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Abstract: Circadian rhythms are essential for the survival of all organisms, enabling them to predict
daily changes in the environment and time their behaviour appropriately. The molecular basis of such
rhythms is the circadian clock, a self-sustaining molecular oscillator comprising a transcriptional–
translational feedback loop. This must be continually readjusted to remain in alignment with the
external world through a process termed entrainment, in which the phase of the master circadian
clock in the suprachiasmatic nuclei (SCN) is adjusted in response to external time cues. In mammals,
the primary time cue, or “zeitgeber”, is light, which inputs directly to the SCN where it is integrated
with additional non-photic zeitgebers. The molecular mechanisms underlying photic entrainment
are complex, comprising a number of regulatory factors. This review will outline the photoreception
pathways mediating photic entrainment, and our current understanding of the molecular pathways
that drive it in the SCN.
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1. Introduction

The lives of most organisms on Earth, from bacteria to humans, are governed by the
daily environmental changes that occur across the day/night cycle. In response, life has
evolved an internal timing system, the circadian clock, to anticipate these changes and
fine-tune physiology and behaviour to the varied demands of day and night.

The core circadian clock consists of an autoregulatory transcriptional-translational
feedback loop (TTFL) whereby the transcription factors CLOCK and BMAL1 heterodimerise
to drive expression of Per and Cry genes via E-box response elements [1]. PER and CRY
proteins, within a protein complex, then feedback to suppress their transcription by inhibit-
ing CLOCK:BMAL1 activity (Figure 1). The degradation of PER and CRY reverses this
inhibition and the TTFL restarts. The result is a near 24 hour (h) oscillation in PER/CRY
production and breakdown. It is now known that this core TTFL is at the centre of a
complex network of additional feedback loops, which interact to regulate the precision and
stability of the circadian clock (reviewed in [2]).

In humans and mice, the endogenous circadian clock cycles with a period slightly
greater or less than 24 h, respectively. As a result, the clock must be continually read-
justed to remain in alignment with the external world. This is achieved through a process
termed entrainment using external time cues called “zeitgebers”. In mammals, entrainment
begins by adjusting the phase of the master clock in the suprachiasmatic nuclei (SCN).
The SCN in turn entrains the peripheral clocks throughout the body into a global align-
ment of the circadian system. In mammals, including humans, the primary zeitgeber is
the changing light environment at dawn and dusk, which is transmitted directly to the
SCN [3,4] (Figure 1). Within the SCN, light information is integrated with signals from a
range of other non-photic zeitgebers including food, temperature and sleep, to align the
biological and environmental day [5].

Such an alignment allows organisms to deliver the correct materials, in the correct con-
centration to the correct organ systems at the optimal time of day. This “fine-tuning” of biol-
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ogy is essential for survival. Without entrainment of the circadian system all “fine-tuning”
is lost and physiology and behaviour drifts into chaos, termed “internal desynchrony”.
Despite the critical importance of entrainment, the mechanisms that drive these pathways
remain only partially understood. This review will outline our current understanding of
the molecular mechanisms underlying photic entrainment, and discuss recent advances in
how light signals are integrated with other non-photic zeitgebers.

Figure 1. The circadian clock. The core circadian clock consists of a molecular transcriptional-
translational feedback loop in which the transcription factors, CLOCK and BMAL1, heterodimerise
and induce expression of the core clock genes, Per and Cry, via E-box response elements. PER
and CRY then feedback onto CLOCK and BMAL1 by inhibiting their transcriptional activity. This
feedback loop cycles with a period of around 24 h, therefore it must be continually readjusted to be
aligned with the external world. The primary time cue for this is the daily light/dark cycle. Light
information is transmitted via the retinohypothalamic tract (RHT) directly to the master clock in the
suprachiasmatic nucleus (SCN).

