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Abstract

Genome duplication with hybridization, or allopolyploidization, occurs in animals, fungi and plants, and is especially
common in crop plants. There is an increasing interest in the study of allopolyploids because of advances in polyploid
genome assembly; however, the high level of sequence similarity in duplicated gene copies (homeologs) poses many
challenges. Here we compared standard RNA-seq expression quantification approaches used currently for diploid species
against subgenome-classification approaches which maps reads to each subgenome separately. We examined mapping
error using our previous and new RNA-seq data in which a subgenome is experimentally added (synthetic allotetraploid
Arabidopsis kamchatica) or reduced (allohexaploid wheat Triticum aestivum versus extracted allotetraploid) as ground truth.
The error rates in the two species were very similar. The standard approaches showed higher error rates (>10% using
pseudo-alignment with Kallisto) while subgenome-classification approaches showed much lower error rates (<1% using
EAGLE-RC, <2% using HomeoRoq). Although downstream analysis may partly mitigate mapping errors, the difference in
methods was substantial in hexaploid wheat, where Kallisto appeared to have systematic differences relative to other
methods. Only approximately half of the differentially expressed homeologs detected using Kallisto overlapped with those
by any other method in wheat. In general, disagreement in low-expression genes was responsible for most of the
discordance between methods, which is consistent with known biases in Kallisto. We also observed that there exist
uncertainties in genome sequences and annotation which can affect each method differently. Overall, subgenome-
classification approaches tend to perform better than standard approaches with EAGLE-RC having the highest precision.
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Introduction
Genome duplication, termed polyploidization, is widespread in
plants with up to 35% of land plants being recent polyploids
[1]. Many crop species in particular are allopolyploids [2],
which involves the hybridization of two different species with
genome duplication. Thus, there is much interest in the study

of genome duplication and the advantages or disadvantages
this phenomenon may convey. To explore the underlying
mechanisms that may provide the raw genetic material for
adaptation, many gene expression studies have been conducted
on both natural and synthetic allopolyploid species [3–8].
Allopolyploid species have traditionally been difficult to analyze
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at the whole genome scale because of the large size of their
genomes and the high levels of sequence similarity between
duplicated chromosomes. These duplicated gene copies, called
homeologs, are in general highly similar and pose challenges to
gene expression analyses. However, these homeologs and bias
in their expression are of great interest because they potentially
contribute to adaptation in polyploid species [9–11].

Recent improvements in long sequencing read technologies
and assembly strategies [12–14] have allowed for breakthroughs
in polyploid genome assembly. In plant biology especially, recent
allopolyploid species such as bread wheat [15] as well as many
other agriculturally important plant species have benefited
[16, 17]. Now that de novo genome assembly for allopolyploids
is no longer as formidable as it once was, a large number of
polyploid reference genomes are expected to become available
in the near future to facilitate genome-wide studies. Accordingly,
there is a need to evaluate expression quantification methods
given the presence of homeologs in allopolyploids.

High levels of sequence similarity pose many challenges to
read mapping and consequently, expression quantification as
well as other types of sequence analysis. Mapping bias was
shown to be an issue in numerous studies on diploid allele
specific expression [18–21], which is analogous to the analy-
sis of homozygous tetraploids. In polyploid studies, sequence
ambiguity between homeologs has been shown to affect read
mapping [22, 23], especially if the assembly or annotation quality
is asymmetric [24].

In this study we pose the question ‘How do subgenome-
classification approaches perform in comparison to traditional
RNA-seq methods in allopolyploids?’ and evaluate different
approaches and methods for homeolog expression quantifi-
cation in allopolyploids. To evaluate methods in polyploids,
analysis on genetic materials with and without subgenomes
is highly valuable as a form of ground truth. Here we used
synthetic allotetraploid Arabidopsis kamchatica (Fisch. ex DC.)
K. Shimizu & Kudoh and performed tests with its two direct
parental accessions of Arabidopsis halleri and Arabidopsis lyrata.
For hexaploid wheat Triticum aestivum Chinese Spring [25] with
subgenomes ABD, we performed tests with tetra-Chinese Spring
(subgenomes AB) where subgenome D was experimentally
removed [26] as well as Aegilops tauschii the diploid progenitor of
wheat subgenome D.

Although genome-alignment tools designed for diploid
species such as STAR [27], TopHat [28], LAST [29, 30] and GSNAP
[31] or pseudo-alignment-based method Kallisto [32] have
often been used for RNA-seq analysis in allopolyploid species
[25, 33–37], bioinformatic algorithms specific for allopolyploid
species have been developed. Among them, HomeoRoq [7]
and PolyDog [24] represent similar subgenome-classification
approaches, in which alignment quality to each subgenome is
considered. PolyCat [38] and EAGLE-RC [39] identify and utilize
explicit genotype differences between subgenomes. Among
them, PolyCat requires picking one subgenome as the reference
and constructing a homeolog SNP-index as opposed to read
alignment to all subgenomes, while EAGLE-RC identifies and
utilizes explicit genotype differences between subgenomes to
calculate the read sequence likelihood for each subgenome
alignment. HyLiTE [40] requires sequencing data from all
parental species as well as the child polyploid species; thus,
it was not suitable for the analysis of hexaploid wheat as
the subgenome B progenitor is still unknown. A systematic
comparison between subgenome-classification methods would
be necessary to evaluate them, though there are commonalities
in their approach, and is outside the scope of this review.

We test, to the best of our knowledge, all general approaches
to quantify expression in polyploids:

(i) A standard genome-alignment-based RNA-seq analysis on
the full allopolyploid reference genome with two different
alignment tools STAR and LAST, with read counts obtained
using featureCounts [41].

