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Abstract
Background: Inflammatory changes are a prominent feature of brains affected by Alzheimer's
disease (AD). Activated glial cells release inflammatory cytokines which modulate the
neurodegenerative process. These cytokines are encoded by genes representing several
interleukins and TNFA, which are associated with AD. The gene coding for HLA-B associated
transcript 1 (BAT1) lies adjacent to TNFA in the central major histocompatibility complex (MHC).
BAT1, a member of the DEAD-box family of RNA helicases, appears to regulate the production of
inflammatory cytokines associated with AD pathology. In the current study TNFA and BAT1
promoter polymorphisms were analysed in AD and control cases and BAT1 mRNA levels were
investigated in brain tissue from AD and control cases.

Methods: Genotyping was performed for polymorphisms at positions -850 and -308 in the
proximal promoter of TNFA and position -22 in the promoter of BAT1. These were investigated
singly or in haplotypic association in a cohort of Australian AD patients with AD stratified on the
basis of their APOE ε4 genotype. Semi-quantitative RT-PCR was also performed for BAT1 from
RNA isolated from brain tissue from AD and control cases.
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Results: APOE ε4 was associated with an independent increase in risk for AD in individuals with
TNFA -850*2, while carriage of BAT1 -22*2 reduced the risk for AD, independent of APOE ε4
genotype. Semi-quantitative mRNA analysis in human brain tissue showed elevated levels of BAT1
mRNA in frontal cortex of AD cases.

Conclusion: These findings lend support to the application of TNFA and BAT1 polymorphisms in
early diagnosis or risk assessment strategies for AD and suggest a potential role for BAT1 in the
regulation of inflammatory reactions in AD pathology.

Background
Inflammation is a prominent pathological feature of the
Alzheimer's disease (AD) brain, and might be initiated by
the extracellular accumulation of amyloid β (Aβ) peptide
[1]. Activated microglia and astrocytes cluster around the
Aβ deposits and neurofibrillary tangles of AD brains and
can release neurotoxic agents, including complement pro-
teins and pro-inflammatory cytokines, such as interleukin
(IL)-1β, IL-6 and tumor necrosis factor-alpha (TNFα) [2].
Polymorphisms in genes encoding IL-1α, IL-1β, IL-6 and
TNFα correlate with heightened risk of AD [3]. For exam-
ple, IL1B -511 [4], IL6 -174 [5] and TNFA -308 [6,7] asso-
ciate with increased or reduced risk of AD. We showed
that the IL1A -889 T/T and IL1B +3954 T/T genotypes
mark increased risk for late-onset Alzheimer's disease
(LOAD) in an Australian cohort [8].

When investigating potential genetic risk factors for AD
pathology it is important to include established genetic
risk factors. The most widely accepted genetic risk factor
for late onset-forms of AD (LOAD) is the ε4 allele of the
gene encoding apolipoprotein E (APOE ε4) [9,10]. Two
recent studies have explored a potential association
between APOE ε4 and the TNFA -850T (*2) promoter pol-
ymorphism in Irish [11] and Spanish [12] cohorts with
conflicting outcomes. While in the Irish cohort possession
of the TNFA -850*2 allele significantly increased the risk
of dementia associated with APOE ε4 [11], no such syner-
gistic effect was detected in the Spanish cohort [12] sug-
gesting that the effect could be population specific or that
other genetic or environmental factors may also play a
contributing role. The availability of APOE genotype data
from previous studies conducted by our research group
[13,14] enabled us to investigate the potential link
between APOE ε4 and TNFA -850*2 in a well character-
ised Australian cohort.

TNFA -308*2 (A allele) marks susceptibility to several
autoimmune and inflammatory disorders (for a review
see [15]) and has higher transcriptional activity than
TNFA -308*1 (G allele) [16,17]. However TNFA -308*2
and linked alleles may mark increased risk [6,18] or pro-
tection [7,19] against AD, so we investigated TNFA -308
alleles singly or in haplotypic combination with polymor-
phisms in adjacent candidate genes to elucidate associa-

tions of these polymorphisms or haplotypic
combinations of the respective alleles with AD pathology
in an Australian cohort.