2. Phase Shifting of the Clock

Light is a powerful zeitgeber which can shift the phase of the circadian clock. However,
the effects of light vary depending on the time of light exposure. Light detected during
the twilight hours of dawn and dusk has the greatest impact, whilst light delivered during
daytime has very little effect [6]. A key point is that the effects of light at dawn vs. dusk
have opposite effects. Light exposure during the late night (dawn) will result in a phase
advance of activity onset, therefore the animal will start its activity earlier the following
day. Whereas light administered during the early night (dusk) will cause a phase delay in
activity [7,8]. Such differential effects of light are represented as the “phase response curve”
(PRC), an example of which is illustrated in Figure 2. Similar differential responses (PRCs)
are seen across all organisms, including in both nocturnal and diurnal mammals. Although
the size of the delays and advances vary between species, in all PRCs delays result from
dusk light exposure, whilst advances occur after dawn light exposure. Overall entrainment
is achieved by the summation of phase delays and phase advances.
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Figure 2. The phase response curve. The phase response curve demonstrates the effect of light
exposure at different times of the circadian cycle on the phase of the circadian clock. Light delivered
during the subjective day, the ‘dead-zone’ will have no effect on the phase of the clock (A). Light
exposure during the early subjective night will lead to delays in the phase of the clock (B). Whereas
light exposure at the end of the subjective night will lead to phase advances (C). This is demonstrated
by representative actograms showing free running rest/activity rhythms (panels A–C); black bars
represent periods of activity and black lines indicate rest.

3. Photoreception for Entrainment

In mammals, light input to the SCN is provided exclusively by the retina via the
retinohypothalamic tract (RHT). Photoentrainment is abolished in blinded (enucleated)
mammals [9–11], and in contrast to other vertebrates, mammals appear to lack extra-retinal
photoreceptors [12]. However, the primary photoreceptors responsible for photoentrain-
ment are not the rods and cones but a ‘third’ class of photoreceptor based upon a small
number of photosensitive retinal ganglion cells (pRGCs) that utilise the photopigment
melanopsin (OPN4) [13]. This was demonstrated by studies showing that circadian re-
sponses to light are intact in mice lacking rod and cone photoreceptors [14,15], but are
impaired following ablation of the melanopsin gene, Opn4 [16,17]. Nonetheless, it is only
in the absence of all three photopigments (rod, cone and melanopsin) that circadian entrain-
ment is completely abolished [18,19], demonstrating that rods and cones can contribute to
photoentrainment in the absence of melanopsin.

For example, transgenic mouse studies have demonstrated that rod photoreceptors can
partially mediate entrainment under scotopic (very dim) light levels [20,21]. This finding is
consistent with the observation that rods drive electrical responses in light-sensitive SCN
neurons under low light conditions [22]. In addition, studies have also shown that UV light
detected by UV-sensitive cone photoreceptors (S-cones) will induce electrical responses in
the SCN, along with phase-shifts in circadian activity rhythms [23,24]. Significantly, this
input is sufficient for entrainment in the absence of melanopsin and rod photoreceptor
signalling [25]. Finally, photoentrainment will occur following stimulation of the green-
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light sensitive M-cones. However, patterns of entrainment are not identical following
OPN4, S-cone and M-cone stimulation, suggesting that different photoreceptor classes
are “tuned” to the different features of the twilight transition. Indeed, recent evidence
suggests that input from cones signals information on the spectral composition (colour) of
light to the SCN, through activation of colour-sensitive neurons which can drive circadian
phase and modulate entrainment [26,27]. This is thought to contribute to the detection of
twilight transitions, during which there is a shift in the spectral environment to shorter
wavelengths [28,29], which may act to support circadian entrainment under unreliable
light intensity conditions. It is worth stressing that the melanopsin-expressing pRGCs are
required to relay the rod and cone input to the SCN. If the pRGCs are specifically ablated in
mice with intact rod and cone photoreceptors, photoentrainment is lost [30,31]. As a result,
under normal circumstances, photoentrainment is achieved as a result of an integrated
light input from all three photoreceptor classes, each encoding different aspects of the light
environment at twilight.