(ii) A pseudo-alignment-based method with Kallisto on the full
allopolyploid transcriptome.

(iii) A subgenome-classification approach with HomeoRoq,
which maps read sequences to each subgenome separately,
with read counts obtained using featureCounts.

(iv) A subgenome-classification approach with EAGLE-RC, which
maps read sequences to each subgenome separately and
also explicitly uses genotype variations that discriminate
between homeologs as constraints in analysis, with read
counts obtained using featureCounts.

Our results show that EAGLE-RC had the lowest error rate
(A. kamchatica, 0.40%; hexaploid wheat, 0.49%) for alignments to
the correct subgenome, while Kallisto had the highest error
rate (A. kamchatica, 12.43%; hexaploid wheat, 13.44%). LAST
and STAR had similar error rates in A. kamchatica, but LAST
was more precise in hexaploid wheat. In general, performance
between methods was comparable for A. kamchatica but not for
hexaploid wheat. We also observed systematic differences in
low-expression genes that impacted the homeolog expression
bias results. Other concerns include uncertainty in the com-
pleteness and accuracy of the genome sequence and annotation,
which affected each method differently due to differences in
constraints. This may be especially relevant as polyploid species
have only recently begun to be sequenced and assembled in large
numbers and the gene annotations are in their 1st iterations. In
the face of this uncertainty, EAGLE-RC is the most precise in our
evaluations.

Methods
We evaluated methods on two allopolyploid species, tetraploid
A. kamchatica and hexaploid wheat T. aestivum. All codes used in
this study are described in Supplemental Methods, given as a
series of shell script commands.

RNA sequence data and reference genomes

The natural species A. kamchatica [42, 43] was derived from two
diploid species A. halleri and A. lyrata recently [8, 44]. It is a model
polyploid with a broad distribution range, self-compatibility
and transformation technique [44, 45]. To construct synthetic
polyploids, we used two highly homozygous parental accessions
used for genome assembly: A. halleri Tada mine W302 (ver
2.2, scaffolds N50 712 kb) [46] and A. lyrata lyrpet4 (ver 2.2,
scaffolds N50 1.2 Mb) [8]. The two genotypes were crossed then
the genome doubling was induced by colchicine treatment.
Although synthetic polyploidization may occasionally activate
transposable elements or induce chromosomal rearrangements
[47], the subgenomes of the synthetic polyploid were derived
from the merging of the two parental genomes and are highly or
completely identical, providing a unique opportunity to evaluate
RNA-seq methods in allopolyploids.

To assess classification accuracy in synthetic A. kamchatica,
we used data from the parental species so that the ground truth
of a read’s subgenome origin is known. A. halleri subsp. gemmifera
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and A. lyrata subsp. patraea RNA-seq data [48] were obtained
under DDBJ accession DRP003263 submission DRA004364.
Briefly, this data set consists of four samples each for A. halleri
and A. lyrata with 2 x 100 bp paired-end reads for a total of ∼20
and ∼21 Gb, respectively. For differential homeolog expression
analysis, synthetic allotetraploid A. kamchatica RNA-seq data [7]
was obtained under DDBJ accession DRP01140. Briefly, this data
set consists of three biological replicates of A. kamchatica before
and after cold stress with 2 x 100 bp paired-end reads for a total
of ∼12 and ∼10 Gb, respectively.

The whole genome assembly and annotation for hexaploid
wheat T. aestivum with subgenomes ABD were obtained from
the International Wheat Genome Sequencing Consortium [25]
(assembly ver 1.0 and annotation ver 1.0, N50 22.8 Mb). The
assembly quality is at the chromosome level and the reference
genome was split into subgenomes A, B and D allowing for
separate read mapping in subgenome-classification methods.

To assess classification accuracy in wheat, we generated
new tetra-Chinese Spring and A. tauschii data to use in our
evaluations. We utilized tetra-Chinese Spring in which the
subgenomes AB were extracted by removing subgenome D
by repeated backcrossing [26]. Thus, the genome sequence of
tetra-Chinese Spring must be very close to the subgenomes
AB of hexaploid Chinese Spring. Because there is no genetic
material of extracted D genomes from hexaploid wheat, we
used A. tauschii KU-2076 (resource in Kyoto University, collected
in Iran). Subgenome D of hexaploid wheat is known to be derived
from this species, thus it should be highly similar though there is
divergence due to within-species variations [49]. We constructed
RNA-seq data sets of tetra-Chinese Spring and A. tauschii in
triplicate for a total of 2.1 and 2.8 Gb, respectively, under DDBJ run
accessions DRR155268–DRR155273. For differential homeolog
expression analysis, T. aestivum RNA-seq data were obtained
from National Center for Biotechnology Information (BioProject
PRJEB12358) with SRA accessions ERR1201752-ERR1201754 and
ERR1201770-ERR1201772 describing samples, in triplicate, 24 h
after inoculation of fungal pathogen Fusarium graminearum and
mock inoculation for a total of 17.3 Gb and 16.1 GB, respectively.

Plant growth, RNA isolation and sequencing

Tetra-Chinese Spring and A. tauschii were grown at 16◦C in 8 h
light/16 h dark cycle with 60% relative humidity for 2 weeks, and
leaf tissues were harvested. RNA was extracted from each tissue
using RNeasy Plant Mini Kits (QIAGEN, Hilden, Germany) in com-
bination with DNase I treatment (QIAGEN). Illumina sequencing
libraries were made by TruSeq Stranded mRNA Library Prep
Kit. RNA-seq was conducted using Illumina HiSeq 4000 at the
Functional Genomics Centre, Zurich.

