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In the AAPM Report 80,(1) the imaging modality of 4D CT and respiration-correlated 
CT was declared a “promising solution for obtaining high-quality CT data in the 
presence of respiratory motion”. To gather anatomically correct data over time, 
the existence of correlation between the internal organ movement and an external 
surrogate has to be assumed. For the in-house evaluation of such correlation, we 
retrospectively analyzed 21 four-dimensional computer tomography (4D CT) 
scans of five patients, out of which the artifacts experienced in three patients are 
shown here. To provide context and a baseline for the analysis of patient motion, 
a real-tissue liver phantom was used with a solid water block and liver tissue. The 
superior–inferior motion of fiducials in phantom and patients was correlated to the 
recorded anterior–posterior motion of an external surrogate marker on the chest. 
The use of a solid water block yielded a measurable correlation coefficient of 0.98 
or better using a sinusoidal animation pattern. With sinusoidally-animated liver 
tissue, the minimum correlation observed was 0.96. Comparing this to retrospec-
tive patient data, we found three cases of a change in the correlation coefficient, 
or simply a low correlation. The source of this low correlation was investigated 
by careful examination of the breathing traces and the CT-phase assignments 
used to reconstruct the datasets. Consequences of nonregular breathing are elabo-
rated on. We demonstrate the impact of wrong phase assignments and missing 
image information in the 4D CT phase sampling processes. We also show how 
daily patient-based correlation analysis can indicate changes in breathing traces, 
which can be significant enough to decrease, or completely eliminate, previously   
existing correlation. 

PACS numbers: 87.57.-s, 87.57.Q-, 87.57.cp, 87.57.N-, 87.55.Qr 
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I. IntroductIon

In today’s radiation therapy programs, the use of 4D CT is the state-of-the-art solution to 
 detect and address patient breathing-induced tissue motion. AAPM Report 80(1) sees 4D CT 
and respiration-correlated CT as a “promising solution for obtaining high quality CT data in 
the presence of respiratory motion”. The report offers a good current summary of motion in 
the context of radiation therapy. 

One inherent assumption for 4D CT is the existence of correlation between internal organ 
movement and the external surrogate. Correlation has been reliably shown for phantoms induced 
with a regular, sinusoidal breathing trace. In patient studies, high-quality CT data (i.e. correct 
representation of patient anatomy) is imperative to correctly outline anatomical structures, as 
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well as accurately calculate and display doses. This data can only be obtained if proper cor-
relation exists between the surrogate and various organs in the first place. 

Recent studies have focused on the correlation validity of 4D CT information, with Beddar 
et al.(2) showing that this correlation generally exists for a cohort of eight patients, with noted 
variations over the breathing cycle. It is important to note that the accuracy of the 4D CT data 
itself, used to “measure” and study the correlation, is vulnerable to errors and artifacts due to 
irregular breathing patterns.(1,3) It is reasonable to anticipate that a measured correlation might 
deteriorate if highly irregular breathing is encountered. 

This correlation is critical if gated beams or tumor tracking is used for treatment delivery, 
where there is a potential of treating the wrong area if the correlation is low or if the imaging 
system is unable to capture the correlation. If the imaging system is unable to capture the cor-
relation resulting in image artifacts, lesion localization and delineation may be compromised due 
to inconsistent motion estimation.(4,5) Furthermore, motion artifacts may reduce the accuracy 
of deformable image registration between different 4D CT phases, thus frustrating the efforts 
to quantify the accumulated dose in 4D treatment planning.(4-7)

As part of our clinical process, we independently verified and quantified the correlation 
between implanted liver fiducials and an external surrogate via direct measurement. During 
this correlation validation, we discovered three cases where there was a lack of correlation 
between the external marker and internal fiducials. Upon further investigation, we noticed 
that the integrity of the 4D CT data was affected in each case due to patient irregular breath-
ing, which was picked up by the lack of correlation as displayed by the imaging system. The 
purpose of this paper is to present these three unexpected imaging results, in which 4D CT 
proved unreliable in displaying correct patient anatomy in time. The examples discussed show 
how nonintuitive it can sometimes be to directly evaluate breathing traces for regularity, and 
demonstrate the resulting CT artifacts that are a direct consequence of nonregular breathing. To 
provide more context to the reader, we also present the correlation validation and quantification 
process in our clinic.