4. Photosensitive Retinal Ganglion Cells (pRGCs)

The pRGCs represent a diverse population of cells consisting of five known subtypes
(M1-M5) and a recently discovered sixth (M6), classified based on their anatomical and
morphological differences [32,33]. They also exhibit distinct electrophysiological properties
and mediate different light responses in addition to photoentrainment, including pupil
constriction, sleep induction, masking, alertness and mood [12]. This appears to be achieved
through diverse axonal projections to the SCN and multiple other brain targets. However,
currently, the functional roles of each subtype remain poorly defined. A further complexity
within these subpopulations has been demonstrated recently by the identification of distinct
gene expression profiles by single cell transcriptomics [34]. Despite this diversity, retrograde
tracing has identified the pRGC subtypes that mediate entrainment, with the majority of
projections to the SCN attributed to M1 cells and a small proportion to M2 cells [35].
These subtypes vary in their expression of the two isoforms of melanopsin; M1 cells
express both the short (OPN4S) and long (OPN4L) isoform, whereas M2 cells express
only OPN4L [36,37]. In line with this, both isoforms have been shown to be required for
photoentrainment [38]. Notably, it is a specific subset of just 200 M1 pRGCs that innervate
the SCN, which are molecularly distinct to those projecting to other brain regions as they
lack Brn3b expression [39]. Furthermore, gene expression patterns suggest that there are
molecularly diverse subpopulations within this subset of M1 cells [34]. Further studies are
required to determine whether these “molecular subpopulations” are sufficiently stable to
constitute robust subdivisions of M1 pRGCs.

5. Molecular Photoentrainment of the Suprachiasmatic Nuclei (SCN)

Retinal innervation of the SCN from the pRGCs is via the monosynaptic pathway of
the RHT, the primary neurotransmitters of which are glutamate and pituitary adenylate
cyclase-activating polypeptide (PACAP) [40]. Light-induced glutamate and PACAP release
results in a rise in Ca2+ and cAMP levels, which in turn initiate a suite of kinase-based
signalling cascades involving protein kinase A (PKA), protein kinase C (PKC), protein ki-
nase G (PKG), mitogen-activated protein kinase (MAPK) and Ca2+/calmodulin-dependent
protein kinase II (CaMKII) [41]. The primary mechanism for entrainment is considered
to be the activation of the transcription factor cAMP response element-binding protein
(CREB), through phosphorylation at Ser133 and Ser142 [42,43], which then modulates the
transcription of the clock genes Per1/Per2 (Figure 3). The light-induced upregulation of
Per1/2 adjusts the TTFL which shifts the phase of the clock into alignment with the external
light/dark cycle. The phase at which light-induced Per1/2 upregulation occurs will deter-
mine the direction of the phase shift. As outlined above, dawn light exposure will lead to a
phase advance in the clock, whereas dusk light exposure will lead to a phase delay [7,44].
Whilst the molecular pathways underlying both delays and advances are broadly similar
and rely on cAMP-CREB transcription, there are key differences. Per1/Per2 expression
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within the SCN is rhythmic, overall both genes are elevated during the day and low at night.
Light at dawn acutely increases Per1 transcription thus advancing the onset of the rhythm
in Per1, whilst light at dusk increases Per2 stability, thus delaying the offset of the Per2
rhythm [45]. Furthermore, Ca2+ release by ryanodine receptors only correlates with phase
delays [46], whilst the increase in cyclin GMP (cGMP) and activation of cGMP-dependent
kinase (PKG) characterises phase advances [47,48]. Accordingly, sildenafil, which inhibits
cGMP-specific phosphodiesterase 5, enhances photic phase advances in hamsters [49].

