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Abstract: Wiedemann–Steiner syndrome (WDSTS) is a Mendelian syndromic intellectual disability
(ID) condition associated with hypertrichosis cubiti, short stature, and characteristic facies caused by
pathogenic variants in the KMT2A gene. Clinical features can be inconclusive in mild and unusual
WDSTS presentations with variable ID (mild to severe), facies (typical or not) and other associated
malformations (bone, cerebral, renal, cardiac and ophthalmological anomalies). Interpretation and
classification of rare KMT2A variants can be challenging. A genome-wide DNA methylation episig-
nature for KMT2A-related syndrome could allow functional classification of variants and provide
insights into the pathophysiology of WDSTS. Therefore, we assessed genome-wide DNA methylation
profiles in a cohort of 60 patients with clinical diagnosis for WDSTS or Kabuki and identified a unique
highly sensitive and specific DNA methylation episignature as a molecular biomarker of WDSTS.
WDSTS episignature enabled classification of variants of uncertain significance in the KMT2A gene as
well as confirmation of diagnosis in patients with clinical presentation of WDSTS without known
genetic variants. The changes in the methylation profile resulting from KMT2A mutations involve
global reduction in methylation in various genes, including homeobox gene promoters. These find-
ings provide novel insights into the molecular etiology of WDSTS and explain the broad phenotypic
spectrum of the disease.

Keywords: epigenetics; DNA methylation; episignature; Wiedemann–Steiner syndrome; KMT2A
gene; intellectual disability; neurodevelopmental disorders

1. Introduction

Wiedemann–Steiner syndrome (WDSTS, MIM# 605130) is a rare severe autosomal
dominant disorder, characterized by intellectual disability (ID), developmental delay, hy-
pertrichosis cubiti and distinctive facial features [1–8]. The phenotypic spectrum of WDSTS
has recently been expanded with clinical features such as ocular abnormalities, recurrent in-
fections of the genitourinary and/or respiratory tract, cardiac or urogenital malformations
and skeletal abnormalities, including craniovertebral junction (CVJ) anomalies [6]. The
WDSTS phenotype and genotype–phenotype correlation is currently not fully understood.
Moreover, the mild/unusual WDSTS presentations may be challenging to be recognized [9].

The introduction of next-generation sequencing (NGS) and the implementation of hu-
man phenotype ontology (HPO) have revolutionized diagnostics for rare diseases [10]. Re-
verse dysmorphology, defined as the delineation of new syndromes primarily by genotype
followed by the description of the phenotype, is now preferred [11,12]. While phenotypical
evaluation of patients has still remained critical for the process of diagnosis, the clinical
diagnosis for chromatin-related disorders is often established only after identification of a
causative genetic variant [9].

WDSTS is caused by heterozygous pathogenic variants in the KMT2A (lysine methyl-
transferase 2A) gene (MIM# 159555), located on chr11q23, previously known as MLL (mixed
lineage leukemia). Germline and somatic KMT2A variants are, respectively, associated with
WDSTS and multiple neoplastic diseases, along with gene structural rearrangements that
are common in acute leukemia [13]. KMT2A encodes a histone H3K4 methyltransferase
enzyme that regulates chromatin mediated transcription and is widely expressed in most
human tissues. KMT2A is involved in specific complexes mediating the methylation of
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lysine 4 of histone H3 (H3K4me) and acetylation of lysine 16 of histone H4 (H4K16ac), tags
for epigenetic transcriptional activation [14–16]. KMT2A is essential for embryonic devel-
opment, hematopoiesis, and neural development. Known targets include the homeobox
(HOX) genes, a family of transcription factors essential for normal embryonic develop-
ment [17,18].

KMT2A is a 3972 amino acid (aa) multidomain protein (NP_001184033.1), comprising
three DNA-binding AT-hooks at the N-terminus, a cysteine-rich CXXC domain, a plant
homeodomain (PHD) finger motif, a bromodomain, a transactivation domain (TAD), a
FYRN domain, a WDR5 interaction (Win) motif, and a C-terminal SET domain [3]. The
SET domain is involved in the histone monomethylation, dimethylation, or trimethylation
activity of the protein [19–21]. Pathogenic variants in the KMT2A gene lead to defects in
chromatin remodeling [15] and are thought to result in global changes in gene expression
throughout development leading to abnormalities in multiple body systems. WDSTS or
KMT2A-related syndrome is a typical epigenetic machinery disorder, included in chromatin-
related disorders, a group of diseases caused by alterations in genes coding for components
of the epigenetic apparatus [16]. The proteins associated with chromatin-related disorders
act in concert to control the chromatin opening and closing thus regulating gene expression
by modification (i.e., methylation, acetylation, etc.) of histones and DNA. Chromatin-
related disorders frequently present with overlapping clinical features and inconclusive or
ambiguous genetic findings which can confound accurate diagnosis and clinical manage-
ment [9]. An expanding number of genetic syndromes have been shown to have unique
genomic DNA methylation patterns or episignatures. Peripheral blood episignatures can
be used for diagnostic testing and for classification of genetic variants. Recently, it has
been shown that some diseases influencing DNA methylation have specific methylation
signatures, referred to as episignatures [22–25]. Episignature analysis has recently been im-
plemented as a diagnostic clinical genomic DNA methylation test, in individuals with rare
disorders, providing strong evidence of its clinical utility including the ability to provide
conclusive diagnostic findings in most subjects tested [26].