 
II. MAtErIALS And MEtHodS

A. clinical process and patient selection
Our clinical SBRT protocol requires one 4D CT for treatment planning purposes and a 4D CT 
done prior to every SBRT fraction.(8) Therefore, for most of the SBRT patients treated at our 
facility, four to six 4D CT datasets have been acquired over the course of treatment. The data of 
five uncoached free-breathing liver cancer patients, representing a total of 21 4D CT datasets, 
was retrospectively analyzed for this study, which was approved by the university institutional 
review board (IRB #00048188). All patients reviewed here had at least three surgical clips, gold 
or carbon fiducials (Civco medical solutions, IA), implanted by an interventional radiologist 
in the liver tissue surrounding the lesion. Patients were immobilized in a customized full-body 
Medical Intelligence BodyFIX system (Medical Intelligence, Schwabmuenchen, Germany), 
and ball bearings (BBs) were placed on the immobilization device and patient’s chest wall to 
mark the initial setup isocenter. Through the use of a 16-slice GE CT scanner (GE Medical 
Systems, Milwaukee, WI), 4D and helical scans, with 2.5 mm slice thickness, were acquired 
for treatment planning purposes and for position verification prior to each treatment session. 
According to our clinical scanning protocol, patients were oversampled by at least 0.5 sec 
(120 kV, scout-determined mA, 0.5 sec rotation, 0.25 sec between images). The axial field 
of view (A-FOV) was either 2 cm (for 1.25 mm slice thickness) or 4 cm (for 2.5 mm slice 
thickness). Since the potential for irregular breathing and breathing drifts increases with an 
increase in scan duration, our clinical scanning protocol is set up such that the scan duration 
is minimized, without compromising on proper phase acquisition. Therefore, in the clinic, 4D 
CT datasets are acquired within approximately 1 minute, independent of the superior–inferior 
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(SI) length of scan. If a 1.25 mm slice thickness does not accommodate the image limit of the 
GE CT, it will be changed during setup to 2.5 mm. The 4D raw data is then processed into 10 
phase-binned image sets by the GE Advantage Windows (AW) SIM MD software (GE Medical 
Systems, Milwaukee, WI). Once phase-binned, AW expresses the absolute value of the farthest 
image (in the selected phase) and the selected CT-phase as the Maximum Phase Sampling Error 
(MPSE). The 4D image acquisition process for GE CT has been described previously by Pan 
et al.(9) Details of the Varian RPM device have also been published.(10,11)

B. Correlation measurements between the surrogate, bony anatomy, and fiducials
In order to analyze image sets for motion range and correlation, we recorded the coordinates of 
all fiducials in each phase-binned image set, along with stationary reference points for each 4D 
CT dataset. The geometric center of all landmarks was manually identified by a single observer, 
and distances and positions between fiducials were calculated. Based on the average and standard 
deviation of the coordinates of a stationary marker found in all reconstructed CT phases, we 
evaluated how closely we could pinpoint the center of a fiducial. Two fixed reference points in 
the phantom and two reference points in the patient, one in bony anatomy and one outside of 
the patient, were used in the analysis. The bony landmark enabled tracking of baseline shifts 
of the tumor from fraction to fraction. The movement of implanted fiducials and the shift of 
the geometric center of the implanted fiducials were measured for each reconstructed phase 
image set. The AP motion of the RPM block (surrogate) was correlated to the corresponding 
SI directions of the internal fiducial centroid to find the correlation coefficient, r2.