Figure 3. Molecular photoentrainment of the SCN. The light-induced release of glutamate and
pituitary adenylate cyclase-activating polypeptide (PACAP) from the RHT nerve terminals leads to a
rise in intracellular Ca2+ and cAMP levels in the SCN. These trigger a cascade of events including
activation of protein kinase A (PKA), which activates the transcription factor cAMP response element-
binding protein (CREB), together with co-activators such as CREB-regulated transcription coactivator
1 (CRTC1). This leads to the upregulation of CRE-driven genes, including the core clock component,
Per1 (1). In addition, Sik1 is upregulated, which feedbacks on the CREB pathway by phosphorylation
of CRTC1. This deactivates CRTC1 leading to a decline in CREB-induced gene transcription and
therefore a decline in Per1 expression (2). In parallel, the activation of ERK1/2 by Ca2+ influx leads to
the upregulation of the immediate-early transcription factors JUN and FOS. These heterodimerise to
form AP-1, which drives Per2 transcription leading to an increase in Per2 expression (3). Adenosine,
which accumulates in the extracellular space during wakefulness, modulates these light-activated
signalling pathways. Adenosine predominantly signals through the Gi (inhibitory) coupled A1

receptor in the SCN, which results in a decrease in intracellular cAMP and Ca2+ levels, and therefore
a downregulation of the subsequent signalling events (4). Figure created with BioRender.com.

The light-regulated transcriptome comprises hundreds of genes, including immediate
early genes (IEGs) and CREB target genes [50,51]. Undoubtedly, the most important of
these are Per1 and Per2, but other elements of this transcriptome also play an important
role. IEGs are part of the transcriptional network controlling Per1/2 transcription. Per1 is
rapidly upregulated within 30 min of light exposure, whereas Per2 induction is slower with
a timeframe of several hours [44]. Recent evidence suggests this is due to the induction of
Per1 by CREB, and the induction of Per2 by a parallel pathway involving the activation of
ERK1/2 by Ca2+ influx, leading to upregulation of the immediate-early transcription factors
JUN and FOS [52]. These then heterodimerise to form AP-1, which drives Per2 transcription
and other genes containing AP-1 response elements (Figure 3). In addition, other light-
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regulated IEGs have also been shown to regulate photic input; Npas4 is upregulated by light
within the SCN and regulates the expression of multiple genes including Per1. Npas4−/−

animals show unstable photic entrainment and reduced phase-shifting in response to
light [53]. In addition, the light-regulated transcriptome also includes multiple kinases and
phosphatases, such as Sik1 and Dusp4 [54], which are part of the cascade regulating light
responses within the SCN, and thus photic entrainment. It is clear that whilst the role of a
notable fraction of the light-regulated transcriptome can be linked to photoentrainment,
the functional role of much of this light-regulated transcriptome remains unknown.

6. Gating the Light Sensitivity of the Clock

The molecular light responses of the SCN are regulated throughout the day/night
cycle such that the SCN responds to resetting signals in a time-dependent manner. Central
to this is the gating of the light-induced phosphorylation of CREB, which is limited to
nocturnal hours and, therefore, light exposure during the subjective day has little or no
effect upon Per1/2 expression [42,55]. The signalling pathways mediating this are currently
poorly understood, however vasoactive intestinal peptide (VIP) is thought to be necessary
for photic gating [56], and recent evidence has demonstrated that it acts via DUSP4, a
negative regulator of ERK1/2 [54]. VIP-expressing neurons receive direct innervation from
the retina, and VIP signalling is necessary for maintaining the synchronisation of circadian
oscillations across the SCN network [57,58]. Interestingly, another negative regulator
of ERK1/2, the Ras-like G-protein DEXRAS1, has also been shown to be necessary for
photic gating. Transgenic mouse studies found that loss of DEXRAS1 altered the phase-
dependent light sensitivity of the clock, with daytime light pulses inducing phase shifts
in activity [59,60]. Therefore, inhibitors of ERK1/2 appear to be important for blocking
light-induced responses of the SCN during the day. Overall, this gating of the SCN response
to light acts to limit the impact of transient fluctuations in the light environment on the
clock, which may otherwise result in desynchronization with the light/dark cycle.

