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Toxin–antitoxin (TA) systems, which are ubiquitously present in plasmids, bacterial
and archaeal genomes, are classified as types I to VI, according to the nature of the antitoxin
and to the mode of toxin inhibition [1–5]. TA systems are not essential for normal cell
proliferation, but they control a diverse repertoire of cell transition states in response to
various environmental stresses [1–5]. In order to survive such stress, cells slow down their
growth rate and redirect their metabolic resources until conditions improve and growth
can increase [6]. During unperturbed growth, the effect of a type II toxin is neutralized
by its binding to a cognate antitoxin, but under certain stress conditions, the unstable
antitoxin is rapidly degraded, enabling the stable toxin to reversibly block cell proliferation,
without cell lysis [1,2]. The free toxin triggers a dormant state, thus protecting cells from
deleterious environments [1,2]. The toxins are bacteriostatic unless neutralized by their
cognate antitoxin. Indeed, when the stress is overcome, the levels of the antitoxin rise, the
toxin is neutralized and the cell returns to unperturbed growth [1–5]. Toxins are implicated
in the fine tuning of multiple cellular processes, such as transcription, translation, DNA
replication, the regulation of nucleotide pool, cell-wall synthesis, biofilm formation, phage
predation, etc. [1–5].

This Special Issue is focused on understanding the unique response of TAs to stress,
the contribution for the maintenance of drug-resistant strains, and their contribution to
therapy failure and the development of chronic and recurrent infections. Understanding
how TAs contribute to the mechanisms of phenotypic heterogeneity and pathogenesis
may enable the rational development of new treatment for infections caused by pathogens.
A review paper provides a good overview of how the widespread family of membrane
active peptides, Fst/Ldr, is regulated by small RNAs in the TA type I system [7]. Weaver’s
review shows that the regulation of the Fst and Ldr toxins is distinct in their respective
Gram-positive and Gram-negative hosts, but the effects of ectopic over-expression are
similar. Limited toxin expression could conceivably function to slow bacterial growth and
halt cell proliferation, playing its canonical role in plasmid stabilization [7].

A manuscript and a review describe specific aspects of the tight control that the
TA interaction requires to ensure protection of the cell, and potentially to limit cross-
talk between TA pairs of the same family. While each toxin interacts with its cognate
antitoxin, TA systems from the same family might present non-cognate interactions and
regulate the expression of non-cognate systems. Tandon et al. performed a comprehensive
computational analysis on the available 3D structures and generated structural models
of paralogous of VapBC and MazEF TA systems [8]. They concluded that for a majority
of the systems, the non-cognate TA interactions are structurally incompatible, except for
complexes such as VapBC15 and VapBC11, which show similar interfaces and a potential
for cross-reactivity. This work contributes to the understanding of TA interfaces and
it offers a structure-based explanation for non-cognate toxin–antitoxin interactions [8].
Tu et al. revised the concept that a toxin paralogue may provide a “cure” against the
acquisition of highly similar TA systems, such as those found on plasmids or invading
genetic elements that frequently carry virulence and resistance genes [9]. Only limited
cross-reactions have been observed between chromosomal and mobile genetic elements
systems, perhaps due to bias in the type of experiments and functions of TA systems
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pursued. The Ariyachaokun et al. paper examined the expression of the mbcAT operon and
its regulation [10]. The Mycobacterium tuberculosis type II MbcT toxin halts cell proliferation
through the phosphorolysis of the essential metabolite NAD+, and its effect is neutralized
by physical interaction with its cognate antitoxin MbcA. The authors developed a dual
fluorescent reporter system, which was used to dissect the operon promoter/operator
region at the genetic level. Using this system, it was demonstrated that transcription from
the PmbcA promoter is induced by a range of stress conditions, reflecting those encountered
inside the infected host and uncovering that this TA system could be exploited to treat
tuberculosis [10].

Two papers within this Special Issue are focused on different aspects of toxins of
the MazF/PemK superfamily that cleaves mRNA in a sequence-specific and ribosome-
independent manner [11,12]. Kang et al. conducted an in-depth structural and functional
analysis on the mRNA interferase (RNase) of the MazF/PemK family in Bacillus cereus [11].
Bleriot et al. studied the molecular mechanisms associated with chlorhexidine (CHLX)
adaptation in two clinical strains of Klebsiella pneumoniae by phenotypic and transcriptomic
analyses and their association with a new PemK/PemI TA system [12]. Klimkaitè et al. have
found by bioinformatic analysis 49 putative TA systems in Stenotrophomonas maltophilia,
and asked whether clinical and environmental isolates contain a different set of type II TA
systems [13]. The authors observed that RelBE, HicAB, and the previously undescribed
COG3832-ArsR operon were present solely in clinical S. maltophilia isolates collected in
Lithuania, while HipBA was more frequent in the environmental ones. The paper by
Moreno-Del Alamo et al. explores toxin ζ, which reduces the ATP and GTP levels, increases
the (p)ppGpp and c-di-AMP pool and inactivates a fraction of uridine diphosphate-N-
acetylglucosamine (UNAG), transiently inducing reversible dormancy. The authors, using
a genetic orthogonal control of toxin ζ and antitoxin ε levels in B. subtilis cells, have shown
that transient toxin ζ expression causes a metabolic heterogeneity that induces toxin and
Amp dormancy over a long window of time rather than cell persistence. Antitoxin ε
expression, by reversing ζ activities, facilitates the exit of Amp-induced dormancy both in
rec+ and recA cells. It has been proposed that an unexploited target to fight against antibiotic
persistence is to disrupt toxin–antitoxin interactions [14]. Lastly, the paper by Tuchscherr
et al. examined how the TA systems could be developed as targets for novel antimicrobials,
and discussed possible undesirable effects of such therapeutic intervention, such as the
induction of persister cells, biofilm formation and toxicity in eukaryotic cells [15].
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