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Abstract
Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation

of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and

physiological stage, we examined the effect of dietary protein concentration, pig genotype,

and physiological stages on amino acid (AA) pools, protein deposition, and related signaling

pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48

pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese

conventional diet)- or higher/NRC (National Research Council)-protein diet. Diets were fed

from 5 weeks of age to respective market weights of each genotype. Samples of biceps
femorismuscle (BFM, type I) and longissimus dorsimuscle (LDM, type II) were collected at

nursery, growing, and finishing phases according to the physiological stage of each geno-

type, to determine the AA concentrations, mRNA levels for growth-related genes in mus-

cles, and protein abundances of mechanistic target of rapamycin (mTOR) signaling

pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs

increased (P<0.05) gradually with increasing age. Bama mini-pigs had generally higher

(P<0.05) muscle concentrations of flavor-related AA, including Met, Phe, Tyr, Pro, and Ser,

compared with Landrace pigs. The mRNA levels for myogenic determining factor, myo-

genin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were

higher (P<0.05) than those of Landrace pigs, while total and phosphorylated protein levels

for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K), and ratios of

p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05). There was a
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significant pig genotype-dependent effect of dietary protein on the levels for mTOR and

p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet

increased (P<0.05) the levels for mTOR and p70S6K in Bama mini-pigs, but repressed

(P<0.05) the level for p70S6K in Landrace pigs. The higher protein-NRC diet increased

ratio of p-mTOR/mTOR in Landrace pigs. These findings indicated that the dynamic conse-

quences of AA profile and protein deposition in muscle tissues are the concerted effort of

distinctive genotype, nutrient status, age, and muscle type. Our results provide valuable

information for animal feeding strategy.

Introduction
It is economically important to increase the rate and speed of skeletal muscle growth in animals
raised for meat including pigs. The growth of animals is a net result of complicated metabolic
and physiological network including synthesis and utilization of amino acids (AA) [1], intra-
cellular protein turnover and deposition, as well as their regulation by nutrients, age, endocrine
and exocrine secretion and other factors. The skeletal muscle, which accounts for 20–50% of
total body mass among the different pig genotypes, is the major metabolic tissue, contributing
up to 40% of the resting metabolic rate in adult pigs [2,3]. In addition, muscle cell lineage deter-
mination and differentiation require coordinated extracellular and intracellular signaling
events that converge upon the nuclear genome to coordinate, depending on the intracellular
content composition, specific patterns of gene expression required for normal cellular homeo-
stasis [4]. Such programs of gene transcription require cell-specific and more widely expressed
DNA binding transcription factors and their attending co-regulators that act on the epigenome
for appropriate control of gene expression [5].

Dietary AAs are not only substrates for protein synthesis but also exert signaling effects on
muscle protein deposition [6–13]. It is well known that cell signaling via the mechanistic target
of rapamycin (mTOR; a highly conserved serine/threonine protein kinase) is a major mecha-
nism for regulation of protein synthesis in cells [14]. The mTOR integrates extracellular sig-
nals, then phosphorylates the downstream targets, such as p70 ribosomal protein S6 kinases
(p70S6K) and eukaryotic initiation factor 4E binding protein 1 (EIF-4EBP1). These coordi-
nately affect gene transcription and protein translation, which are involved in the regulation of
cell growth, proliferation and differentiation. Recently, mTOR was found to act as a sensor for
cell growth regulated by AA [15,16]. Since chronic feeding of a low-protein diet could impair
translation initiation activation and reduce protein synthesis through the mTOR signaling
pathway in pigs [17], supplementation strategy with crystalline AA to low-protein diet was
reported to be efficient for stimulating tissue protein synthesis via the mTOR pathway [8,18].
Thus, dietary protein concentration, especially level of protein or free AA, is very important as
a modulator for the protein deposition and muscle growth.

Genetic background can influence growth and nutrient requirements in animals, including
pigs. Bama mini-pig (Sus scrofa domestica), a Chinese indigenous mini-pig breed located in
Bama County, Guangxi Province of China produces high-quality meat. Landrace is a fast-
growing lean genotype with commercial traits. In our previous investigations [10], Landrace
pigs showed faster growth rate and better muscle growth than Bama mini-pig. In contrast,
Bama mini-pigs presented higher quality meat traits but more fat deposition capacity together
with lower growth rate than Landrace pigs. Therefore, finding the optimal balance between
economic aspect of pig production and meat nutritional quality is the goal of many researchers.
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Pig skeletal muscle fiber type varies with anatomical location. For example, biceps femorismus-
cle (BFM) and longissimus dorsimuscle (LDM) mainly contain type I and type II fiber, respec-
tively [19]. We hypothesized that the difference between these two genotypes of pigs in their
muscle growth, meat quality, and intermuscular adipose deposition [10] may lead to dietary
protein-dependent differences in protein deposition and related signaling pathways in different
types of skeletal muscles. The main objective of the current study was to evaluate the effects of
genotype, diet, and age on protein deposition, and growth of different muscle fiber types as
well as the associated regulating signaling pathways.