Homeolog identification

To annotate homeologs in A. kamchatica, we constructed RNA
transcripts from the gene models in the A. halleri and A. lyrata
gene annotations using gffread (v0.9.12). Homeologs were then
identified based on reciprocal best hit for each subgenome’s
transcripts using LAST (v809). We required hits to have an
E-value less than 10−10 with at least 200 aligned bases in both
transcripts, resulting in 24 329 homeolog pairs identified. This
method of identifying homeologs is simple but efficient and also
allows for the enumeration of genotype differences between
subgenomes, a necessary resource for EAGLE-RC.

To annotate homeologs in T. aestivum, we constructed RNA
transcripts from high-confidence gene models belonging to
subgenomes A, B and D, including the UTR regions. We then
identified pair-wise homeologs through reciprocal best hit
for combinations AB, AD and BD (26556, 27360 and 27311,
respectively) and then triple copy homeologs by checking for
genes in AB that share the same hit for D in their respective
AD and BD hits, resulting in 21196 triple copy homeologs
identified. Though these gene models were not used in this
study, for reference, we discovered 3977, 4781 and 4814 two-copy
homeologs in AB, AD and BD, respectively. For singletons, there
were 13 459, 14 093 and 11 551 out of 44 796, 45 463 and 43 754
total gene models in subgenomes A, B and D, respectively.

Standard RNA-seq analysis

We tested a standard genome-alignment-based RNA-seq expres-
sion quantification approach (Figure 1A) aimed at differential
expression analysis [50] that is often used for diploids:

(i) Map reads to the allopolyploid reference genome—STAR
(v2.5.2b) [27] and LAST (v809) [29, 30].

(ii) Count reads using featureCounts (v1.5.1) [41] at the transcript
level.

(iii) Extract homeolog specific read counts.

Other miscellaneous sequence-processing tasks such as
indexing and sorting were done using samtools (v1.5.2).

To construct the reference genome of A. kamchatica, we con-
catenated the reference genomes of its two parental species,
A. halleri and A. lyrata, to obtain an allopolyploid reference. For
LAST, we also filtered out read alignments with MAPQ scores
less than 20, while STAR MAPQ scores are not as useful for
thresholding. In T. aestivum, we excluded all reads that mapped
to chrUn.

We tested a pseudo-alignment RNA expression quantifica-
tion workflow (Figure 1B) using Kallisto (v0.43.1) [32], which is
also often used for diploids. The built-in expression quantifica-
tion in Kallisto was used to count reads (est counts) at the tran-
script level. When evaluating classification accuracy, we used the
pseudobam option in Kallisto to output read assignments and
evaluate the proportion which were misassigned.

Subgenome-classification analysis

We tested a subgenome-classification approach where, in con-
trast to the standard approach, the sequencing reads are mapped
separately to each subgenome of an allopolyploid’s reference
genome (Figures 1C and D) using STAR. Then we utilized a read
classifier to assign reads to their subgenome origin, if possible.
We tested read classifiers methods HomeoRoq (last updated 11
August 2014) and EAGLE-RC (v1.0.0).

HomeoRoq [7] (Figure 1C) classifies reads based on the num-
ber of mismatches, up to a maximum of 10, between the read and
the genome sequence of each subgenome, where reads must be
mappable to both subgenomes to be considered. In contrast
with EAGLE-RC, which requires computing the subgenome-
discriminating variants, HomeoRoq does not require compar-
ative analysis between different subgenomes in advance of
classification.

The basic EAGLE model [39] is a generative model for read
sequences used to calculate the likelihood of a read given a
reference genotype hypothesis and an alternative genotype
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Figure 1. We compare ‘four different’ approaches for quantifying homeolog expression: (a) a standard genome alignment-based RNA-seq analysis on an allopolyploid

(concatenated) reference genome using alignment tools STAR and LAST. (b) A pseudo-alignment workflow using Kallisto that is performed on the (concatenated)

transcripts of the allopolyploid. (c) A subgenome-classification analysis ‘using HomeoRoq’ that performs alignment on each subgenome’s reference separately then

performs read classification based on number of mismatches. (d) A subgenome-classification analysis ‘using EAGLE-RC’ that performs read alignment on each

subgenome’s reference separately then performs read classification based on the likelihood of the read to the genotype, discarding common reads.

hypothesis. In EAGLE-RC (Figure 1D), the basic model was
extended to perform read classification using the variants that
discriminate between homeologs. During homeolog identifi-
cation, subgenome-specific genotype differences (i.e. variants)
that discriminate between homeologs are determined. For A.
kamchatica, reads are mapped to the reference genomes of A.
halleri (H), and A. lyrata (L), separately. EAGLE-RC then calculates
the probability for read r given each subgenome as the reference
hypothesis Gref and the other subgenome as the alternative
hypothesis Galt:

P [r ∈ Gref ] = P [r | Gref ]
P [r | Gref ]+P [r | Galt]

,

where the classification is determined by the reference with
the highest probability, requiring the winning hypothesis to be
at least probability 0.95 with marginal probability at least 0.51;
otherwise it is ‘unknown’, where the marginal probability is
the proportion of the winning hypothesis over the sum of the
probabilities for all subgenome reference hypotheses.

Figure 2. We perform read classification on hexaploid T. aestivum using a bottom-

up approach from a series of pair-wise classifications with subgenomes A, B and

D. A final classification from pair-wise analysis is obtained via consensus for

HomeoRoq and via highest probability for EAGLE-RC.

For hexaploid T. aestivum subgenome classification, we per-
formed a bottom-up workflow using a series of pair-wise clas-
sifications (Figure 2). For HomeoRoq, we determined, if possible,
the consensus classification from pair-wise classifications. For
example, a read is classified as A if there is a consensus A classi-
fication in both AB and AD pair-wise classification comparisons.