A consensus on the clinical classification of genomic variants based on the American
College of Medical Genetics and Genomics (ACMG) criteria has recently been attained.
WDSTS-associated variants are loss-of-function (LoF) and missense variants. In this study,
we identified a unique genome-wide DNA methylation episignature for KMT2A-related
syndrome. We compared it with episignatures obtained to a large cohort of patients with
various episignature disorders within the EpiSign Knowledge Database (EKD) [22,26], in-
cluding patients with neurodevelopmental syndromic disorders, especially with regard to
Kabuki1, caused by pathogenic variants in KMT2D gene, as some patients with missense
and splice site variants in KMT2A have been reported to show phenotype similarities to
the ones observed in the Kabuki1 syndrome and because similar to KMT2A, KMT2D also
mediates the methylation of lysine 4 of histone H3 [27]. Using in silico studies, aggre-
gated, population and mutations-specific databases, and genome-wide DNA methylation
signatures, we were able to definitively classify 56 KMT2A variants.

2. Results
2.1. Demographic and Molecular Characteristics of Patients

The molecular description at diagnosis and demographics of a cohort of 60 patients
with clinical diagnosis for WDSTS is shown in Table 1. Fifty-six patients carried KMT2A
intragenic variants (missense, nonsense, indel or splice site changes, including variants of
uncertain significance (VUS)) and four patients had only a clinical diagnosis of WDSTS or
Kabuki syndrome.
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Table 1. Demographic and molecular characteristics of WDSTS cohort.

ID Sex Age Genetic Change in the KMT2A Gene
(NM_001197104.2 §) Cohort_Array Type

Pt.1 m 2 c.5312G > A, p.(Trp1771 *) WDSTS_EPIC
Pt.2 m 13 c.2647G > T, p.(Glu883 *) WDSTS_EPIC
Pt.3 f 29 c.3635-1G > A, p.? WDSTS_EPIC
Pt.4 m 5 c.9068del, p.(Gln3023Argfs *3) WDSTS_EPIC
Pt.5 m 9 c.5572C > T, p.(Arg1858 *) WDSTS_EPIC
Pt.6 f 4.5 c.9001del, p.(His3001Thrfs * 15) WDSTS_EPIC
Pt.7 m 3 c.3464G > A, p.(Cys1155Tyr) WDSTS_EPIC
Pt.8 m 6 c.3740_3741del, p.(Ser1247Cysfs * 12) WDSTS_EPIC
Pt.9 f 4 c.3790C > T, p.(Arg1264 *) WDSTS_EPIC