Materials and Methods

Animals, diets, and treatments
Ninety-six barrows [48 purebred Bama mini-pigs (fatty type; average initial body weight (BW),
3.38 ± 0.96 kg), and 48 Landrace pigs (lean type; average initial BW, 7.68 ± 0.89 kg)] were fed
from 5 weeks of age up to market weight. The experiment was a 2 × 2 factorial arrangement,
with 2 genotypes (Bama mini-pigs vs. Landrace pigs) and 2 dietary protein levels (NRC diet vs.
lower protein-Chinese conventional diet [GB]), resulting 4 different treatments (Table 1). The
piglets from each genotype were randomly assigned to one of the two dietary treatments, with
24 piglets in each treatment. The NRC diets were formulated to meet NRC [20] recommended
nutrient requirements, whereas the lower protein-GB diets were formulated to meet recom-
mendations of Chinese National Feeding Standard for Swine [21], and with a protein level of
the latter being lower than the former (Table 2). The AA compositions in each diet which were
determined according to our previous method [22] are shown in Table 3. All animals were
individually housed in 0.6 m × 1.2 m pens with hard plastic slatted flooring [23]. Each pen was
equipped with a stainless-steel feeder and a nipple drinker [24]. The room temperature was
maintained at 25–27°C [25]. All pigs had ad libitum access to drinking water, and were fed
three times daily (0800, 1300, and 1800). Dietary phase was based on the physiological stage of
pigs [26].

The experiment was carried out in accordance with the Chinese guidelines for animal wel-
fare and experimental protocols, and approved by the Animal Care and Use Committee of the
Institute of Subtropical Agriculture, the Chinese Academy of Sciences.

Sample collection
Body weight ranges for nursery, growing, and finishing phases were defined as 7–20, 20–50,
and 50–90 kg, respectively, for Landrace pigs, and 3–15, 15–35, and 35–55 kg, respectively, for
Bama mini-pigs (Table 1). At the end of each phase, 8 pigs from each treatment were randomly

Table 1. Experimental design.

Item Landrace pig Bama mini-pig

GB diet group NRC diet group GB diet group NRC diet group

Nursery phase1 GB diet 1 NRC diet 1 GB diet 1 NRC diet 1

Growing phase2 GB diet 2 NRC diet 2 GB diet 2 NRC diet 2

Finishing phase3 GB diet 3 NRC diet 3 GB diet 3 NRC diet 3

1, 2, 3 Body weight ranges for nursery, growing, and finishing phases were defined as 7–20, 20–50, and 50–

90 kg, respectively, for Landrace pigs, and 3–15, 15–35, and 35–55 kg, respectively, for Bama mini-pigs.

GB diet, lower protein-Chinese conventional diet; NRC diet, higher protein-NRC diet.

doi:10.1371/journal.pone.0138277.t001
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selected for blood collection, and euthanized [27]. Briefly, the pigs were held under general
anesthesia and killed by injection of 4% sodium pentobarbital solution (40 mg/kg BW) into the
jugular vein. After removing the head, legs, tail, and viscera, the carcass was split longitudinally.
Samples of LDM and BFM on the right-side carcass were collected immediately, and the visible
intermuscular adipose tissue was carefully removed. The samples were snap-frozen in liquid
nitrogen, and stored at -80°C for further analysis [28].

Determination of AA
Approximately 0.1 g freeze-dried muscle was ground and hydrolyzed in 10 ml of 6 mol/L
hydrochloric acid solution at 110°C for 24 h. The solution was diluted with water to 100 ml
and 1 ml of the supernatant was used for analysis [29,30]. The samples were filtered through a
0.45-μmmembrane before analysis [31] by an ion-exchange AA analyzer (L8800, Hitachi,
Tokyo, Japan).

RNA extraction and cDNA synthesis
Total RNA was isolated from LDM and BFM tissues using the TRIzol reagent (Invitrogen-Life
Technologies, Carlsbad, CA, USA) and treated with DNase I (Invitrogen) according to the
manufacturer’s instructions. The RNA quality was checked by 1% agarose gel electrophoresis,
and stained with 10 μg/ml ethidium bromide [32]. The RNA was shown to have an OD260:
OD280 ratio between 1.8 and 2.0. The first-strand cDNA was synthesized with Oligo (dT) 20
and Superscript II reverse-transcriptase (Invitrogen), according to the manufacturers’
instructions.

Table 2. Ingredients and nutrient levels of experimental diets.

Item NRC diet 1 NRC diet 2 NRC diet 3 GB diet 1 GB diet 2 GB diet 3

Ingredients (%)

Corn 62.80 66.00 69.50 63.00 60.00 66.00

Soybean meal, 42% CP 26.00 28.00 23.00 25.00 26.50 21.00

Fish meal, 62% CP 7.00 2.00 - 3.00 - -

Wheat bran - - 3.00 6.34 10.75 10.50

Soybean oil 1.95 1.50 2.10 - - -

CaHPO4 0.45 0.70 0.65 0.80 0.80 0.50

CaCO3 0.50 0.50 0.45 0.56 0.65 0.70

Salt 0.30 0.30 0.30 0.30 0.30 0.30

Premix* 1.00 1.00 1.00 1.00 1.00 1.00

Nutrient levels

Digestible energy (MJ/kg) 14.22 14.21 14.22 13.46 13.40 13.40

Crude protein† (%) 20.06 18.01 15.11 18.03 16.05 13.46

Calcium (%) 0.75 0.62 0.50 0.69 0.62 0.56

Available phosphorus (%) 0.39 0.28 0.21 0.21 0.13 0.12

*Premix provided for 1 kg of complete diet: Cu (as copper sulfate), 10 mg; Fe (as ferrous sulfate), 100 mg; Se (as sodium selenite), 0.30 mg; Zn (as zinc

oxide), 100 mg; Mn (as manganese sulfate), 10 mg; VD3, 9.65 μg; VA, 925.8 μg; VE, 15.4 mg; VK3, 2.3 mg; VB2, 3.9 mg; D-calcium pantothenate, 15.4 mg;

nicotinic acid, 23 mg; choline, 80 mg; VB12, 0.016 mg.
†Crude protein was determined value, other nutrients were calculated values.

doi:10.1371/journal.pone.0138277.t002
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Analysis of muscle growth-related gene expression
Primers for myogenic determining factor (MyoD), myogenin (MyoG), myocyte-specific
enhancer binding factor 2 A (MEF2A), and myostatin (MSTN) (Table 4) were designed using
the Primer 5.0 software. Real-time reverse-transcription polymerase chain reaction (RT-PCR)

Table 3. Analyzed AA composition of the experimental diets (mg/g, as-fed basis).