For hexaploid subgenome classification with EAGLE-RC, the
pair-wise likelihoods per read were calculated, where for each
reference hypothesis Gref , there are two alternative genome
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Table 1. Classification performance for A. kamchatica. Results are averaged across eight samples, four each for A. halleri and A. lyrata. The percent
mapped refers to the number of reads that were mappable and in the case of subgenome classification, the number of reads mappable to any
subgenome. The classification error refers to the proportion of mapped reads which were assigned to the wrong subgenome. The number of
expressed homeologs with more than one read in any sample is also shown for each subgenome as a percentage of the set of 24 329 homeologs

Classification error A. halleri A. lyrata

Mapped, % H to L, % L to H, % Homeologs, % Homeologs, %

STAR 93.40 11.09 11.40 90.34 90.55
LAST 71.59 2.87 2.50 90.10 90.39
Kallisto 92.22 12.42 12.44 95.34 95.50
HomeoRoq 93.67 1.64 1.23 89.28 80.78
EAGLE-RC 93.67 0.48 0.33 87.90 88.60

hypotheses, Galt1 and Galt2. The probability of a read belonging to
a given reference is then as follows:

P [r ∈ Gref ] = P [r | Gref ]
P [r | Gref ]+P [r | Galt1] + P [r | Galt2]

,

where the classification is determined by the reference with
the highest probability, requiring the winning hypothesis to be
at least probability 0.95 with marginal probability at least 0.51,
otherwise it is ‘unknown’.

Differentially expressed homeologs

To identify differentially expressed homeologs (DEHs) in A.
kamchatica, we used DESeq2 (v1.20.0) [51] in the R environment
(v3.5.1) on the read count data for the A. halleri-derived
subgenome and A. lyrata-derived subgenome separately. We
required a homeolog to be differentially expressed with 0.05
or better false discovery rate (Benjamini–Hochberg FDR) in
at least one of the subgenomes. We then performed Fisher’s
exact test in R on the combined read counts to determine
significant differential homeolog expression ratio (P < 0.05
and fold change ≥ 2). This definition of differential expression
requires significant change in gene expression in at least
one subgenome according to DESeq2 along with significant
change in the homeolog expression ratio between subgenomes
according to Fisher’s exact test, under different conditions. There
may be a multiple-testing issue with the Fisher’s exact tests
for selected homeologs but we did not perform further FDR
corrections.

To find DEH in hexaploid T. aestivum, we used DESeq2 on the
read count data for each of subgenomes A, B and D separately,
requiring a gene to be differentially expressed with 0.05 or better
FDR in at least one of the subgenomes across three pair-wise
tests. We then performed a series of Fisher’s exact tests on
the combined read counts (A versus BD, B versus AD and D
versus AB) to test for differential homeolog expression ratio.
A homeolog is differentially expressed if at least one test has
P < 0.05/3 (Bonferroni correction) and fold change ≥ 2. Simi-
lar to the tetraploid analysis, we did not perform further FDR
corrections.

Results
A. kamchatica read classification

Generally, many types of sequence analysis rely on how accu-
rately read sequences can be mapped to a reference. In the case
of allopolyploids, read alignment must deal with a higher degree
of repetitiveness than in diploids due to homeologs.

We tested the standard genome alignment approach using
the widely used RNA-seq read mapping tool, STAR. Though this
tool is often used in diploid read mapping, it is unclear whether
it will be suitable for allopolyploids. Unfortunately, the mapping
quality score from STAR is not suitable for thresholding “unique-
ness” due to how it assigns scores in an almost binary manner.
Thus, we also tested LAST, a general sequence alignment tool
that can estimate the probability that an alignment represents
the genomic source of the read. For example, a given read aligns
to a single location with no mismatches, but aligns to five other
locations with one mismatch each. This read may be deemed
a unique best hit, but there may be a reasonable probability,
depending on read length, that it came from any of the other
alignments with a single base-calling error. LAST allows us to
set a degree of uniqueness (i.e. 0.05 mismap probability) as a
cut-off threshold that is convenient for handling this type of
uncertainty.

We examined tetraploid A. kamchatica first because it may be
less complicated than hexaploid wheat, which we describe later
in this study. Here, we evaluated the accuracy of each tool and
each approach by how well they assigned reads to the correct
subgenome. For A. kamchatica, the ground truth is known by
testing with pure A. halleri and A. lyrata RNA-seq data. Table 1
shows the classification performance of each approach for A.
kamchatica. One point to note is that the mapping rate is affected
by alignments to non-homeologs, thus we also showed the num-
ber of homeologs with detected expression in our evaluations.

We calculated the precision by using classification error
rate as the criterion. It is clear that subgenome-classification
approaches (HomeoRoq and EAGLE-RC) performed better than
the standard alignment-based approaches (STAR, LAST and
Kallisto) using a concatenated genome or pseudo-alignment
on a concatenated transcriptome. In the standard alignment-
based approach using a concatenated reference genome, LAST’s
mismap probability model was seen to be beneficial to read
classification showing a much lower classification error rate
than STAR, with only a slightly lower number of expressed
homeologs detected.

Kallisto showed the lowest precision among all methods,
though it showed the highest number of expressed homeologs
detected. That Kallisto’s performance was the most affected
by the presence of homeologs is perhaps due to a reduction
in the number of unique kmers, relative to diploid analysis,
which is essential for the method to find unique read-to-gene
associations. To quantify the reduction in the number of unique
kmers in a tetraploid reference relative to diploid reference,
we performed a simulation with 1000 trials of 100 randomly
selected A. halleri genes with randomly assigned SNPs at varying
degrees of sequence divergence (Supplementary data, Table S1).
This analysis shows that there is a large reduction in the

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby121/-/DC1
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number of unique kmers given one extra gene copy depending
on the pair-wise sequence divergence. For a point of reference,
A. kamchatica is estimated to have ∼2–3% divergence between
homeologs [7].