Pt.10 m 10 c.5251A > T, p.(Lys1751 *) WDSTS_EPIC
Pt.11 m 12 c.3634 + 1G > A, p.? WDSTS_EPIC
Pt.12 f 7 c.10837C > T, p.(Gln3613 *) WDSTS_EPIC
Pt.13 m 12 c.3895_3896del, p.(Ser1299Profs * 26) WDSTS_EPIC
Pt.14 m 13 c.478C > T, p.(Arg160 *) WDSTS_EPIC
Pt.15 m * 21.8 # c.6735dup, p.(Val2246Serfs *2) WDSTS_EPIC
Pt.16 m * 4 # c.2318_2319del, p.(Pro773Leufs * 12) WDSTS_EPIC
Pt.17 f * 3.9 # c.3460C > T, p.(Arg1154Trp) WDSTS_EPIC
Pt.18 f * 23.7 # c.8532_8533del, p.(Cys2844Trpfs * 24) WDSTS_EPIC
Pt.19 m * 14.3 # c.11001dup, p.(Pro3668Thrfs * 8) WDSTS_EPIC
Pt.20 f * 26.5 # c.2605G > T, p.(Glu869 *) WDSTS_EPIC
Pt.21 m * 15.2 # c.10498C > T, p.(Gln3500 *) WDSTS_EPIC
Pt.22 m * 17.2 # c.7630G > T, p.(Glu2544 *) WDSTS_EPIC
Pt.23 m * 6.1 # c.10900 + 1G > A, p.? WDSTS_EPIC
Pt.24 m * 1.1 # c.4256G > A, p.(Gly1419Asp) WDSTS_EPIC
Pt.25 m * 9.1 # c.1539del, p.(Ile515Phefs * 52) WDSTS_EPIC
Pt.26 m 17.6 # c.3460C > T, p.(Arg1154Trp) WDSTS_EPIC
Pt.27 m 25.7 # c.2318dup, p.(Ser774Valfs * 12) WDSTS_EPIC
Pt.28 m 67 c.5431C > T, p.(Arg1811 *) WDSTS_EPIC
Pt.29 f 10 c.1128dup, p.(Gln377Thrfs * 12) WDSTS_EPIC
Pt.30 f 1.9 # c.7975C > T, p.(Arg2659 *) WDSTS_EPIC
Pt.31 f 34.9 # c.9538_9539del, p.(Ile3180Glnfs * 55) WDSTS_EPIC
Pt.32 m 15.7 # c.7438C > T, p.(Arg2480 *) WDSTS_EPIC
Pt.33 m 10 # c.3301C > T, p.(Arg1101 *) WDSTS_EPIC
Pt.34 m 14 c.4727dup, p.(Tyr1576 *) WDSTS_EPIC
Pt.35 m 19 c.3629_3634 + 1del, p.(Lys1211_Ala1212del) WDSTS_EPIC
Pt.36 m 27 c.1821_1825del, p.(Arg608Ilefs * 9) WDSTS_EPIC
Pt.37 m 22 c.3451C > T, p.(Arg1151 *) WDSTS_EPIC
Pt.38 m 7 c.7150C > T, p.(Gln2384 *) WDSTS_EPIC
Pt.39 f 2 c.7324G > T, p.(Glu2442 *) WDSTS_EPIC
Pt.40 f 3 c.10736del, p.(Leu3580 *) WDSTS_EPIC
Pt.41 m 17 c.4018G > T, p.(Glu1340 *) WDSTS_EPIC

Pt.42 ¥,
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Table 1. Cont.

ID Sex Age Genetic Change in the KMT2A Gene
(NM_001197104.2 §) Cohort_Array Type

Pt.52 m 3 c.9575A > C, p.(Gln3192Pro) WDSTS (testing)_EPIC
Pt.53 M * 9.4 # c.29C > T, p.(Pro10Leu) WDSTS (testing)_EPIC
Pt.54 f 7 c.8545C > G, p.(Pro2849Ala) WDSTS (testing)_EPIC
Pt.55 m 2 c.352G > T, p.(Val118Phe) WDSTS (testing)_EPIC
Pt.56 f 3 c.11347_11376del, p.(Phe3783_Pro3792del) WDSTS (testing)_EPIC
Pt.57 m 10 c.8387G > T, p.(Gly2796Val) WDSTS (testing)_EPIC
Pt.58 m 2 c.100C > G, p.(Arg34Gly) WDSTS (testing)_EPIC
Pt.59 f 25 c.10315_10316delinsAC, p.(Gly3439Thr) WDSTS (testing)_EPIC
Pt.60 m 2 c.3379C > T, p.(Pro1127Ser) WDSTS (testing)_EPIC

¥ Downloaded from the Gene Expression Omnibus (GEO) database: GSE116300 [27];
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Pt.42 had a Kabuki
syndrome phenotype, and Pt. 44, Pt. 45, and Pt.50 had WDSTS syndrome phenotypes; € downloaded from the
Gene Expression Omnibus (GEO) database: GSE89353 [28]; § MANE Select/Ensembl canonical transcript; * sex
was predicted using minfi package; # age was predicted using wateRmelon package; + reported as de novo variant
in a patient with clinically defined Kabuki syndrome [27].

The molecular description at diagnosis and demographics of a cohort of 74 patients
with clinical diagnosis for Kabuki is shown in Table S1. Sixty-six patients carried KMT2D
intragenic pathogenic variants (missense, nonsense, indel or splice site variants) and eight
patients did not have variant information. All patients had a clinical diagnosis of Kabuki
syndrome associated with a Kabuki1 episignature.

2.2. Detection and Verification of an Episignature for WDSTS

Forty-one WDSTS samples with pathogenic KMT2A variants (training set, Pt.1 to
Pt.41 in Table 1) and 82 control samples were included for detection of an episignature for
WDSTS syndrome. The changes in the methylation status driven by KMT2A pathogenic
variants involve an overall (87%) global reduction in methylation (Figure 1).

The 207 differentially methylated probes (DMPs) (Figure 1 and Table S2) selected
using the three-step process described in the Methods section were used for the purpose of
constructing unsupervised and supervised classification models. The methylation levels
at these 207 CpG sites were considered as the identifying episignature of the syndrome.
In order to assess the robustness of the episignature in differentiating between the case
and control samples, hierarchical clustering (Figure 2a) and multidimensional scaling
(MDS) analysis (Figure 2b) were performed, resulting in a clear separation between these
two groups.