Item NRC diet 1 NRC diet 2 NRC diet 3 GB diet 1 GB diet 2 GB diet 3

Essential AA

Arg 9.65 9.25 7.53 8.66 8.79 6.86

His 4.97 4.83 3.94 4.66 4.45 3.66

Ile 5.68 5.47 4.48 5.17 5.19 3.97

Leu 14.95 15.07 12.78 14.57 13.67 12.11

Lys 8.56 8.03 6.12 7.61 7.94 5.50

Met 2.49 1.77 2.13 2.32 1.74 1.34

Phe 6.90 7.47 5.78 6.88 6.96 5.50

Thr 6.06 5.58 4.39 5.44 5.28 4.06

Val 8.20 7.20 6.51 7.66 6.77 5.66

Total EAA 67.46 64.68 53.66 62.98 60.78 48.63

Non-essential AA

Ala 11.26 9.19 8.80 10.59 8.74 7.84

Asp* 16.43 16.16 12.96 15.40 15.39 12.06

Cys 3.42 2.54 3.21 3.41 2.42 2.66

Glu** 37.06 38.02 31.06 37.06 35.94 29.94

Gly 7.66 6.77 5.30 6.89 6.36 4.91

Pro 18.76 18.18 14.94 17.91 16.99 14.00

Ser 5.90 6.43 4.62 5.72 5.86 4.57

Tyr 5.29 5.19 4.49 4.67 4.77 4.06

Total NEAA 105.78 102.50 85.38 101.66 96.48 80.03

Total AA 173.23 167.18 139.05 164.63 157.26 128.66

*Including aspartate and asparagine;

**Including glutamate and glutamine.

doi:10.1371/journal.pone.0138277.t003

Table 4. Primers used for real-time PCR.

Gene Accession no. Primers Size (bp)

MyoD NM_001002824 F: 5'-CAACAGCGGACGACTTCTATG-3' 383

R: 5'-GCGCAAGATTTCCACCTT-3'

MyoG NM_001012406 F: 5'-AGGCTACGAGCGGACTGA-3' 230

R: 5'-GCAGGGTGCTCCTCTTCA-3'

MEF2A NM_001099698 F: 5'-TGAATACCCAGAGGATAAGCAGTT-3' 133

R: 5'-TAATCGGTGTTGTAGGCGG-3'

MSTN AY448008 F: 5'-GTCCCGTGGATCTGAATG-3' 293

R: 5'-TTCCGTCGTAGCGTGATA-3'

GAPDH NM_001206359 S: 5'-AAGGAGTAAGAGCCCCTGGA-3' 140

A: 5'-TCTGGGATGGAAACTGGAA-3'

MyoD, myogenic differentiation factor; MyoG, myogenin; MEF2A, myocyte specific-enhancer factor-2A; MSTN, myostatin; GAPDH, glyceraldehyde-

3-phosphate dehydrogenase.

doi:10.1371/journal.pone.0138277.t004
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was performed using the SYBR Green detection kit (TaKaRa, Japan), containing MgCl2, dNTP,
and HotStar Taq Polymerase. An aliquot (2 μl) of a cDNA template (equal to 25 ng of total
RNA) solution was added to a total volume of 10 μl containing 5 μl SYBR Green mix, 0.2 μl
ROX Reference Dye (50 X), and 0.2 μl each of forward and reverse primers. After a pre-dena-
turation program (10 s at 95°C), 40 cycles of amplification were performed (95°C for 10 s, 60°C
for 20 s), followed by a melting curve program (60–99°C with a heating rate of 0.1°C/s and
fluorescence measurement), the fluorescent signal was detected by the ABI Prism 7900HT
(Applied Biosystems, Marsiling Industrial Estate Road 3, Singapore). A melting curve was gen-
erated for each sample at the end of each run to ensure the purity of the amplified products.
The amplification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in each sample
was used to normalize the mRNA levels for the target genes. The relative expression ratio (R)
of mRNA was calculated by the following formula:

R ¼ 2�DDCt ðsample�controlÞ
;

where ΔΔCt (sample—control) = (Ct target genes—Ct GAPDH) for the sample—(Ct target
genes—Ct GAPDH) for the control.

Real-time RT-PCR efficiencies were determined by the amplification of a dilution series of
cDNA according to the equation 10(-1/slope), as described by Liu et al. [10], and were consistent
between target genes and GAPDH. Negative controls were also used, in which cDNA solution
was replaced by an equal volume of water.