EAGLE-RC showed the highest precision in read classification
though it had a fewer expressed homeologs detected. HomeoRoq
was less precise than EAGLE-RC while having a similar num-
ber of expressed homeologs detected. The main difference in
methodology between EAGLE-RC and HomeoRoq is that EAGLE-
RC utilizes genotype information explicitly while HomeoRoq
relies on comparing the number of mismatches, implicitly com-
paring genotype differences. However, simply comparing the
number of mismatches is susceptible to spurious mappings,
because a read alignment with 9 versus 10 mismatches favors
the one with 9 mismatches to the same degree as it would favor
an alignment with 0 versus 1 mismatch.

Another point to consider is that the quality of the refer-
ence may differ between subgenomes and there may be uncer-
tainty from missing regions or erroneous annotations. Home-
oRoq requires reads to be mappable to both references, which
constrains read counting to genome regions that exist in both
subgenomes. However, this comes with the disadvantage that
more divergent regions may be excluded due to reads being
mappable to only one homeolog. EAGLE-RC requires reads to
be mapped to regions that are different between homeologs
and thus can be classified based on those differences. This
constrains analysis to regions in the homeologs’ gene models
that can be pair-wise aligned to compute the genotype differ-
ences between homeologs. We performed a simulation analysis
where reads were simulated using ART [52] from annotated gene
models with no divergence from the reference and calculated
the classification performance (Supplementary data, Table S2).
The results show that even in this ideal scenario, there were
reads which could not be classified with certainty by LAST,
HomeoRoq and EAGLE-RC due to reads mapping equally well
to both subgenomes. It also shows that in ideal conditions,
STAR and Kallisto, despite higher error rates, were excellent in
their true positive rates. However, the ideal condition of data
with no divergence from the reference, no sequences outside of
annotated genes, and perfectly reflective of gene models is not
realistic in practice.

A. kamchatica homeolog expression quantification

Read mapping is the 1st step in many types of sequence analysis
and is the foundation for many methods that rely on processing
read alignments. However, read-counting methods and differen-
tial expression analysis may potentially be able to correct for
artifacts or ambiguity in read alignments. We revisited classi-
fication error using the quantified read counts for homeologs
in A. kamchatica (Table 2), although we suggest some caution in
the interpretation of the number of reads quantified and thus
the classification error rate in this result as HomeoRoq and
EAGLE-RC have additional expression quantification processes
to count subgenome-common reads. For Kallisto, we used the
estimated read count from its output while for all other methods,
we obtained read counts using featureCounts.

Here, error is represented as a proportion of quantified reads
rather than the proportion of mappable reads in the earlier anal-
ysis. Our results show that error decreased in STAR, LAST and
Kallisto as the quantification process accounted for ambiguously
mapped reads in some fashion (dropped by featureCounts by
default and distributed by Kallisto). HomeoRoq’s and EAGLE-RC’s
error rates increased slightly due to these methods’ discarding

reads that are deemed unclassifiable. However, a large num-
ber of unclassifiable reads are due to equivalent alignments to
both subgenomes, deemed subgenome common, which can be
used to estimate expression levels such as RPKM by distribut-
ing proportionally to each subgenome. This has been demon-
strated previously for HomeoRoq [48] and is also applicable to
EAGLE-RC. Thus, the number of reads quantified for subgenome-
classification approaches in Table 2 may not be directly compa-
rable to standard genome alignment approaches. It turns out
that for tetraploid A. kamchatica, all methods had comparable
error rates, where EAGLE-RC was the most precise.

Next, we examined the ratio of homeologous pairs. We are
interested in any shifts in expression between homeologs across
conditions, so we analyzed RNA-seq data from A. kamchatica and
quantified the A. halleri read count proportion p̂ as follows:

p̂ = A.halleri reads
A.halleri reads + A.lyrata reads

While we do not know the ground truth expression levels, we
can evaluate the concordance between the different methods to
describe how results might differ depending on which approach
was used. To compare the results between different methods,
we calculated the pair-wise root–mean–squared distance (RMSD)
and coefficient of determination (r2) between the results for
all methods. The RMSD is a measure of the average distance
between two sets X and Y:

RMSD =
√∑n

i=1

(
xi − yi

)2

n

The r2 describes how well one variable X can be used to
predict another variable Y by calculating the proportion of vari-
ability that can be explained:

r2 =
(∑n

i=1

((
xi − x

) (
yi − y

) )
2∑n

i=1

(
xi − x

)2∑n
i=1

(
yi − y

)2

Though both measures describe the similarity between the
results of different methods, the RMSD quantifies the magnitude
of difference with units while the r2 quantifies the proportion of
similar elements.

We examined the ratio of homeologous pairs using RNA-
seq data from A. kamchatica samples before and after cold
stress. The r2 (Table 3) and RMSD (Supplementary data, Table S3)
for p̂ show that in general, the results from the standard
genome-alignment-based approach were concordant (average
r2 = 0.9505, RMSD of 6.96%). HomeoRoq was also concordant
(average r2 = 0.9084) with STAR and LAST. This is consistent with
the error rates in the classification results.