Forty-one rounds of cross-validation on MDS plot were performed using 40 WDSTS
samples as the training set and a single WDSTS sample as the testing set. In all steps,
the testing samples were correctly clustered with the training samples, further providing
evidence of a robust common DNA methylation episignature (Figure S1).

2.3. Construction of the Binary Prediction Model

Two methylation variant pathogenicity (MVP) plots were generated to confirm speci-
ficity of the classification model. In the first MVP plot where the support vector machine
classifier (SVM) was trained by comparing the 41 WDSTS samples against controls, the
classifier showed a high sensitivity for all WDSTS cases and nine WDSTS (testing) sam-
ples (including four samples without known KMT2A variants (Pt.42, Pt.44, Pt.45, Pt.50),
one with a canonical -1 splice site variant (Pt.43), one with a nonsense variant (Pt.49),
two out of 11 with a missense variant (Pt.46, Pt.47), and one out of two with an in-frame
deletion (Pt.48)), with all samples scoring high on the MVP score axis (Figure 3a), further
confirming the previous heatmap and MDS results. Some samples from control (test-
ing) as well as other disease cohorts available in EKD (including BAFopathy complex,
Börjeson–Forssman–Lehmann syndrome (BFLS), Cornelia de Lange syndrome (CdLS),
CHARGE, Down, Kabuki (including Kabuki1 and Kabuki2), Rubinstein–Taybi syndrome
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(RSTS), Sotos, and Tatton–Brown–Rahman syndrome (TBRS) plus one sample from (Alpha
thalassemia/mental retardation X-linked syndrome) ATRX, Blepharophimosis-impaired
intellectual development syndrome SMARCA2 Syndrome (BISS), Kleefstra, Mental re-
tardation, X-linked, Snyder–Robinson type (MRXSSR), and SETD1B cohorts) showed
an elevated MVP score, suggesting level of similarity in the DNA methylation profiles
between these disorders.

Figure 1. Volcano plot of methylation difference between 41 WDSTS samples and controls versus
statistical significance (-log p-value) of individual probes. Red dots represent selected, significant
differentially methylated probes (DMPs). Positive and negative mean methylation difference show
hypermethylation and hypomethylation, respectively.

To increase the specificity of the classifier, an SVM was trained by comparing the
41 WDSTS cases against WDSTS (testing) samples, controls, as well as 38 neurodevel-
opmental disorders (NDDs) and congenital anomalies (CAs) with known episignatures
present in the EKD. A high MVP score was seen for 41 WDSTS samples and eight WD-
STS (testing) samples (including three out of four with no KMT2A variant information
(Pt.44, Pt.45, Pt.50), one with a canonical −1 splice site variant (Pt.43), one with a nonsense
variant (Pt.49), two out of 11 with a missense variant (Pt.46, Pt.47), and one out of two
with an in-frame deletion (Pt.48)) along with much improved specificity relative to other
EpiSign conditions (Figure 3b). Furthermore, one WDSTS (testing) sample with no variant
information (Pt.42) had an MVP score of 0.10.
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Figure 2. Identification of a WDSTS episignature. (a) Hierarchical clustering with Ward’s method on
Euclidean distance was performed. In the heatmap plot, each row illustrates a selected CpG site, and
each column is related to a sample. The heatmap color scale indicates the range of methylation level;
from blue (no methylation or 0) to red (full methylation or 1). This plot conveys that the detected
episignature clearly differentiates between 41 WDSTS samples and controls; (b) multidimensional
scaling (MDS) plot using the selected probes. MDS plot illustrates power of the signature in sepa-
rating the 41 WDSTS samples and control samples. Blue circles represent control subjects and red
circles indicate subjects with pathogenic variants in the KMT2A gene and a confirmed diagnosis of
the syndrome.
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Figure 3. The methylation variant pathogenicity (MVP) scores plot. (a) The MVP scores were created
by the SVM trained by comparing the 41 WDSTS samples against controls; (b) the MVP scores created
by the SVM trained by comparing 41 WDSTS samples against controls and 38 neurodevelopmental
disorders and congenital anomalies available in the EKD. The blue circles represent the training
samples and the grey circles represent the testing samples.

2.4. Validation of WDSTS Signature Using Testing Cohort and Comparison to Kabuki1 Samples

Nineteen WDSTS (testing) were used for validation of WDSTS signature, of which
four had WDSTS or Kabuki phenotypes but without known KMT2A variants (Pt.42, Pt.44,
Pt.45, Pt.50), one had a canonical -1 splice site variant (Pt.43), one had a nonsense variant
(Pt.49), 11 had missense variants (Pt.46, Pt.47, Pt.51, Pt.52, Pt.53, Pt.54, Pt.55, Pt.57, Pt.58,
Pt.59, Pt.60), and two had in-frame deletions (Pt.48, Pt.56). Interestingly, all four WDSTS
(testing) samples without known KMT2A variants (Pt.42, Pt.44, Pt.45, Pt.50) were grouped
with WDSTS samples (Figure 4). However, amongst the remaining 15 samples with known
KMT2A variants, 10 (Pt.51 to Pt.60) and five (Pt.43 and Pt.46 to Pt.49) were grouped with
control and WDSTS samples, respectively. In addition, using the WDSTS classifier, Kabuki1
samples showed segregation in relation to the control samples. As well, Kabuki1 samples
were completely segregated from WDSTS samples, further confirming the results depicted
in Figure 3b.