Analysis of mTOR-pathway proteins
The frozen muscle samples were powdered in liquid nitrogen, and lysed in RIPA buffer (150
mMNaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, and 50 mM Tris-HCl at
pH 7.4), containing a protease inhibitor cocktail purchased from Roche (Shanghai, China).
After centrifugation at 10, 000 ×g and 4°C for 10 min, protein concentration in the supernatant
fluid was determined using the Bicinchoninic Acid assay (Beyotime Biotechnology, Haimen,
China). All samples were diluted to an equal protein concentration with 2 × loading buffer
(0.63 ml of 0.5 M Tris-HCl (pH 6.8), 0.42 ml 75% glycerol, 0.125 g sodium dodecyl sulfate
(SDS), 0.25 ml β-mercaptoethanol, 0.2 ml 0.05% solution of bromphenol blue, and 1 ml water
to a final volume of 2.5 ml), and heated in boiling water for 5 min. After cooling on ice, the
samples were used for Western blot analysis.

Same amounts of sample aliquots (20 μg protein) were subjected to SDS-PAGE (4%–12%
gradient gel) and were then transferred to PVDF membranes (Millipore, MA, USA) overnight
at 12 V using the Bio-Rad Transblot apparatus (CA, USA). The membranes were blocked in
5% fat-free milk in Tris-Tween buffered saline (TTBS; 20 mM Tris/150 mMNaCl, pH 7.5, and
0.1% Tween-20) for 3 h and then incubated with the primary antibodies (Table 5) at 4°C over-
night with gentle rocking. After washing three times with TTBS, the membranes were incu-
bated at room temperature for 2 h with horseradish peroxidase-linked secondary antibodies
(Santa Cruz, CA, USA). The dilution of secondary antibodies was 1:5, 000. Finally, the mem-
branes were washed with TTBS, followed by development using Super-signal West Dura
Extended Duration Substrate according to the manufacturer’s instructions (Pierce, Rockford,
IL). The images were detected on chemiluminescence (Applygen Technologies Inc., Beijing,
China). Multiple exposures of each Western blot were performed to ensure linearity of chemi-
luminescence signals. Western blots were quantified by measuring the intensity of bands with
correct molecular weight using AlphaImager 2200 software (Alpha Innotech Corporation, CA,
USA). The ratio of intensities of a target protein band and housekeeping protein band was
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calculated for each filter and the ratios from the different Western blot filters were used for
analyzing the relative abundances of target proteins.

Statistical analysis
Data were analyzed by multifactor ANOVA using the GLM procedure of SAS 9.1 (SAS Insti-
tute Inc., Cary, NC) and means were separated using Tukey’s method. The effects of pig geno-
type, diet, physiological stage, and their interactions were taken into consideration. Differences
between means were considered as statistically significant at P<0.05 and a trend toward signifi-
cance at P<0.10.

Results

Muscle AA concentration
Muscle AA concentrations are shown in Tables 6 and 7. In general, the concentrations of most
AA, total AA (TAA), essential AA (EAA), and flavor AA (FAA) in LDM and BFM increased in
an age-dependent manner, regardless of pig genotype and dietary protein level. Pig genotype
affected most indices of AA pool of different muscle tissues throughout the trial. Diet had sig-
nificant effects on several AA.

As shown in Table 6, the concentrations of most AA (except of Asp and Tyr) in the LDM of
both genotypes of pigs increased (P<0.05) with age. The concentrations of nonessential AA
(NEAA) decreased (P<0.05) in growing phase but increased (P<0.05) in finishing phase.
Ratios of EAA/TAA and EAA/NEAA increased (P<0.05) in growing phase but decreased
(P<0.05) in finishing phase. The AA of LDM in Landrace pigs and Bama mini-pigs differed
(P<0.05), including Asp, Ser, Met, Ile, Tyr, Phe, Pro, TAA, NEAA, and ratios of EAA/TAA
and EAA/NEAA. Bama mini-pigs had higher (P<0.05) concentrations of Ser, Met, Ile, Tyr,
Phe, and Pro during nursery phase, higher (P<0.05) concentrations of Ser, Met, Tyr, and Pro
during growing phase, and higher (P<0.05) concentrations of Ile, Phe, and Pro during finish-
ing phase; while lower (P<0.05) concentration of Asp was recorded during growing and finish-
ing phases, when compared with Landrace pigs. Furthermore, the concentration of Asp in
Bama mini-pigs fed the GB diet was higher (P<0.05) than those fed NRC diet, especially in
growing and finishing phases. There were interactions between developmental phases and
genotypes notably for Asp, Ser, Met, Ile, Leu, and Tyr. No interaction between developmental
phases and diets was observed for any AA. An interaction between genotype and diet was evi-
denced for concentrations of Phe, TAA, NEAA, and FAA. In addition, according to the pig

Table 5. Antibodies and dilution used for Western blot analyses.

Antibody Catalog number Dilution

Rabbit polyclonal anti-AKT CST#9272 1 : 1000

Rabbit polyclonal anti-phospho-AKT (Ser473) CST#9271S 1 : 1000

Rabbit polyclonal anti-mTOR CST#2972 1 : 1000

Rabbit monoclonal anti-phospho-mTOR (Ser2448) CST#5536 1 : 1000

Rabbit polyclonal anti-p70S6K SC-9027 1 : 400

Mouse monoclonal anti-phospho-p70S6K SC-8416 1 : 400

Rabbit polyclonal anti-4EBP1 SC-6936 1 : 400

Rabbit polyclonal anti-phospho-4EBP1 (Thr70) SC-18092-R 1 : 400

Mouse monoclonal anti-β-actin SC-47778 1 : 1000

Horseradish-peroxidase-linked anti-rabbit IgG sc-2027 1 : 5000

Horseradish-peroxidase-linked anti-mouse IgG sc-2025 1 : 5000

doi:10.1371/journal.pone.0138277.t005
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genotype, different responses were observed regarding interactions between developmental
phases and diets for Asp level.