c. Establishing a correlation baseline for a best case scenario
In order to provide context for the measured correlation of patient liver motion, we need a 
baseline “best-case-scenario” of the measurement system itself. Unfortunately, such data from 
direct measurement is not currently available in the literature. Therefore, we used a phantom 
with highly reproducible motion to provide this baseline correlation that is meant to reflect 
the absolute measureable truth under ideal conditions for the imaging system used, before 
progressing to nonverifiable patient data measurements. The phantom we used is a deformable 
porcine liver phantom recently described in literature, which is capable of producing realistic 
diaphragm-induced liver motion(12) comparable to that of humans.(13) Using this phantom with 
a known correlation between surrogate and target, the correlation and imaging limits of the 4D 
CT acquisition were identified. 

Figure 1 shows a diagram of the phantom used. It contains a diaphragm surrogate that exerts 
force onto the porcine liver tissue placed between a rigidly fixed support and a moving piston 
support. To maintain tissue flexibility, Krebs-Henseleit-fluid(14) surrounds the organ. The phan-
tom’s motion characteristics simulate the motion of liver fiducials in real patients.(13,15) (For 
more information on the functionality and design of the phantom, the reader is referred to the 
publication(12) of the group that designed it.) 

Using this phantom with a rigid object, it can be safely assumed that, under ideal measurement 
conditions, the measurement will display a perfect correlation. The introduction of deforming 
tissue in the phantom allows for the assessment of correlation similar to that in patients. For 
model testing, and to contrast the patient-related data against an ideal baseline, we used porcine 
liver with three implanted fiducials with the phantom. We note that no contrast media was used 
during CT data acquisition for either the phantom or the patients.

Regular sinusoidal (6 sec period, 20 mm peak-to-peak SI motion) and irregular patient breath-
ing motion were used to induce motion in the phantom. Using the Varian RPM device (Varian 
Medical Systems, Palo Alto, CA) to trace motion, we oversampled every axial position (0.5 sec 
rotation, 0.25 sec between images, 8 sec duration). Repeat 4D scans, with 1.25 mm slice thick-
ness, were acquired with a 16-slice GE CT. The 4D raw data was processed into 10 separate 
phase-binned image sets using the breathing traces acquired with the Varian RPM device. 
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III. rESuLtS 

The values of the fiducials’ position in superior–inferior direction are based on increments of 
slice thickness and, therefore, impose an uncertainty of half the slice dimension. Our error 
analysis revealed that the standard deviation of fiducial position measurements is submillimeter. 
We were able to localize the center of a stationary BB from all CT phases with 0.1 mm stan-
dard deviation, at 1.25 mm slice thickness with the phantom, and 0.3 mm with 2.5 mm slice 
thickness in patient scans. Bony landmarks were detected with a standard deviation of 0.2 mm 
with 1.25 mm slices and 0.3 mm with 2.5 mm slices for all patients. Due to the slice thickness, 
detection for an individual measurement of liver fiducials in SI direction can be off by up to 
± 0.6 mm with 1.25 mm slice thickness or up to ± 1.25 mm with 2.5 mm slice thickness.

Table 1 displays the overview for the measured patients’ motion envelopes. For all fiducials 
analyzed, we found different motion ranges and direction for every imaging session. MPSE 
for the patients, as stated by the AW software in percent of GE-phase sampling, ranged from 
an average of 3%–4% for well coordinated breathing traces, up to 35% maximum error in one 
reconstructed phase dataset for irregular and erratic breathing patterns.

Fig. 1. Liver phantom containment. The arrows indicate piston motion direction.

Table 1. Maximum motion envelope for the marker centroids in all three directions and its summary 3D vector length. 
The maximum phase error as given by the GE Advantage Windows software is listed in the last column. 