HLA-B associated transcript 1 (BAT1) is implicated in the
regulation of several AD-associated cytokines [20,21].
BAT1 is a member of the DEAD-box family of RNA heli-
cases, encoded in the central major histocompatibility
complex (MHC) near to TNFA [22]. Members of this fam-
ily are a group of highly conserved proteins involved in
unwinding of RNA secondary structures [23]. DEAD-box
proteins have been implicated in a number of different
processes involving RNA such as mRNA stabilization [24].
Studies of anti-sense transfectants suggest BAT1 may act as
a negative regulator of pro-inflammatory cytokines,
namely IL-1, IL-6 and TNFα [20]. Furthermore, BAT1 pro-
moter polymorphisms located at positions -22 and -348
can influence transcription through differential binding
of transcription factors [21]. The C allele at BAT1 -22
(BAT1 -22*2) is found on a conserved ancestral haplotype
associated with an increased risk of immunopathology
(HLA-A1, B8, TNFA -308*2, DR3, DQ2) [21]. Neither
TNFA -308*2 nor BAT1 -22*2 are unique to this haplo-
type, but when carried together form a haplospecific
marker of a conserved block of the central MHC [25].
Here we present data from an investigation of associations
between AD, the APOE ε4 genotype and carriage of TNFA
-308*2, TNFA -850*2 and BAT1 -22*2 in a well-character-
ized Australian cohort. In addition, we report on BAT1
mRNA levels examined in frontal cortex (Fc) brain tissue
from AD and control cases in order to investigate whether
changes in BAT1 expression are associated with AD.

Methods
Genotyping
Alleles carried at BAT1 -22 (G→C) and TNFA -308 (G→A)
and TNFA -850 (C→T) promoter polymorphisms was
determined in 631 individuals from a population of
Northern European descent (97% Caucasian). There were
359 control donors (45.7% females) with age at veni-
puncture of 76.7 ± 13.1 years (mean ± SD) and 272 AD
cases (59.2% females, age: 77.1 ± 10.5). 391 cases were
patients recruited from a memory clinic in Perth, Western
Australia (226 AD cases and 165 controls). The remainder
of patients were participants in the Sydney Older Persons
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Study; a random sample of community-dwelling people
aged 75 and over at recruitment. Of these, 46 were classi-
fied as having AD at assessment, while 194 had no cogni-
tive impairment and were used as controls for this
analysis. All studies were conducted with approval from
the institutional ethics committees and with informed
consent of the participants. Methods of recruitment, diag-
nostic criteria and APOE genotyping were as described
[13,14,26,27].

Genomic DNA was extracted from peripheral lym-
phocytes using a standard protocol [28]. BAT1 -22 alleles
were determined by PCR amplification in a total volume
of 20 μL, containing 1.0 U of Taq polymerase (Fisher Bio-
tec, Australia), 0.2 mM each dNTP and 3.0 mM MgCl2, on
a Mastercycler Gradient thermal cycler (Eppendorf, Ger-
many) as follows: 1 cycle of 95°C for 5 minutes, 44 cycles
of 95°C for 30 seconds, 56°C for 35 seconds and 72°C
for 40 seconds, followed by 1 cycle of 72°C for 10 min-
utes. The oligonucleotide primers, (P1) 5'-CAACCG-
GAAGTGAGTGCA -3' and (P2) 5'-
CAGACCATCGCCTGTGAA-3', were purchased from
Genset Pacific Pty. Ltd (Lismore, Australia). Amplicons
were digested at 37°C using 5 U Alw44I (restriction
sequence GTGCAC), separated on 8% non-denaturing
polyacrylamide gel at 110 V for 1.5 hours and stained with
ethidium bromide to reveal DNA fragments with migra-
tion patterns specific for each allele (Allele 1 (G) = 170
base pairs (bp); Allele 2 (C) = 152 bp and 18 bp; Figure 1).