The BFM concentrations of most AA (except of Tyr) in Landrace pigs and Bama mini-pigs
increased (P<0.05) with increasing age, as well as TAA, EAA, NEAA, and FAA of LDM
(Table 7). There were marked differences in the concentrations of almost all AA between Land-
race pigs and Bama mini-pigs, except for Asp, Glu Val, and Ile. When compared with Landrace
pigs, Bama mini-pigs had higher concentrations of Thr, Ser, Gly, Ala, Leu, Phe, Lys, His, and
Arg throughout the experimental period, as well as Met, Tyr, and Pro in the nursery phase,
while lower concentrations of Met and Pro were measured in the finishing phase. Diet did not
affect AA pool but there was interaction between pig genotype and developmental age on con-
centrations of Ser, Gly, Met, Tyr, Pro, TAA, NEAA, and ratios of EAA/TAA and EAA/NEAA.
Interactions between the developmental phases and the diets were noted notably for Asp, Thr,
Ser, Glu, Gly, and Ala. Interactions between genotypes and diets for Asp, Ala, Tyr, His, EAA/
TAA and EAA/NEAA ratios, as well as an interaction between the developmental phases,
genotypes, and diets was measured for the Ala concentration.

Muscle growth-related genes expression
The mRNA levels for MyoD, MyoG, and MEF2A in LDM, and MEF2A in BFM increased
(P<0.05) along the pig growth (Table 8). The mRNA levels for MyoD, MyoG, and MEF2A in
LDM of Bama mini-pigs were much higher (P<0.05) than those in Landrace pigs. In addition,
pigs fed the higher protein-NRC diet had higher (P<0.05) mRNA level for MyoG in BFM than

Table 8. Effects of genotype, diet, and phase on expression of muscle growth-related genes in muscle tissues of pigs (n = 8).

Nursery Growing Finishing P-value

Item Landrace Bama mini-pig Landrace Bama mini-pig Landrace Bama mini-pig PP PG PP*G PD PP*D PG*D PP*G*D

GB
diet

NRC
diet

GB
diet

NRC
diet

GB
diet

NRC
diet

GB
diet

NRC
diet

GB
diet

NRC
diet

GB
diet

NRC
diet

Longissimus dorsi muscle

MyoD 0.55
±0.12

0.83
±0.11

0.87
±0.23

2.12
±0.33

1.37
±0.16

2.56
±0.43

2.99
±0.25

1.31
±0.19

3.28
±0.18

2.52
±0.15

3.33
±0.21

2.94
±0.30

<.01 <.01 0.13 0.91 <.01 0.09 <.01

MyoG 1.35
±0.24

0.58
±0.12

1.65
±0.33

1.96
±0.22

0.47
±0.09

0.86
±0.10

0.93
±0.15

1.01
±0.19

1.56
±0.13

1.65
±0.22

2.79
±0.78

1.99
±0.22

<.01 <.01 0.18 0.38 0.18 0.87 <.01

MEF2A 0.87
±0.15

0.56
±0.06

0.90
±0.12

1.83
±0.31

0.46
±0.05

0.88
±0.12

1.75
±0.31

1.30
±0.23

1.72
±0.25

1.41
±0.22

3.41
±0.52

1.87
±0.36

<.01 <.01 0.46 0.13 <.01 0.30 <.01

MSTN 0.83
±0.13

0.44
±0.08

1.10
±0.17

2.39
±0.28

0.66
±0.08

0.62
±0.14

1.36
±0.19

1.43
±0.17

1.87
±0.24

1.99
±0.29

2.98
±0.55

1.38
±0.24

<.01 <.01 0.02 0.47 <.01 0.93 <.01

Biceps femoris muscle

MyoD 2.12
±0.31

1.89
±0.23

2.41
±0.40

2.25
±0.11

1.79
±0.44

2.13
±0.63

1.41
±0.37

1.36
±0.36

0.94
±0.21

3.41
±0.83

1.74
±0.46

1.56
±0.40

0.23 0.28 0.22 0.13 0.07 0.04 0.06

MyoG 0.56
±0.06

0.92
±0.19

1.87
±0.32

1.71
±0.18

0.95
±0.14

2.09
±0.37

0.74
±0.08

1.16
±0.18

1.03
±0.33

1.43
±0.32

0.75
±0.16

1.70
±0.49

0.98 0.30 <.01 <.01 0.14 0.46 0.22

MEF2A 1.07
±0.22

1.27
±0.29

0.77
±0.14

0.89
±0.11

0.85
±0.07

0.82
±0.17

2.03
±0.39

1.58
±0.28

1.98
±0.32

1.64
±0.49

2.20
±0.62

1.30
±0.17

<.01 0.25 <.01 0.16 0.16 0.29 0.82

MSTN 0.91
±0.21

1.48
±0.56

2.13
±0.42

1.95
±0.41

1.14
±0.14

1.63
±0.31

2.68
±0.60

2.21
±0.23

1.24
±0.28

1.09
±0.24

1.26
±0.35

0.90
±0.25

0.01 <.01 0.08 0.93 0.67 0.13 0.76

P, phase; G, genotype; P × G, phase ×genotype interaction; D, diet; P × D, phase × diet interaction; G × D, genotype × diet interaction; P × G × D, phase

×genotype × diet interaction; MyoD, myogenic determining factor; MyoG, myogenin; MEF2A, myocyte-specific enhancer binding factor 2 A; MSTN,

myostatin.