2.5. Identification of Differentially Methylated Regions

The identified WDSTS episignature was used to search for differentially methylated
regions (DMRs), and resulted in identification of seven DMRs and 207 DMPs (Figure S2
and Table S3). Functional annotation clustering analysis of the DMPs was performed
using DAVID [29], and resulted in identification of three significant clusters (Table S4)
associated with major terms including (1) homeobox, DNA binding, transcription regu-
lation; (2) regulation of transcription from RNA polymerase II promoter; and (3) T-box
transcription factors genes. A relevant proportion of these genes contain hypomethylated
regions. This analysis showed enrichment for pathways associated with development
and transcription.
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Figure 4. Adding WDSTS (testing) and Kabuki1 samples to the WDSTS signature. (a) Hierarchical
clustering; (b) multidimensional scaling.

2.6. Definitive Classification of KMT2A Variants

The literature described patients already reported with confirmed clinical and molec-
ular diagnoses of WDSTS. Clinical data were collected from literature [1–7] and accurate
HPO terms were selected (Table S5). Using in silico studies, aggregated, population and
mutations-specific databases, and genome-wide DNA methylation signatures, we defini-
tively classified 54 KMT2A variants (including 13 missense variants) (Table S6). Variants
information was uploaded in MobiDetails [30,31].
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3. Discussion

Neurodevelopmental disorders, including the Fragile X and Rett syndromes, disor-
ders of imprinting (such as Angelman and Prader–Willi syndromes), and also the Phelan-
McDermid, Sotos, Kleefstra, Coffin Lowry, Kabuki, Charge and ATRX syndromes, are
associated with aberrant epigenetic regulation of processes critical for normal brain devel-
opment [22,26]. The diagnostic utility of genome-wide DNA methylation analysis using
peripheral blood has been shown for patients with these NDDs. Over 43 NDDs are cur-
rently described with associated distinct DNA methylation episignatures [22,32]. Many of
the related genes have a role in the epigenetic machinery such as DNA methylation, histone
modification, or chromatin remodeling. Study of the DNA methylation episignatures has
been useful to assign a diagnosis to patients with NDDs that remained unresolved by con-
ventional testing or in patients with incorrect initial clinical diagnosis [23,25,26]. EpiSign is
the first genome-wide DNA methylation clinical test for patients with NDDs which can be
used to assess a clinical diagnostic assessment or to reclassify VUS variants [23].

The intellectual developmental disorder WDSTS was described as a syndromic condi-
tion in which ID is associated with hypertrichosis cubiti, short stature, and characteristic
facies. Baer et al. described a broad phenotypic spectrum with regard to ID (mild to severe),
the facies (typical or not of WDSTS) and associated malformations (bone, cerebral, renal,
cardiac and ophthalmological anomalies) [2]. Hypertrichosis cubiti was supposed to be
pathognomonic but was found only in 61% of the cases [2]. A majority of patients exhibited
suggestive features, but others were less characteristic, only identified by molecular diag-
nosis [2,9]. The authors suggested that the prevalence of WDSTS is higher than expected in
patients with ID, suggesting that KMT2A is a major gene in ID [2].

Following the identification of the causative KMT2A gene in 2012 [33], all types
of variants, including missense variants in the KMT2A gene, were reported as the causal
variants of the disorder. In this study, DNA methylation data were collected from peripheral
blood of a patient cohort including 60 WDSTS patients, of which 55 had known KMT2A
variants. The classification model for WDSTS syndrome was built with a training set
(41 WDSTS patients) and a control set (82 matched control samples from EKD) using
207 DMPs (Figures 2 and S2). In addition, seven DMRs were also identified (Figure S2
and Table S3). The classification model was tested with a testing set (19 patients with
uncertain clinical diagnosis) and allowed to reclassify 13 KMT2A missense variants as
probably benign (ACMG class 4) or pathogenic (ACMG class 1) (Figures 3 and S3, Table S6).
Nine patients from the testing set were finally classified as WDSTS (including four samples
without KMT2A variant information (Pt.42, Pt.44, Pt.45, Pt.50), one with a canonical -1
splice site variant (Pt.43), one with a nonsense variant (Pt.49), two out of 11 with a missense
variant (Pt.46, Pt.47), and one out of two with an in-frame deletion (Pt.48)). Note that Pt.42
received a low MVP score while it was clustered with KMT2A training samples in both
MDS plots and hierarchical clustering heatmap, even though with slightly different level of
methylation for some probes in comparison with other KMT2A training samples. There
should be something interesting about the Pt.42 but unfortunately no variant information
or clinical details were available to make a solid conclusion about this difference. Then,
the classification model was tested with a Kabuki1 set (74 patients) (Table S1). Kabuki1
samples were completely segregated from WDSTS samples (Figure 4).

