stadtfeld et al., 2010). As a consequence, these iPSCs lose

their pluripotency hallmarks. Indeed, Meg3OFF mouse hiPSCs con-

tribute poorly in chimeric mice and fail to generate “all‐iPSC” mice,

the most stringent pluripotent test (Carey et al., 2011; Liu et al.,

2010; Stadtfeld et al., 2010). Likewise, MEG3OFF human iPSCs fail to

differentiate properly down the neuronal lineage (Mo et al., 2015).

These results indicate a major role for Dlk1‐Dio3 imprinting in

pluripotency and suggest the involvement of imprinted lncRNAs in

determining the full developmental potential of iPSCs. Whether this

stochastic epigenetic errors affecting imprinting during the inefficient

process of iPSC reprogramming of aged cells is exacerbated and

whether they can explain, to some extent, their reduced inability to

become iPSCs and the role of imprinted lncRNAs on these processes

are interesting areas of research to follow.

3.3 | MET transition during reprogramming of aged
cells

A mesenchymal‐to‐epithelial transition (MET) is the first important

decision that cells undergoing reprogramming need to overcome

(Sancho‐Martinez & Izpisua Belmonte, 2013), especially if using the

favorite mesenchymal‐derived dermal fibroblasts as donor cells (Li

et al., 2010). Importantly, forced expression of E‐cadherin (epithelial

marker) (Redmer et al., 2011) or downregulation of Zeb2, which facil-

itates MET transition, augmentes the efficiency of reprogramming

(Wang, Guo, et al., 2013). Whether MET may be delayed during

reprogramming of aged iPSCs and act as an aging barrier for repro-

gramming has been recently unveiled by us (Bernardes de Jesus

et al., 2018). Moreover, we identified a lncRNA, called Zeb2‐NAT, a

natural antisense transcript of Zeb2, as a molecular target to improve

reprogramming of aged cells. (Mattick, 2010; Mercer & Mattick,

2013; Zhang, Yang, & Chen, 2014). NATs are a particular group with

very interesting characteristics, in particular due to its antisense tran-

scription with potential regulatory role of the sense protein‐coding
genes (Beltran et al., 2008; Bernardes de Jesus et al., 2018; Matsui

et al., 2008; Wang, Chung, et al., 2014; Zong et al., 2016). This

might be a common regulatory module, since according to recent

studies, 72% of mice and human genomic loci are transcribed from

both sense and antisense strands (Werner, Carlile, & Swan, 2009).

Zeb2‐NAT overlaps Zeb2 5′UTR region and leads to the retention of

its first intron, which harbors an IRES sequence resulting in the func-

tional translation of a Zeb2 protein. Interestingly, Zeb2 and Zeb2‐
NAT expression seems to correlate with the aging process, being

highly expressed in old fibroblasts. Additionally, Zeb2‐NAT seems to

precede the expression of Zeb2 RNA in differentiation protocols

(Bernardes de Jesus et al., 2018). In particular, it was observed that

Zeb2‐NAT expression precedes the expression of their antisense cod-

ing pair Zeb2, guiding to different regulatory networks, and proving
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the functional involvement of antisense transcription in cellular

reprogramming and aging. Overall, antisense transcription could act

locally, interfering in the functional levels of the sense transcript, or

as regulatory hubs responsible for the dispersion of regulatory sig-

nals to neighboring genes (Pelechano & Steinmetz, 2013). Whether

both sense and antisense transcription may be expressed in the

same cell, or at the same time, remains to be elucidated. The impor-

tance of divergent transcription, as observed in sense–antisense
transcription pairs, has been recently assessed by Lou and colleagues