The effect of light on the circadian system is not equal at all times, it varies with
both time of day (see discussion on the PRC above) and physiological state. The shape
of the PRC varies with the temporal niche occupied by the organism, nocturnal animals
typically display large delays at dusk, but smaller advances at dawn, whereas the reverse
is true for diurnal animals [6]. Furthermore, sleep history impacts photic responses; sleep
deprivation reduces both light-induced electrical activity within the SCN [61] and the size
of resulting phase shifts in mice [62,63] and humans [64], although exceptions exist; sleep
deprivation potentiates photic phase shifts in the diurnal rodent, Arvicanthus ansorgie [65].
The molecular mechanisms underlying these observations can in part be attributed to
adenosine signalling. Adenosine, as a by-product of ATP metabolism, accumulates in
the extracellular space in a manner correlating with wake time [66,67]. It then activates
signalling from adenosine receptors, which are predominantly the A1 (Gi-coupled) and
A2A (Gs-coupled) receptors in the SCN. Such G protein-coupled receptor (GPCR) signalling
converges on the same pathways that are activated by light, specifically cAMP-CREB
and Ca2+-ERK1/2-AP-1, thus resulting in Per1/2 upregulation. As the A1 receptor is the
dominant form within the SCN, elevated adenosine, as occurs following sleep deprivation,
inhibits the effect of light on the circadian system (Figure 3), whilst adenosine A1/A2A
antagonists enhance photic responses [52]. Caffeine, which has A1/A2A antagonism prop-
erties, both enhances photic shifts in humans and counters the effects of sleep deprivation
on the clock in mice [52,63,68,69]. This pathway provides a molecular framework by which
the major drives that control sleep/wake transitions interact, namely the circadian (Process
C) and homeostatic (Process S) drives [70,71], thus allowing sleep history to shape photic
entrainment processes [52].

7. Buffering Photoentrainment

Another key feature of photoentrainment is that re-entrainment to a shifted light/dark
cycle is slow, taking several days. It is typically limited to one hour per day in most mam-
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mals [72]. This mechanism acts to limit the size of phase shifts to “buffer” the circadian
system from extreme shifts which may result in internal desynchronization. This buffering
is thought to be due to the constrained induction of Per1 by light. After Per1 mRNA is
induced by light it peaks at 1 h before returning to baseline after 3 h [73]. This suggests that
CREB-mediated transcription is curtailed shortly after its induction by light. This inhibition
has been shown to be driven by the CRTC1-SIK1 pathway, whereby light induces transcrip-
tion of CREB-regulated transcription coactivator 1 (CRTC1), which then co-activates CREB
inducing expression of Per1 and Sik1 [50]. SIK1 then phosphorylates CRTC1 leading to
its deactivation and, therefore, the decline in Per1 transcription (Figure 3). The net result
is that SIK1 acts as a “brake” on the induction of Per1. This has been demonstrated at a
behavioural level through RNAi knockdown of Sik1 in the SCN of mice. Following a 6 h
advance of the light/dark cycle there was a rapid re-entrainment in Sik1 knockdown mice
compared to controls [50]. This rapid re-entrainment is also observed in transgenic mice
expressing a catalytically inactive version of SIK1 [74].

In addition, the activation of Per1 expression by CLOCK:BMAL1 binding at the E-
box response element is also subject to modulation to limit light-induced Per1 expression.
Transgenic mouse studies suggest that the transcriptional repressor, ID2, interacts with
CLOCK:BMAL1 to limit Per1 induction and circadian responses to light; in the absence of
Id2, mice show rapid re-entrainment to phase delays which is accompanied by elevated
light-induced Per1 expression [75,76]. ID2 is thought to act by sequestering CLOCK and
BMAL1 to the cytoplasm [77]. Interestingly, recent evidence suggests that another member
of the same family, ID4, is also involved in photic entrainment but with opposing effects to
ID2 [78].