The r2 values between methods showed that though read
mapping precision can vary greatly, downstream read counting
methods were somewhat able to correct for artifacts or
ambiguity in read alignment to arrive at a similar quantified
expression. Kallisto was discordant from all other methods with
an average RMSD of 18.88%. This may be due to its built-in
read-counting method using expectation–maximization (EM)
whereas all other methods used featureCounts, which does
not consider multi-mapped reads. There were also issues with
low-expression genes where 420 and 447 A. halleri and A.
lyrata homeologs, respectively, were reported to have near-zero
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Table 2. Error rate for A. kamchatica using quantified read counts, averaged across three samples each for A. halleri (H) and A. lyrata (L)

Classification error

H to L, % L to H, % Reads quantified

STAR 1.16 1.36 74149312
LAST 0.90 1.26 67015253
Kallisto 0.90 1.21 87667382
HomeoRoq 1.32 1.64 60946109
EAGLE-RC 0.54 0.80 57254486

Table 3. r 2 of the proportion of reads derived from the A. halleri subgenome between different quantification approaches for homeologs in A.
kamchatica

STAR LAST Kallisto HomeoRoq EAGLE-RC

STAR —
LAST 0.9505 —
Kallisto 0.6886 0.6852 —
HomoeRoq 0.9214 0.8953 0.6472 —
EAGLE-RC 0.8201 0.8003 0.5791 0.8325 —

expression (<10 reads) by all other methods in all samples but
Kallisto reported more than 100 reads. The homeolog expression
ratio scatter plots reflect this potential artifact (Supplementary
data, Figure S1) where a slight clustering at the edges of the plots
can be seen for Kallisto. Though the cause is unclear, Kallisto
tends to overestimate some low-expression genes compared to
other methods.

EAGLE-RC also showed less concordance in r2 and RMSD than
HomeoRoq to standard genome-alignment approaches, where it
reported some high-expression genes as low expression com-
pared to other methods. More detailed examination revealed
that because EAGLE-RC required reads to cross genotype dif-
ferences between homeologs, it excluded reads in exons which
were not pair-wise aligned using LAST during the homeolog
identification process. There may exist uncertainty in the anno-
tation, as there are 552 homeologs that had at least a 40%
difference in the proportion of the gene model aligned between
A. halleri and A. lyrata. The majority of these cases were A. halleri
homeologs having a smaller proportion of alignment than A.
lyrata homeologs due to being much longer. The exclusion of
regions which were not aligned between homeologs accounted
for a large portion of the difference in EAGLE-RC. For example,
the homeolog annotated as AT4G25110 in A. kamchatica with
12 exons in A. halleri and 5 exons in A. lyrata and an aligned
region between homeologs of 46 and 61% in A. halleri and A.
lyrata, respectively, had almost all (99.89%) of the reads assigned
to A. halleri mapped to regions that were not aligned between
homeologs (Supplementary data, Figure S2), leading to a large
difference between EAGLE-RC and other methods (Supplemen-
tary data, Table S4).

The subgenome-classification approach with HomeoRoq or
EAGLE-RC tries to account for potentially missing reference
genome regions in one subgenome, through consideration
of read mappability or explicitly utilizing genotype varia-
tion, respectively. For example, the homeolog annotated as
AT5G45850 in A. kamchatica had reads that mapped to the
A. lyrata reference that did not map at all to the A. halleri
reference and was thus discarded by HomeoRoq. Similarly,
missing reference genome regions in homeologs cannot be
pair-wise aligned, thus EAGLE-RC discarded reads that mapped
to these regions. In other methods, a naive counting of reads

Figure 3. Overlap of differentially expressed homeologs from different methods

in A. kamchatica. (a) The overlap between traditional methods. (b-d) The over-

lap between subgenome-classification methods HomeoRoq and EAGLE-RC with

each traditional method.

could be reference biased (Supplementary data, Table S5). In
this case, the average p̂ for a sample with the subgenome-
classification approach was 0.90 compared to 0.44 with STAR,
LAST and Kallisto.

Next, we examined DEH using RNA-seq data from A. kamchat-
ica samples before and after cold stress. The results of different
methods (Figure 3) showed that, in general, there was a high
overlap between the different methods tested where Kallisto
was the least concordant among the methods tested. This is
consistent with the results when we examined the ratio of
homeologous pairs.
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Table 4. RMSD of the proportion of reads derived from the A. halleri subgenome for homeologs with read counts of fewer than or equal to 100
(lower triangular matrix) versus more than 200 (upper triangular matrix) in A. kamchatica

STAR LAST Kallisto HomeoRoq EAGLE-RC

STAR — 0.0213 0.1008 0.0324 0.0457
LAST 0.1092 — 0.1008 0.0380 0.0499
Kallisto 0.2301 0.2301 — 0.1026 0.1076
HomoeRoq 0.1329 0.1529 0.2460 — 0.0380
EAGLE-RC 0.1897 0.2010 0.2725 0.1867 —

Table 5. Classification performance for T. aestivum. Results are averaged across three samples for each of diploid A. tauschii (D) and tetraploid
Chinese Spring (AB). The percent mapped refers to the number of reads that was mappable and, in the case of subgenome classification, the
number of reads mappable to any subgenome. The classification error refers to the proportion of classified reads which were assigned to
the wrong subgenome. The number of expressed homeologs with more than one read in any sample is also shown for each subgenome as a
percentage of the set of 21 196 homeologs

Classification error chrA chrB chrD

Mapped, % AB to D, % D to AB, % Homeologs, % Homeologs, % Homeologs, %

STAR 75.83 9.12 14.85 53.62 53.47 59.11
LAST 77.21 1.62 2.78 54.28 53.96 60.61
Kallisto 78.17 10.17 16.71 69.80 70.05 75.64
HomeoRoq 79.73 0.97% 1.54 48.24 48.20 53.43
EAGLE-RC 79.73 0.33 0.66 48.83 48.52 55.51

Intuitively, genes with lower expression are expected to be
more affected by uncertainties due to read count differences
having more of an effect on the proportion (Table 4). Indeed,
our results show that the concordance between methods was
lower for genes with lower expression with a significant increase
(paired t-test P-value, 6.767 × 10−06) in RMSD. This may be due to
a higher proportion of reads being ambiguous and each method’s
difference in handling these ambiguously mapped reads. This
may have large implications if the goal is to determine homeolog
expression bias.