who elegantly linked divergent RNAs to cell lineage commitment

(Luo et al., 2016). Divergent lncRNAs are shown to be relatively

abundant, to co‐localize and to be co‐express with developmental

and transcription regulator genes and to be associated with epige-

netic marks involved in differentiation regulatory networks (Luo

et al., 2016). Zeb2‐NAT lncRNA is an example of a lncRNA more

expressed in aged cells whose modulation of expression can improve

iPSC reprogramming from aged cells (Bernardes de Jesus et al.,

2018). It is likely that other lncRNAs might exist with similar attri-

butes which might be revealed by highly sensitive transcriptome

studies such as the novel native elongating transcript sequencing

technology (mNET‐seq), which generates single‐nucleotide resolution

(Nojima et al., 2015) or global run‐on sequencing (GRO‐seq) (Core,
Waterfall, & Lis, 2008) among other high‐resolution techniques.

4 | LNCRNAS AS ANTI ‐AGING THERAPIES

As mentioned before, lncRNAs are emerging as potential targets for

anti‐aging therapies. Their non‐coding nature and particularities (such

as the conformational complexity, cellular localization, or interac-

tions) need to be taken into consideration in the design of strategies

for efficient lncRNA modulation.

Modified oligonucleotides are probably the best characterized

and known approach to target lncRNAs. Antisense oligonucleotides

have been traditionally used as a research tool to explore function

of several lncRNAs in vitro and in vivo. More recently, novel oligonu-

cleotides harboring RNA or DNA recognition and cleavage domains

have shown up as potential novel strategies with an increased speci-

ficity and stability to target lncRNAs independently of their cellular

compartmentalization (Bhartiya et al., 2012; Jadhav, Scaria, & Maiti,

2009; Lennox & Behlke, 2016; Suryawanshi et al., 2012), in particu-

lar when including base modifications such as locked nucleic acids

(LNA). Regarding in vivo strategies, nowadays, there are still issues

at the level of delivery and targeting due to the fact that different

oligonucleotides work in a cell and tissue‐specific manner. Moreover,

the route of delivery is sometimes inefficient and could lead to off‐
targets. Nevertheless, designed catalytic oligonucleotides harboring

base modifications for stability and specificity against lncRNAs are

still one of the best strategies to reach satisfactory down‐regulated
levels of mature lncRNAs avoiding genetic modifications. Examples

include the strategy employed to target Angelman syndrome in mice

(Meng et al., 2015). Angelman syndrome is caused by maternal defi-

ciency of UBE3A, with the paternal copy of UBE3A being silenced by

a lncRNA named UBE3A‐ATS (Tan & Bird, 2016). Targeting of the

mouse Ube3a‐ATS with antisense oligonucleotides (ASOs) amelio-

rated some cognitive deficits associated with the disease (Meng

et al., 2015). Whether the same strategy could be used in humans is

still unknown. Another example is SAMMSON, a lncRNA linked to

melanogenesis. Targeting SAMMSON through intravenous delivery of

ASO in a human xenograft model significantly reduced tumor growth

and cell proliferation (Leucci et al., 2016; Matsui & Corey, 2017).

Additionally, modified antisense oligonucleotides have been used to

effectively treat human conditions such as hypercholesterolemia and

inflammatory bowel disease (Marafini et al., 2015; Toth, 2013). The

use of modified antisense oligonucleotides in both neuromuscular

and neurodegenerative diseases with a monogenic cause has

recently advanced to clinical trials (e.g., Duchene muscular dystro-

phy; Koo & Wood, 2013; Wilton & Fletcher, 2005).

4.1 | Future directions

Rapid advances in genome sequencing have placed long non‐coding
transcripts as a major player in gene regulation. In this review, we

placed the current knowledge on the potential roles of lncRNAs in

stemness related to aging. On one hand, we discuss functional roles

of lncRNAs in stem cell pools during aging and, secondly, their

impact on cellular reprogramming of aged cells. We believe that in

the near future, functional tests will undoubtedly uncover anti‐aging
therapeutic approaches relying on targeting of lncRNAs. We expect

many surprises to come, where a complex trait such as aging could

be seen at the light of the non‐coding transcriptome.
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