KMT2A is a histone methyltransferase protein deemed as a positive global regulator of
gene transcription. This protein belongs to the group of histone-modifying enzymes com-
prising transactivation domain 9aa TAD [34] and is involved in the epigenetic maintenance
of transcriptional memory. Its role as an epigenetic regulator of neuronal function is an
ongoing area of research. KMT2A gene encodes a transcriptional coactivator that plays an
essential role in regulating gene expression during early development and hematopoiesis.
The encoded protein contains multiple conserved functional domains. One of these do-
mains, the SET domain, is responsible for its histone H3 lysine 4 (H3K4) methyltransferase
activity which mediates chromatin modifications associated with epigenetic transcriptional
activation. Enriched in the nucleus, the KMT2A enzyme mono, di and trimethylates
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H3K4 [35]. This protein is processed by the enzyme threonine aspartase 1 into two frag-
ments [34,36] and regulates the transcription of specific target genes, including particular
HOX genes during development [37,38].

The methylome analysis did highlight a substantial change in the global methylation
pattern in WDSTS samples, and resulted in 87% hypomethylated and 13% hypermethy-
lated probes. More detailed information about the 207 CpG probes selected in WDSTS
episignature are summarized in Table S2. Full sensitivity and specificity of our model
were illustrated in Figure 3b, where all case samples received a high MVP score and all
control samples and individuals from the other 38 constitutional disorders and congenital
anomalies received a score near zero. Methylation changes involved specific CpGs in
regulatory regions, indicating a punctual effect on a relatively small subset of genes and
cellular processes. Indeed, only 13% of the DMPs were represented by a hypermethylation
change, indicating that the changes in the methylation status driven by KMT2A pathogenic
variants concern a global tendency in a reduction in methylation.

Functional annotation clustering analysis of the 207 DMPs using DAVID identified
three significant clusters (Table S4) associated with major terms including (1) homeobox,
DNA binding, transcription regulation (i.e., HOX genes, PRDM genes, ALX genes, SIX2,
WT1); (2) regulation of transcription from RNA polymerase II promoter (i.e., HOX genes,
ALX genes, SIX2, WT1); and (3) T-box transcription factors genes (TBX1, TBX2, TBX4).
A relevant proportion of these genes contain hypomethylated regions predominantly
expressed in brain, but also in bones, kidney, heart, and eye. Among 207 DMPs, a distinctive
hypomethylation pattern affecting genes from three of the four HOX clusters (HOXA2,
HOXA3, HOXA4, HOXA10, HOXB9, HOXC4, HOXC5, HOXC6), the MIR196A1 gene, two
genes from the PRDM protein family (PRDM14, PRDM16), Homeobox protein aristaless-
like genes (ALX3 and ALX4), SIX2, T-box transcription factors genes (TBX1, TBX2, TBX4)
and WT1 gene were seen. Furthermore, a distinctive hypermethylation pattern affecting
genes related to the HOX clusters (HOXA6, HOXA7, HOXA9, HOXA10 and PRDM16)
were seen.

In humans, the 39 HOX genes are arranged in four clusters (HOXA, HOXB, HOXC,
and HOXD) in chromosomes 7p15, 17q21.2, 12q13, and 2q31, respectively. This highly
conserved family belongs to the homeobox class of genes that encode transcription factors
required for normal embryonic global development, including brain development [18] and
embryology of the bony CVJ [17]. HOX genes function in multiple neuronal classes to shape
synaptic specificity during development, suggesting a broader role in circuit assembly. They
play key roles in defining the identity, organization, and peripheral connectivity of motor
neuron subtypes, and their target effectors are beginning to be defined, the contribution
of HOX genes to synaptic specificity in neural circuits within the central nervous system
(CNS) remains to be resolved [39]. HOX genes are essentially absent in healthy adult brain,
whereas they are detected in malignant brain tumors, namely gliomas [18]. In embryonic
stem cells, which do not express HOX genes, whole HOX clusters are fully decorated by
H3K27me3, while at their promoter area, this mark co-exists with H3K4me3, constituting
the so-called bivalent chromatin. Deposition of H3K4me3 at HOX clusters in mammals
relies on the COMPASS-like complexes that contains mammalian Set1 homologs (KMT2A
to KMT2G proteins) and the homologues of Drosophila Trx [18,35]. Interestingly, this
complex also contains the H3K27me3-demethylase KDM6A that removes H3K27me3 at
HOX loci [18]. The dynamics of H3K27me3/H3K4me3 distribution along the different HOX
clusters impacts their 3D architecture. The PRDM14, PRDM16 and MIR196A1 genes have
been also linked functionally to HOX function. A gene-set enrichment analysis is discussed
in additional data file. However, the methylation pattern was analyzed in leukocytes,
which might considerably differ in neurons and in other cell lines.