Hexaploid wheat read classification

For hexaploid wheat T. aestivum, the three homeologous copies
further complicate read mapping and also requires a more com-
plex workflow for subgenome classification. To test classifica-
tion performance, we used RNA-seq data of a tetraploid wheat

line (tetra-Chinese Spring) with subgenomes AB and a diploid
A. tauschii line (accession KU-2076) with subgenome D as the
ground truth. Table 5 shows the classification performance of
each approach.

Our results show that the misclassification rates of all
methods were strikingly similar for allotetraploid A. kamchatica
and allohexaploid wheat (Figure 4). This suggests that it
was mainly the difference in methods rather than taxon-
specific features that affected the error rate where subgenome-
classification methods showed a higher precision than standard
methods using the concatenated genome. The highest precision
was obtained by EAGLE-RC followed by HomeoRoq, LAST,
STAR and Kallisto in that order. Kallisto detected the most
expressed homeologs by count, which may be spurious because
Kallisto tended to overestimate low-expression genesrelative
to other methods as discussed above. Among the other four
methods, the subgenome-classification methods showed a
slightly lower number of expressed homeologs detected than

Figure 4. Overall classification error rate in tetraploid A. kamchatica and hexaploid wheat T. aestivum for all methods.
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Table 6. Classification performance for T. aestivum using quantified read counts. Results are averaged across three samples for each of diploid
A. tauschii (D) and tetraploid Chinese Spring (AB)

Classification error

AB to D, % D to AB, % Reads quantified

STAR 2.83 5.13 2632463
LAST 1.46 1.80 3324633
Kallisto 1.45 3.07 4922150
HomeoRoq 1.50 2.26 1929797
EAGLE-RC 0.67 1.32 1892448

Table 7. r 2 of the proportion of reads derived from subgenome A between different quantification approaches for homeologs in T. aestivum

STAR LAST Kallisto HomeoRoq EAGLE-RC

STAR —
LAST 0.9174 —
Kallisto 0.3257 0.3342 —
HomoeRoq 0.8612 0.8107 0.2787 —
EAGLE-RC 0.8310 0.7931 0.2814 0.7958 —

the standard genome alignment approach, though we do not
know which one is closer to the ground truth. EAGLE-RC still
maintained an error rate under 1%, the best among all methods,
though it deemed an average of ∼20% of mapped reads as
unclassified due to low confidence resulting from ambiguity
between homeolog pairs. There was also a higher cost in
computation time for the higher precision (Supplementary data,
Table S6).

Another point of interest is that the more divergent D
diploid line had much higher error rates than the AB line
directly extracted from Chinese Spring, which is the reference
genome line (Table 5). In this case, STAR and Kallisto performed
quite poorly compared to other methods. Divergence from the
reference genome appears to be a multiplier for error rate, thus
less precise methods will be more affected.

Hexaploid wheat homeolog expression quantification

We evaluated the classification error using the quantified read
counts for homeologs in T. aestivum (Table 6). As described in the
previous section, note that the number of reads quantified is not
directly comparable among different methods. Again, for Kallisto
we used the estimated read count from its output while for all
other methods we obtained read counts using featureCounts.

As expected, the error rate was higher in hexaploid wheat
than in A. kamchatica though with similar trends. In AB classi-
fication error, STAR had over ∼200% higher rate of error, LAST
and Kallisto had ∼60% higher error and HomeoRoq and EAGLE-
RC were the most robust with ∼20% higher error. Similar to
the alignment error analysis, the more distant A. tauschii (D)
reads had much higher error rates, propagated from errors in the
alignment. Again, STAR and Kallisto were the most affected by
the increased distance in these samples.

Next, we examined homeolog expression shifts across condi-
tions and quantified the homeolog expression ratio in T. aestivum
by calculating the proportion of subgenome A reads p̂ as follows:

p̂ = chrA reads
chrA reads + chrB reads + chrD reads

Figure 5. (a–d) Homeolog expression scatter plots for Kallisto versus other meth-

ods in hexaploid wheat, quantified as the expression proportion of subgenome

A over the total (A + B + D) per homeolog. (e) Homeolog expression scatter plots

for STAR versus LAST. (f) Homeolog expression scatter plots for EAGLE-RC versus

HomeoRoq.

We examined the homeolog expression ratio using RNA-seq
data from T. aestivum samples 24 h after fungal inoculation and

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby121/-/DC1
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Figure 6. Overlap of differentially expressed homeologs from different methods

in T. aestivum. (a) The overlap between traditional methods. (b-d) The overlap

between subgenome-classification methods HomeoRoq and EAGLE-RC with

each traditional method.

after mock inoculation. The r2 (Table 7) and RMSD (Table S7)
show that, relative to other methods, Kallisto exhibited a large
drop in concordance in hexaploid wheat compared to A. kam-
chatica. The homeolog expression ratios (Figure 5a–d) show that
the discordance was largely due to systematic differences in low-
expression homeologs, which was also a trend for other methods
(Figure 5e and f and Supplementary data, Figures S3–S5) though
not to the degree of Kallisto. Also similar to A. kamchatica, there
was some discordance between EAGLE-RC and other methods.
In hexaploid wheat, there are 1689 AB, 1549 BD and 1661 AD
pair-wise homeologs that have at least a 40% difference in the
proportion of the gene model aligned, which may account for
much of the discordance between EAGLE-RC and other methods.