 SI Motion  AP Motion LR Motion Sum 3D Vector MPSE
 [mm] (mm) (mm) (mm) (%)

Pat. 1 11.9 4.0 2.5 12.8 23
Pat. 2 4.6 2.9 1.3 5.6 13
Pat. 3 10.3 4.4 0.8 11.2 11
Pat. 4 12.5 6.9 4.2 14.9 35
Pat. 5 11.6 7.5 1.3 13.9 26
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Table 2 shows the measured motion range of the porcine liver that was animated with a 20 mm 
piston stroke. With a 8 sec cine sampling per couch position, the MPSE for the phantom was 
2% when used with the 6 sec sinusoidal breathing trace, and 4% for an averaged 3.5–4.5 sec 
period patient trace. 

Table 3 lists the r2 correlation values for the phantom and each of the five patients. The 
correlation of the phantom piston marker (analogous to the RPM device in use with patients) 
to the centroid of the three fiducials placed on a rigid object and implanted in the porcine liver 
was measured twice, with the first measurement for each trace labeled A and the second mea-
surement, taken an hour later, labeled B. The phantoms’ sinusoidal animation (SIN) of a rigid 
object resulted in r2 values of 0.999 and 0.98 for two independent measurements. The rigid 
object animated with a patient trace (PAT) from two independent measurements (A & B) drops 
the r2 values to 0.90 and 0.82. 

Using a SIN-animated deforming porcine liver, r2 values of 0.99 and 0.96 can be achieved 
for the correlation of the fiducial centroid with the external surrogate. The same porcine liver 
animated with the PAT-trace resulted in r2 values of 0.71 and 0.83. The results of the animated 
porcine liver are shown in Fig. 2. 

The patient data showed average to good correlation of the external RPM block with the 
implanted fiducials’ centroid (r2 values from 0.50 up to 0.97) when compared to the patient trace 
animated porcine liver. However, three out of five patients displayed a “RPM to centroid” cor-
relation lower than expected on one or more fractions (displayed in bold and italics in Table 3) 
or an unusual change of the correlation. Results of further investigation as to why this is and 
its impact on 4D CT integrity are presented in the discussion section. 

 

Table 2. Maximum motion envelope of the porcine liver for the fiducial centroid in all three directions and its 
 summary 3D vector length. The maximum phase error as given by the GE Advantage Windows software is listed in 
the last column. 

 SI Motion AP Motion LR Motion Sum 3D Vector MPSE
 (mm) (mm) (mm) (mm) (%)

Porcine liver sinusoidal trace 17.2 4.0 1.8 17.7 2
Porcine live patient trace 17.2 4.0 1.8 17.7 4
Rigid object sinuisoidal trace 20 < 1 < 1 20 2
Rigid object patient trace 20 < 1 < 1 20 2

Table 3. Correlation values of the 4D CT internal fiducial in SI direction to external surrogate. Values in bold & italics 
indicate correlation values of less than or equal to 0.5. The last two columns show correlation data measured with the 
phantom for a porcine liver and a rigid object.

 r2 values of phantom  
 and patients for SI 1 2 3 4 5 Porcine Liver Rigid Object

 Fraction 1 0.70* 0.77 0.92 0.79 0.77 0.99 sin 1.00 sin
 Fraction 2 0.97 0.90 0.86 0.52 0.91 0.71 pat 0.82 pat
 Fraction 3 0.87 0.85 0.94 0.50 0.87 0.96 sin 0.98 sin
 Fraction 4 0.87 0.80 0.91 0.70 0.69 0.83 pat 0.90 pat
 Fraction 5  0.14     

* Due to lack of fiducials in one CT phase, this correlation has been calculated with two averaged positions in this 
CT phase.
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IV. dIScuSSIon

A. Patient fiducial motion range
Apart from patient 2, a very flat breather for whom we have measured the smallest motion 
envelope of 4.6 mm maximum, all patients show SI motion between 10 mm to 12.5 mm. 
From Table 1 we can conclude that the patients in our sample fall within the range of mo-
tion measured by several other authors.(1,16-27) In more recent studies, such as Suh et al.,(17) 
the reported predominantly linear motion in superior to inferior (SI) direction with a motion 
range of 0.2 mm to 14.4 mm is comparable to our experience, including the smallest motion 
envelope of patient 2. 