Here, we provide a specific DNA methylation pattern in affected WDSTS patients.
Patients with WDSTS which have KMT2A pathogenic variants have a distinct epigenetic
signature in peripheral blood from a variety of other NDDs, including syndromes that
may clinically overlap with WDSTS, like Kabuki type 1 patients with KMT2D pathogenic
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variants or Kabuki1 episignature (Figure 4). We demonstrate that WDSTS is characterized
by an episignature, which is defined by a particular hypomethylation profile with respect
to healthy subjects. WDSTS episignature is robust, enabling a discovery and validation of
the highly sensitive and specific signal. Hypermethylation of homeobox gene promoters
(including HOX genes), is emerging as a pan-cancer signature with patient-specific DNA
methylation patterns [40]. Aberrant DNA methylation is a well-documented signature at
HOX loci in glioma [18]. Our result suggests here global hypomethylation of various genes
including homeobox gene promoters in WDSTS. KMT2A pathogenic variants may disturb
the normal process of H3K4me3 deposition and H3K27me3 removal that are coupled at
homeobox gene promoters.

Missense variants may present challenges for assessment of clinical impact on the pro-
tein function. In such cases, this WDSTS epigenetic classifier may help solve many clinically
ambiguous cases presenting with a neurodevelopmental phenotype. Implementation of a
routine genome-wide DNA methylation testing is suggested to be considered in the clinical
management of patients with NDDs. The use of DNA obtained from peripheral blood
samples makes this assay easily supported by diagnostic laboratories. DNA methylation
profiling has the capability to detect episignatures from a variety of clinically related NDDs
on the same array. It could be applied as an informative and cost-effective first-tier genetic
diagnostic test for patients without prior molecular tests.

While methylation changes in DMRs suggest the possibility of gene expression modi-
fications, further functional genomics analysis would be necessary to better understand
the pathophysiology of these epigenetic changes. Investigation of genes affected by the
abnormal DNA methylation may lead to the identification of novel targets for more person-
alized treatment approaches. Our studies reported that the expression of several homeobox
containing genes (including HOX or HOX-related genes) is consistently altered in blood of
WDSTS patients. Considering the critical functional roles and putative prognostic value of
specific HOX genes in cancer, including in malignant glioma, and their complex molecular
interactions with upstream regulators and downstream targets, it becomes clear that addi-
tional studies are necessary to better understand how HOX genes operate in glioma but
also possibly in WDSTS, and whether they may be therapeutically explored in the clinics.

4. Materials and Methods
4.1. Study Cohort

This study included 60 individuals, of which 41 (labeled as WDSTS in Table 1) were
used for the purpose of probe selection and construction of the classification model. All
the samples and records were de-identified. Informed consent for use of the clinical
information was obtained from the patients. This study was approved by the Western
University Research Ethics Board (REB 106302) and Ospedale Pediatrico Bambino Gesù
Ethical Committee (1702_OPBG_2018). This and all other study procedures complied with
the Declaration of Helsinki and French legislation and regulations.

4.2. Methylation Experiment and Selection of Matched Control Subjects

DNA samples extracted from peripheral blood were supplied to Illumina Infinium
methylation EPIC (EPIC) bead chip arrays as well as Illumina Infinium HumanMethyla-
tion450 (450 K) BeadChip arrays followed by bisulfite conversion, and the methylation
analysis was performed at the Western University and Ospedale Pediatrico Bambino Gesù
(samples pt. 34–39) in accordance with the manufacturer’s protocol. The 450 K and EPIC
arrays cover >450,000 and >850,000 human genomic CpG sites, respectively, which include
99% of RefSeq genes and 96% of CpG islands. The obtained methylated and unmethylated
signal intensities were imported into R 4.0.3 for analysis. Normalization was performed
according to the Illumina normalization method with background correction using the
minfi package [41]. Probes that were located on the X and Y chromosomes, had a detection
p-value >0.01, known to contain a SNP at or near CpG interrogation sites, or known to
cross-react with other genomic regions were removed, in order to ensure that the difference
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observed between the two groups is solely based on methylation changes rather than other
potentially confounding factors. Where indicated, sex and age of the DNA specimens were
predicted using the minfi package (based on the median signal intensities of the probes
on the X and Y chromosomes) and the wateRmelon package [42], respectively. Principal
component analysis (PCA) was performed in order to observe the overall structure of
the batches, as well as to identify outliers. Forty-one WDSTS samples having pathogenic
variants in the KMT2A gene with confirmed diagnosis of the syndrome (labelled as WDSTS)
were used as the case training set. Eighty-two (case to control ratio of 1:2) age, sex, and
array type-matched control samples were selected from the EKD [22] using the MatchIt
package [43,44] as the control training set. We performed a PCA subsequent to every
matching round to detect outliers and examine the data structure, and removed outlier
samples as well as samples with irregular data structure at each trial. This process was
iterated until no outlier was observed in the first two components of the PCA.