Data were means plus pooled SEM. Effects were considered statistically significant when P<0.05.

doi:10.1371/journal.pone.0138277.t008
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those fed the lower protein-GB diet. There was interaction between pig genotype and develop-
mental age on the mRNA level for MSTN in LDM, and MyoG and MEF2A in BFM.

Abundance of mTOR pathway proteins
As shown in Fig 1 and Table 9, the protein abundances of mTOR, p-mTOR, protein kinase B
(AKT), and p-AKT in the LDM decreased (P<0.05) in the growing phase and then increased
in finishing phase. The protein abundances of 4EBP1 and p-4EBP1 decreased, while ratio of p-
mTOR/mTOR increased (P<0.05) gradually along the pig development. In addition, according
to the pig genotypes, different responses were observed regarding the abundances of the
mTOR pathway proteins. The protein abundances of mTOR and p-mTOR in Landrace pigs
were greater (P<0.05) than those of Bama mini-pigs, especially in the nursery and growing
phases. The protein abundance of p-AKT in the nursery phase of Landrace pigs was greater
(P<0.05) than that of Bama mini-pigs, while that of p70S6K in the finishing phase was lower
(P<0.05). The ratios of p-mTOR/mTOR and p-AKT/AKT in nursery and finishing phases of
Landrace pigs were greater than Bama mini-pigs, as well as p-p70S6K/p70S6K in growing and
finishing phases. The lower protein-GB diet increased protein abundances of mTOR and p-
mTOR throughout the whole trial, and of AKT in the nursery phase, when compared with the
higher-NRC diet. The protein abundance of p70S6K in Landrace pigs fed the greater protein-
NRC diet was higher (P<0.05) than in those fed the lower protein-GB diet. In contrast, the
protein abundance of p70S6K in Bama mini-pigs fed the GB diet was higher (P<0.05) than
those fed the NRC diet.

In the BFM, protein abundances of mTOR, p-mTOR, AKT, p-AKT, 4EBP1, p70S6K, and p-
p70S6K decreased (P<0.05) with increasing age (Fig 2 and Table 10). The protein abundance
of p-4EBP1, ratios of p-4EBP1/4EBP1 and p-p70S6K/p70S6K decreased in the growing phase,
and increased in the finishing phase. Ratios of p-mTOR/mTOR and p-AKT/AKT increased in
growing phase, and decreased in finishing phase (P<0.05). The protein abundances of AKT in
the nursery and growing phases, and p-AKT in growing phase, were higher in Landrace than
in Bama mini-pigs (P<0.05), while that of AKT and p-4EBP1 were lower in Landrace than in
Bama mini-pigs (P<0.05) in the finishing phase. Ratios of p-mTOR/mTOR, p-AKT/AKT, and
p-p70S6K/p70S6K of Landrace pigs were greater than those of Bama mini-pigs in the growing
and finishing phases. The lower protein-GB diet increased (P<0.05) the protein abundance of
mTOR in Bama mini-pigs, notably in the nursery and growing phases. The greater protein-
NRC diet increased (P<0.05) the ratio of p-mTOR/mTOR of Landrace pigs, when compared
with the GB diet.

Discussion
Due to its large mass (representing 40–45% of body weight), skeletal muscle is the largest reser-
voir of both peptide-bound and free AA in the body [33]. Based on growth test or nitrogen bal-
ance assay, AA have been traditionally classified as nutritionally essential (indispensable) or
non-essential (dispensable) for animals [1]. Animals have dietary requirements for both EAA
(Met, Lys, Try, Thr, Phe, Ile, Val, Leu, and His) and NEAA to achieve maximum growth and
production performance [34,35]. Some amino acids like arginine are considered to be semi-
essential as they have to be provided in the diet to achieve optimal performance in the growth
phase. According to the ideal model of FAO/WHO, a good balance of AA has to be provided
for growing animals. Ratios of WEAA/WTAA in the present study were all above 40%, and
ratios of WEAA/WNEAA were more than 60%. Furthermore, pig muscle AA concentrations in
the present study were increased gradually with increasing age, suggesting, as expected an
enhanced deposition of muscle protein along the pig development.
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Fig 1. Representative Western blot analysis of total and phosphorylated (A) mTOR (Ser2448), (B) AKT (Ser473), (C) 4EBP1 (Thr70), (D) p70S6K,
and β-actin in pig longissimus dorsi muscle.GB diet, lower protein-Chinese conventional diet; NRC diet, higher protein-NRC diet.

doi:10.1371/journal.pone.0138277.g001

Table 9. P-values of ratios of phosphorylated- to total-protein abundance of mTOR pathway in longis-
simus dorsimuscle of pigs.

Item PP PG PP*G PD PP*D PG*D PP*G*D

p-mTOR/mTOR1 <.01 <.01 <.01 <.01 <.01 0.24 <.01

p-AKT/AKT2 0.97 0.04 0.10 0.24 0.04 <.01 0.43

p-4EBP1/4EBP13 0.07 0.13 0.59 0.36 0.18 0.66 0.63

p-p70S6K/p70S6K4 <.01 <.01 <.01 0.97 0.17 0.38 0.18

1 Ratio of phosphorylated- to total-protein abundance of mechanistic target of rapamycin;
2 ratio of phosphorylated- to total-protein abundance of protein kinase B;
3 ratio of phosphorylated- to total-protein abundance of 4E binding protein 1;
4 ratio of phosphorylated- to total-protein abundance of p70 ribosomal protein S6 kinase.