The regulation of PER stability is another target for buffering the effects of light on the
clock. For example, there is evidence that another member of the SIK family, SIK3, may
participate in this process. In vitro experiments have shown that phosphorylation of PER2
by SIK3 regulates the abundance of PER2 by promoting its degradation [79]. Transgenic
mouse studies suggest that this is important at the behavioural level, with Sik3−/− mice
exhibiting significant phase delays and lengthened circadian periods. This suggests that
the two SIK isoforms regulate circadian entrainment via distinct substrates and signalling
pathways. However, different SIK mouse models yield conflicting results; gain of function
mutants of Sik1 [80] or Sik3 [81] do not show deficits in circadian behaviour, however gain
of function kinase models cannot fully capture a kinase’s function. Such models cannot
describe how each kinase is endogenously regulated, and the context in which they are
activated, as they are “always on”.

Moreover, the SIK family of kinases is also now known to regulate sleep through a
pathway involving phosphorylation of synaptic proteins [82]. Mice with a gain of function
mutation in Sik3 have a constitutively elevated sleep need, associated with hyperphos-
phorylation of proteins at the synapse [81,82]. Such protein phosphorylation is also seen
following sleep deprivation [83], suggesting that the action of SIK on synaptic proteins
provides a molecular substrate for sleep. The regulation of SIK1 by light appears also
to regulate a similar set of substrates, thus leading to the induction sleep in mice [74].
Thus, it appears that the SIK family of kinases play an important role in transducing both
environmental and physiological signals to both the sleep and circadian systems in parallel
in order to adjust sleep/wake timing.

PER stability is also modulated by the key clock component casein kinase 1 (CK1),
which phosphorylates PER1, PER2 and PER3 to target these proteins for degradation [84,85].
This action is thought to underpin the role of CK1 as a regulator of the speed of the
TTFL [86,87]. Furthermore, lack of CK1ε leads to faster re-entrainment following both
phase advances and delays of the light/dark cycle [88]. This suggests that CK1ε limits the
light-induced accumulation of PER in the SCN, which in turn limits the size of behavioural
phase shifts.

In addition to the cell autonomous molecular clockwork, light can directly affect
circuit level properties of the SCN. Much of the robustness of SCN rhythms is attributed
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to the tight coupling between the cells of the SCN through the neurotransmitters arginine
vasopressin (AVP), VIP and GABA. These are expressed by discrete cell types within the
SCN, with AVP restricted largely to the shell region and VIP to the core, where input from
the RHT is localised. Light input activates VIP neurons, which in turn activate other regions
including the AVP neurons and dorsomedial hypothalamus, thus regulating circadian
rhythms of rest and activity [54,89]. The ablation of vasopressin V1a and V1b receptors
or their blockade resulted in reduced synchrony amongst the SCN cells and more rapid
entrainment to a shifted light/dark cycle [90]. Whilst AVP/VIP-mediated coupling confers
great stability on SCN rhythms, it is also believed to confer rigidity, or inertia to resetting.
The temporary loss of this coupling would allow the individual neurons to unlock their
phase coupling and, therefore, achieve greater shifts, as illustrated by the studies above.

8. Concluding Remarks

It is clear that the molecular basis of photic entrainment in the SCN is complex. Whilst
the classical cAMP-CREB-PER pathway plays a central role, recent advances have identified
additional key signalling pathways and regulators that act in parallel. Collectively, these
pathways regulate the phase-shifting effects of light on the clock, thus making circadian
entrainment a gradual and carefully controlled process. Significantly, major progress has
been made in our understanding of the interaction between sleep and circadian entrain-
ment, which has revealed molecular cross-talk between these two processes and further
strengthened their close bidirectional relationship.
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