B. Correlation between fiducial and surrogate
As expected, we found correlation between internal fiducials and an external surrogate, con-
firming findings by other authors.(2) Patient 3 is a good example for correlation with high r2 
values and  so is patient 1. Similarly, patient 2, despite the smallest motion ranges, shows 
good correlation for four out of five fractions. If correlation values for the multiple fractions 
are evaluated, one would assume no loss of image integrity or notable artifacts for patient 1, 
patient 3, and patient 5. This proved to be true for patient 3 and 5, but not patient 1. Detailed 
analysis of patient 1, 2 and 4 are presented below.
 
B.1  Patient 1 (missing fiducial) analysis
For patient 1, the retrospective attempt to track fiducials via the phase binning process resulted 
in the “loss” of two fiducials (i.e., two of the three fiducials were not visible in the 0% and 
90% resampled 4D CT image sets). Due to this apparent disappearance of fiducials used for 
motion characterization, the motion envelope of the fiducials and of their centroid, is misrep-
resented. Similar to patient 4, this error is due to the irregularities of the patients’ breathing 
(i.e.. the limited amount of valid images that were acquired at each couch position). The loss 

Fig. 2. Correlation of the centroid of fiducials in porcine liver to an external marker for SIN- and PAT-animation.
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of motion information, with the likelihood of nonrepresented fiducials at the edge of motion 
envelopes being a worst case scenario, can potentially result in a smaller than needed ITV. The 
detection of a smaller range of motion can affect planning or image-guided correctional shifts 
during treatment. 

B.2  Patient 2 (one deep breath) analysis
Patient 2 illustrates the case of a very low measured correlation for the last fraction despite 
generally good regular breathing performance during four prior fractions showing a low MPSE 
of 4% to 5%. Upon closer inspection, we found the related RPM breathing traces exhibit a small 
AP amplitude of only 1.9 mm peak to peak (measured from CT images) with variations and 
minor irregularities. During the acquisition of the last fraction’s 4D CT, the patient exhibited 
a single deep inhale breathing motion at the fourth axial couch position, shown in Fig. 3. This 
resulted in a complete set of images being unavailable for that specific axial couch position. 
Consequently, the phase sorting algorithm replaced the lacking image slices with images in 
the same position and as close in assigned phase as possible, resulting in MPSEs of 5% and 
13% in two out of ten phase sampled CT sets. However, due to the method by which phase is 
assigned, the end result was a real phase error of up to 50% (i.e., inhale maximums were actu-
ally assigned to be exhale maximum). 

One of the three fiducials happened to be within the fourth axial couch positioning range 
where the deep breath had taken place and was assigned to the exhale phase instead of inhale 
phase. The correlation value, r2, of the fiducial centroid to the external surrogate had dropped 
to 0.14, as seen in Table 3. 

Based on the previous four 4D CT scans of this patient (see Table 3), we believe that corre-
lation between the external surrogate and internal fiducials exists, but the imaging system was 
unable to capture it due to the reason mentioned above. Clinically, this could be damaging for 
gated patients where the beam-on time intervals could be mainly in the previously determined 
(from the simulation CT dataset) beam-off time slots, thus potentially radiating soft tissue or 
critical structures and underdosing the PTV.

Fig. 3. Typical inhale pattern of patient 2 as captured from the RPM device from the 4D CT acquired for fraction 2. The 
trace shows the total time of image generation.
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B.3  Patient 4 (drift in breathing) analysis
This patient on first observation displayed the most irregular breathing pattern in our sample. The 
breathing trace is marked by a slow drift over 6–7 breaths, similar to a SIN wave. An example 
subset of patient 4’s trace is shown in Fig. 4. The initial part of this low frequency SIN wave 
exhibited progressively deeper inhalation up to a peak inhalation, which also corresponded with 
the peak of the slow SIN wave. From this point onwards, breathing drifted downwards again 
with progressively lower individual breaths to the lowest point of the overall SIN curve.