P, phase; G, genotype; P × G, phase ×genotype interaction; D, diet; P × D, phase × diet interaction; G × D,

genotype × diet interaction; P × G × D, phase ×genotype × diet interaction.

doi:10.1371/journal.pone.0138277.t009
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Meat flavor mainly depends on two aspects: taste and aroma [36,37]. The taste comes from
flavor substances such as AA and small peptides, and aroma mainly derives from volatile sub-
stances released during meat cooking. Each AA contributes, to different degrees, to the taste of
meat [38]. The active compounds in meat not only benefit the tastes as themselves, but also fur-
ther react with each other, generating some aroma components through several pathways, such
as the Maillard reaction [39]. The Maillard reaction between sulfur AA and reducing sugar can
produce a meaty aroma [40]. An important observation in the present study is that Bama
mini-pigs had higher muscle concentrations of Met, Phe, Tyr, Pro, and Ser in the nursery
phase, and of Gly, Ala, and Ser in the growing phase than those of Landrace pigs. According to
the above-mentioned rationale, the muscles of Bama mini-pigs can generate more taste-active
compounds during the cooking process; a fact that is likely related to its quality in terms of
organoleptic characteristics.

Fig 2. Representative Western blot analysis of the expression of the proteins listed in Fig 1 in pig biceps femoris muscle.

doi:10.1371/journal.pone.0138277.g002
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Dietary protein had minimal effect on muscle AA concentration in the current study. How-
ever, as the age increased, the AA pool was gradually regulated not only according to the die-
tary protein intake, but also according to the muscle type. In the LDM (type II fiber), pig
genotype interacted markedly in the finishing phase with dietary protein intake regarding
TAA, NEAA, and FAA. In addition, concentrations of the above-mentioned AA in Landrace
pigs fed the higher protein-NRC diet were higher than those fed the GB diet. Concentrations of
the above-mentioned AA in Bama mini-pigs fed the lower protein-GB diet were higher than
those fed the NRC diet. In the BFM (type II fiber), pig genotype remarkably affected the AA
pools in the nursery phase; whereas in the finishing phase, diet had a greater effect on most AA
measured. Overall, the NRC diet increased concentrations of most AA more than the GB diet.
On the other hand, our data suggest that the AA released from protein was highly muscle-
dependent. The muscle enzymes, including calpains and cathepsins, are able to degrade myofi-
brillar proteins and release small peptides and AA. The different enzyme activities are responsi-
ble for the differences in the release of AA among the examined muscles [41]. The AA profiles
in the present study may be related, at least in part, to the differences in muscle enzyme activity
between LDM and BFM, but further experiments outside the scope of this study are required
to test this hypothesis.

Skeletal muscle cells were the first cell type shown to arise through the activity of a single
DNA binding transcription factor. This factor, named myogenic determining factor (MyoD),
represented a paradigm for cell specification [42,43], and its discovery triggered an increasing
interest for the identification of acting transcription factors such as myogenic regulatory factors
(MRFs) [44], myocyte-specific enhancer binding factor 2 (MEF2) [45,46], and transforming
growth factor beta (TGF-β) [47,48]. Previous studies have indicated that MRFs, including
MyoD, MyoG, myogenic factor 5 (Myf5), and myogenic factor 6 (Myf6), function in processing
myogenesis, and their expression has been used as an indicator of muscle development [49]
and meat quality [50]. In each stage of myogenesis, different MRFs show various functions. In
our study, expressions of MyoD, MyoG, and MEF2A in LDM, and MEF2A in BFM increased
as the age increased, in association with enhanced muscle growth. In addition, the regulatory
effect of MRF on the generation of skeletal muscle also depends on the interaction between
cells and other related factors, such as MEF2 family factor interactions [51]. This factor is also
involved in the regulation of skeletal muscle growth, by controlling the muscle cell differentia-
tion and proliferation [52]. In the present study, the mRNA levels for MyoD, MyoG, and
MEF2A in LDM of Bama mini-pigs were higher than in Landrace pigs, in accordance with the

Table 10. P-values of ratios of phosphorylated- to total-protein abundance of mTOR pathway in
biceps femorismuscle of pigs.

Item PP PG PP*G PD PP*D PG*D PP*G*D

p-mTOR/mTOR1 <.01 <.01 <.01 0.01 0.96 0.10 0.29

p-AKT/AKT2 <.01 <.01 0.02 0.61 <.01 0.98 0.02

p-4EBP1/4EBP13 <.01 0.19 <.01 0.85 <.01 <.01 0.81

p-p70S6K/p70S6K4 0.04 0.04 <.01 0.59 0.04 0.02 0.05

1 Ratio of phosphorylated- to total-protein abundance of mechanistic target of rapamycin;
2 ratio of phosphorylated- to total-protein abundance of protein kinase B;
3 ratio of phosphorylated- to total-protein abundance of 4E binding protein 1;
4 ratio of phosphorylated- to total-protein abundance of p70 ribosomal protein S6 kinase.