4.3. DNA Methylation Profiling of WDSTS Syndrome

The procedure of differentially methylated probe selection was performed in accor-
dance with previously published articles [22,45]. Methylation levels, called β values, for
each probe were calculated as the ratio of methylated signal intensity to the sum of methy-
lated and unmethylated signal intensities. These values were then converted to M values
using logit transformation by the formula log2 (β/(1-β)) in order to obtain homoscedas-
ticity for use in linear regression. Using the limma package [46], we performed linear
regression and moderated the obtained p-values with the eBayes function. The DMPs
from the comparison between case and control groups were selected in the following three-
step process. First, 500 probes with the highest product of methylation difference means
between the two groups and the negative of the logarithm of multiple-testing corrected
p-values derived from the linear modeling by Benjamini–Hochberg (BH) method were
selected. Subsequently, a receiver’s operating characteristic (ROC) curve analysis was
performed and 250 probes with the highest area under the ROC curve (AUROC) were
retained. Finally, those probes with a pair-wise correlation >0.85, within the case and
control samples separately, which was measured using Pearson’s correlation coefficients
were removed. This resulted in identification of 207 probes, which were considered as the
DNA methylation signature for the WDSTS. In order to examine the robustness of this
episignature in differentiating between case and control samples, unsupervised models
were applied on the 207 DMPs. They include hierarchical clustering which was performed
using Ward’s method on Euclidean distance as well as MDS analysis which was performed
by scaling of the pair-wise Euclidean distances between samples. Then, 41 rounds of cross-
validation were performed on MDS plot from the 41 WDSTS samples, of which 40 samples
were used as the training set and a single sample was used as the testing set at each round.

4.4. Construction of a Classification Model for WDSTS Syndrome

Using the selected DMPs, a binary SVM with linear kernel was constructed by the e1071
package as described previously [22,23,47]. In order to obtain the best hyperparameter
(cost) and to assess the accuracy of the classifier, a 10-fold cross-validation was performed
during training. In 10-fold cross-validation, at each round, 90% of the samples were used
for training and the remaining samples for testing. The model provides an MVP score,
ranging from 0 to 1, for each sample. Scores near 1 indicate a high similarity between the
methylation profile of that sample and that of the identified episignature, while scores near
0 indicate a low similarity. In order to evaluate the specificity of the classifier, more than
1700 samples with other neurodevelopmental syndromes from the EKD [22] were added to
the model.
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4.5. Classification of Kabuki1 Samples with Pathogenic KMT2D Variants as well as WDSTS
(Testing) Samples

To assess the similarity of the methylation profiles of 74 Kabuki1 samples (Table S1) [22]
and perform episignature analysis and variant classification in 19 WDSTS (testing) samples,
both hierarchical clustering and MDS analysis were reconstructed using the initial WDSTS
and 82 control samples as the training set, plus the 19 WDSTS (testing) and 74 Kabuki1
samples as the testing set.

4.6. Identification of the Differentially Methylated Regions of WDSTS Syndrome

In order to identify the regions that are differentially methylated between the subjects
with WDSTS and controls, we used the DMRcate package [48] and selected regions con-
taining a minimum of 3 CpG sites within 1 kb with at least 10% methylation difference
between the case and control groups and a Fisher’s multiple comparison p-value < 0.01.

5. Conclusions

In conclusion, the identified WDSTS DNA methylation episignature is added to the
list of Mendelian NDDs with known DNA methylation episignatures that can be used
for screening and diagnosis of NDD patients. KMT2A pathogenic variants may disturb
the normal process of H3K4me3 deposition coupled at gene promoters. The methylome
analysis did highlight a substantial change in the global methylation pattern in WDSTS
samples, and resulted in 87% hypomethylated and 13% hypermethylated probes. Our
studies reported that the expression of several homeobox containing genes (including HOX
or HOX-related genes) is consistently altered in the blood of WDSTS patients. If also present
in other tissues, dysregulation of normal methylation of homeobox gene expression may
explain part of the ID, facies and associated malformations observed in WDSTS patients.
These provide novel insights into the molecular etiology of WDSTS and likely explain the
broad phenotypic spectrum of the disease.
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