Then, we examined differentially expressed homeologs using
RNA-seq data from T. aestivum samples 24 h after fungal inocu-
lation and after mock inoculation. The DEH results for hexaploid
wheat between different methods (Figure 6) show that there was
less concordance between methods compared to tetraploid A.
kamchatica. Notably, only 51% of 304 DEHs detected by Kallisto
were supported by any of the other four methods (47% by STAR,
45% by LAST, 38% by HomeoRoq and 41% by EAGLE-RC). The
results here reiterate that discordance was systematic, where
Kallisto’s tendency to overestimate low-expression genes led to
significant differences in the homeolog expression ratio.

Discussion
Recent improvements in sequencing technology have reduced
the difficulty in constructing allopolyploid reference genomes
[12–14] and there should be a corresponding increase in genome-
wide studies for allopolyploids [3–8]. As such, there is a need to
evaluate expression quantification methods given the presence

of homeologs in allopolyploids. Unlike expression quantification
in diploids, homeolog expression quantification evaluates multi-
ple highly similar gene copies concurrently and it would be ideal
if all copies are at a similar level of completeness. This includes
the genome annotation, which may be a non-trivial source of
uncertainty [53, 54].

It is well known that the presence of repetitive sequences in
diploids (paralogs) present technical challenges for read align-
ment [55, 56] and can bias RNA-seq expression quantification
[57]. For polyploids, with the presence of homeologs, there are
even more repetitive sequences due to an increase in the number
of gene copies. In this study, we saw that applying a standard
diploid RNA-seq workflow to allopolyploids may have issues in
terms of assigning reads to the wrong subgenome, particularly in
hexaploid wheat. In general, low-expression genes accounted for
most of the discordance between methods. Kallisto, especially,
often overestimated the number of reads in low-expression
genes which has been observed in previous studies [58]. If the
goal is to determine homeolog expression bias, then accurate
quantification of low-expression genes is important because
small errors can result in large shifts in the expression ratio
between homeologs. In addition, the accuracy of expression
levels in such genes is especially important if we wish to identify
‘on’ and ‘off’ states of gene expression in response to stimuli in
time course analyses.

There has been a long discussion and dispute about the
bias of expression between homeologs and subgenomes because
different species show different patterns [59]. In this study we
found that different methods showed different biases, depend-
ing on the types of uncertainty they consider. In particular, gene
annotation can affect the detection of homeolog expression bias
because the exon regions of homeologs are typically annotated
using RNA-seq reads on each copy separately and thus may be
annotated differently, especially when the expression level of
one of the copies is low. To obtain general conclusions on the
biased expression in polyploids, we would suggest that analysis
be performed with comparable and accurate methods in corre-
sponding exonic regions. EAGLE-RC attempts to do this by con-
sidering only corresponding exonic regions between homeologs.

In our evaluations, we presented results both at the read
mapping stage and after expression quantification. It is difficult
to be completely fair when evaluating the accuracy of read
mapping due to differences in each of the four approaches.
Kallisto does not attempt to identify primary versus secondary
alignments, thus a primary alignment only evaluation is not
suitable. The standard genome alignment approach may have
secondary alignments due to the presence of homeologs, which
can be indistinguishable from the primary alignment in terms
of alignment score, in which case a primary alignment is
picked randomly. The subgenome-classification approach of
mapping reads to each subgenome separately has inherently
fewer secondary alignments, which is an advantage of this
approach. Thus, we evaluated the classification accuracy with
all alignments, as secondary alignment errors are a factor in all
approaches though to different degrees. The results after read
counting then present the performance of each approach after
potentially accounting for ambiguous alignments. In this way
we show the performance at both major steps in the RNA-seq
expression quantification process, though there are many other
read counting methods that we were not able test. Read counting
methods may also benefit from the higher precision of the
subgenome-classification approach by utilizing classified reads
in lieu of uniquely mapped reads and distributing ambiguous
reads through EM.
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Conclusion
In this study, we evaluated methods for homeolog expression
quantification in tetraploid A. kamchatica and hexaploid wheat
T. aestivum using RNA-seq. We examined the standard genome
alignment based approach with STAR and LAST, the subgenome-
classification approach with HomeoRoq and EAGLE-RC and a
pseudo-alignment approach with Kallisto.

The presence of homeologs had the largest effect on STAR
and Kallisto, resulting in higher read classification error. We
observed that discordance was systematic, occurring mostly
in low-expression genes and can result in large shifts in the
homeolog expression ratio. The explicit use of genotype differ-
ences between homeologs in EAGLE-RC seems to be a factor in
reducing uncertainties in the reference genome and annotation.
Our results show that EAGLE-RC was the most precise method
in both tetraploid A. kamchatica and hexaploid wheat.
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Key Points
• We evaluated standard RNA-seq expression quantifi-

cation methods and compared against subgenome-
classification approaches which map reads to each
subgenome separately.

• We used previous experimentally added (synthetic
allotetraploid A. kamchatica) and newly generated
reduced RNA-seq data (allohexaploid wheat T. aes-
tivum versus extracted allotetraploid) as ground truth.

• The standard approaches showed higher error rates
(>10% using pseudo-alignment with Kallisto) while
subgenome-classification approaches showed much
lower error rates (<1% using EAGLE-RC and <2% using
HomeoRoq).

• Our results show that, in general, disagreement in
low-expression genes was responsible for most of the
discordance between methods.

• Overall, subgenome-classification approaches per-
form better than standard approaches with EAGLE-RC
having the highest precision.
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