P, phase; G, genotype; P × G, phase ×genotype interaction; D, diet; P × D, phase × diet interaction; G × D,

genotype × diet interaction; P × G × D, phase ×genotype × diet interaction.

doi:10.1371/journal.pone.0138277.t010
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previous study by Wang et al. [53]. These latter authors reported that the expression levels of
MyoD and MyoG in the Lantang pigs, another indigenous Chinese pig genotype, were higher
than in Landrace pigs. Interestingly, the mRNA levels for MSTN in LDM and BFM of Bama
mini-pigs were higher than in Landrace pigs. MSTN, belonging to the superfamily of TGF-β, is
a glycoprotein widely expressed with functional specificity in skeletal muscle [54]. Indeed, high
expression of MSTN in transgenic animal resulted in muscle atrophy [55], and the mutation of
MSTN in cattle caused the so-called "double" muscle phenotype [56,57]. Early studies sug-
gested that MEF2 may regulate the muscle fiber type conversion by combining with related
sites of MSTN promoter [58]. Based on this notion, although Bama mini-pigs had increased
mRNA levels for MyoD, MyoG, and MEF2A, the MSTN expression was however higher than
in Landrace pigs. This may explain differences in the muscle growth between Landrace and
Bama mini-pigs.

The phosphorylation of p70S6K and 4EBP1 by mTOR and the phosphorylation down-
stream of ribosomal protein S6 and EIF-4B stimulate translational initiation and contribute to
cell growth. Protein deposition is linked with animal growth periods. In the present study, the
expression levels of most proteins of the mTOR signaling pathway decreased with increasing
age, including 4EBP1 and p-4EBP1 in LDM, and AKT, p-AKT, mTOR, p-mTOR, 4EBP1,
p70S6K, p-p70S6K, and ratios of p-mTOR/mTOR and p-AKT/AKT in BFM of pigs, regardless
of pig genotype or dietary protein level. Our data are consistent with a previous study by
Kimball et al. (2002) which reported that the fractional rate of protein synthesis in pig skeletal
muscle is high at birth and declines with age; meanwhile, the muscle abundance of mTOR
decreased by 75% in 26- vs. 7-d-old pigs [59].

Using various technologies of two-dimensional electrophoresis, proteomic and transcrip-
tomic analysis, researchers found that the skeletal muscle protein expression profiles were
greatly different among pig genotypes [60–62]. In this study, pig genotype had a significant
effect on the skeletal muscle protein expression profiles. The protein abundances of p-AKT,
mTOR, p-mTOR, and p70S6K, and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/
p70S6K in LDM, and of AKT and p-AKT in BFM were higher in Landrace pigs than in Bama
mini-pigs. These results indicate that genotype differences in growth performance and meat
quality might be related to various expression levels of protein deposition- and muscle growth-
related proteins.

Nutrient-mediated increases in muscle protein synthesis preserve the net muscle protein
equilibrium (fasted losses vs. fed gains), which ensures a constant muscle mass at a given devel-
opmental stage. Nutritional factors, such as Gln [63,64], glutamate [65], putrescine [66], and
amino acid mixture [67], have direct and/or indirect effects on the mTOR pathway or on the
effectors of the mTOR pathway. S6K1 and 4EBP1, two downstream target proteins of mTOR
pathway [68], are involved in the regulation of synthesis and metabolism, including synthesis
of protein and ribosome, and biosynthesis and catabolism of mitochondria [69]. A previous
study found that AA starvation could lead to dephosphorylation of S6K1 and 4EBP1 in cul-
tured mammalian cells [70]. In skeletal muscle, physiological levels of AA stimulate the phos-
phorylation of mTOR, which, in turn, enhances the phosphorylation of S6K1 and 4EBP1, and
leads to an increased synthesis of proteins. Interestingly, the dietary protein level in this study
had a significant effect on the mTOR signaling pathway with interaction according to the pig
genotype studied. The protein abundances of mTOR and p70S6K in Bama mini-pigs fed the
lower protein-GB diet were higher than those fed the NRC diet. In contrast, the protein abun-
dance of p70S6K and ratio of p-mTOR/mTOR in Landrace pigs fed the higher protein-NRC
diet were higher than those fed the GB diet. These results suggest that high protein intake may
not always be positively related to the rate of muscle protein synthesis and increase in the skele-
tal muscle mass, challenging the results of several previous studies [71,72]. In Bama mini-pigs,
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the low-protein diet enhanced the protein translation, which was beneficial regarding the AA
pool and protein synthesis. These findings suggest that the utilization of nutrients in Landrace
pigs and Bama mini-pigs are different.

In conclusion, our study indicates interactions between genotype and age for most AA
regarding their concentration in skeletal muscles and protein synthesis-related signaling path-
ways. The concentrations of several AA related to taste and aroma at the early stage in Bama
mini-pigs, and mRNA levels for MyoD, MyoG, MEF2A, and MSTN were higher than in Land-
race pigs, while protein and phosphorylated levels of AKT, mTOR and p70S6K, and ratios of
p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower. In addition, the lower pro-
tein-GB diet increased the protein abundances of mTOR and p70S6K in Bama mini-pigs, but
decreased the protein abundance of p70S6K in Landrace pigs. The higher protein-NRC diet
increased ratio of p-mTOR/mTOR in Landrace pigs. These findings suggest that variations in
AA deposition and protein synthesis are greatly regulated by dietary protein level, being differ-
ent according to pig genotype, developmental stage, and muscle type. Our study not only pro-
vides an important basis for further studies aiming at deciphering the molecular mechanisms
responsible for differences in growth rate and meat quality between different pig genotypes,
but also contributes to the optimization of animal feeding.
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