Due to irregular amplitude, several images of the 4D CT were declared invalid by the AW 
software, leaving the algorithm with fewer images per couch position. This breathing pattern 
thus challenged the phase-sorting process with a resulting MPSE of 35%. This shows up in 
the patients’ lower correlation value in general. For two out of four instances (see Table 3), 
however, wrong RPM phase assignment during fraction 2 and 3 affected one breathing period 
each, resulting in the images for two couch positions being corrupted and, thus, adding an er-
ror similar to that of patient 2 — albeit not as clearly visible through correlation. In general, 
patient data with such characteristic is prone to anatomical misrepresentation due to the varying 
motion amplitude, even after phase validation. 

c. General observations
Our clinical protocol does not coach patients’ breathing for 4D CT. The resulting broad spec-
trum of regular and irregular breathing traces and ensuing potential for errors shows a need 
to improve on the 4D image acquisition technique, specifically when using CT-based phase-
binning methods. 

Beddar et al.(2) reduced the probability of MSPE by selectively applying in-house software 
for some breathing traces, to better identify CT image phase from the RPM trace. However, 
the conclusion of that study asserts that fiducial motion is generally well-correlated with re-
spiratory motion of the RPM device without any data on how commercially available phase 
assignment systems compare. Suh et al.,(17) using the CyberKnife, rebuilt the predictive model 
when the error in predicted fiducials position in orthogonal images, as a function of surrogate 
position, was greater than 3 mm. Therefore, their analysis was deemed to be accurate to this 
level. It should be noted, that the authors did not report how frequently stereo pair images were 

Fig. 4. Typical inhale pattern of patient 4 as captured from the RPM device from the 4D CT acquired for the last fraction. 
The trace shows the total time of image generation.
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programmed to occur during treatment, nor did they report on the regularity of the patients’ 
breathing cycles. Irregular breathing is known to induce significant imaging artifacts, which 
would likely undermine observation of good correlation. Suh et al. reported “good” correla-
tion between surrogate signal and markers. We assume that their patients’ predictive data were 
fairly regular, and that irregularities were not taken into account by the analysis. Neither authors 
quantified the correlation directly. 

While we have been able to show good correlation in patients, it has been shown that seem-
ingly small disturbances in the recording of the breathing trace can have large impacts on the 
4D information gained from such a compromised scan. If breathing traces are irregular, it 
results in phase assignment errors and large MPSEs; therefore, it is important to improve on 
the image acquisition and image processing in 4D CT. Ideally CT image acquisition would be 
controlled, in a manner similar to the CyberKnife study(17) such that, if predicted motion posi-
tions do not compare to measured positions, image acquisition is halted and a new predictive 
breathing model is generated. 

 
V. concLuSIonS

Today’s radiotherapy planning process relies on the accurate determination of motion and 
deformation during simulation. The impact of wrong phase assignments and missing image 
information in phase sampling processes, casts doubt onto the correct outlining of target con-
tours, which are needed in treatment planning.

We found comparable liver motion using implanted fiducials as detected by other authors 
using organ outlines or other methods.(21-26) Using a phantom produced baseline, the ideal 
regular breathing case creates ideal correlation between internal fiducials and external surrogate. 
It was also found that the evaluation of daily patient-based correlation can indicate changes 
in breathing trace, which can be significant enough to decrease, or completely eliminate, ac-
curate representation of the anatomy by 4D CT. All three case examples introduced have been 
detected due to an unusual change of observed correlation. Each of these cases need different 
adaptive measures to improve on the treatment planning or delivery, the discussion of which 
is outside the scope of this study.

Future work needs to address clinically improved phase sampling for patients — ideally 
a predictive tracking system which controls image acquisition, thereby reducing unnecessary 
dose to the patient while maximizing correct phase assignment.
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