TNFA -308 alleles were determined via PCR amplification
in a total volume of 20 μL, containing 0.6 U TAQti (Fisher
Biotec, Australia), 0.2 mM each dNTP, 1.5 mM MgCl2 and
0.5 mg/ml BSA amplified as follows: 1 cycle of 94°C for 2

minutes, 35 cycles of 94°C for 30 seconds, 63°C for 30
seconds and 72°C for 30 seconds, followed by 1 cycle of
72°C for 5 minutes. Primers, (P1) 5'-AGGCAATAG-
GTTTTGAGGGCCAT-3' (underline denotes mismatch)
and (P2) 5'-TCCTCCCTGCTCCGATTCCG-3', were pur-
chased from Proligo Pty. Ltd (Lismore, Australia). Ampli-
cons were digested at 37°C using 3 U NcoI (restriction
sequence C▲CATGG), separated on 5% high resolution
agarose gels at 280 V (12 minutes) and stained with ethid-
ium bromide to reveal fragments with migration patterns
specific for each allele (Allele 1 (G) = 88 bp and 19 bp;
Allele 2 (A) = 107 bp).

TNFA -850 alleles were determined via PCR amplification
in a total volume of 20 μL, containing 0.6 U of TAQti
polymerase (Fisher Biotec, Australia), 0.2 mM each dNTP,
1.5 mM MgCl2 and 0.5 mg/ml BSA as follows: 1 cycle of
94°C for 3 minutes, 35 cycles of 94°C for 45 seconds,
60°C for 30 seconds and 72°C for 45 seconds, followed
by 1 cycle of 72°C for 5 minutes. Primers were modified
from those initially published [27]. (P1) 5'-TCGAG-
TATCGGGGACCCCCCGTT-3' (underline denotes mis-
match) and (P2) 5'-CCAGTGTGTGGCCATATCTTCTT-3'
were purchased from Proligo Pty. Ltd (Lismore, Australia).
Amplicons were digested at 37°C using 3 U HincII
(restriction sequence GTT▲AAC), separated on a 5% high
resolution agarose gels at 280 V (12 minutes) and stained
with ethidium bromide to reveal DNA fragments with
migration patterns specific for each allele (Allele 1 (C) =
105 bp and 23 bp; Allele 2 (T) = 128 bp) [29].

Brain tissue samples
Total RNA and protein was isolated from brain tissue
(frontal cortex) samples from subjects with histopatho-
logically confirmed definite AD and control cases without
any AD pathology. Autopsy was performed within 48
hours after death. Subjects with PS1 mutations and a
number of familial AD cases with APOE ε4 genotypes
were from local pedigrees and from the brain tissue bank
of Drexel University College of Medicine (Philadelphia,
PA, USA). Control brain tissue was obtained locally
(Western Australia) and tissues were also received from
the New South Wales (NSW) Tissue Resource Centre (Syd-
ney, NSW, Australia), which is supported by The Univer-
sity of Sydney, Neuroscience Institute of Schizophrenia
and Allied Disorders, National Institute of Alcohol Abuse
and Alcoholism and NSW Department of Health.

RNA extraction and semi-quantitative RT-PCR
Total RNA was isolated using Trizol® (Gibco BRL, Grand
Island, New York, USA) according to manufacturer's
instructions. RNA was extracted from 100 mg of frontal
cortex brain tissue from 12 cases with familial AD either
with PS1 mutations or linked to inheritance of the APOE-
ε4 allele (mean age at time of death: 63 years, range: 50 –

BAT1 -22 G/C promoter polymorphism genotypingFigure 1
BAT1 -22 G/C promoter polymorphism genotyping. A 
representation of a typical -22 C/G genotyping gel produced 
after digested PCR product was run on an 8% non-denatur-
ing PAGE gel. M = Marker (100 base pair marker – arrows 
represent 400, 300 and 200 bp fragments). Black arrowheads 
correspond to allele fragments: -22 C = 152 bp & 18 bp, and 
-22 G = 170 bp. Lane 1 = -22 CC genotype. Lanes 
2,4,5,7,8,9,10 and 11 = -22 CG genotype. Lanes 3 and 6 = -22 
GG genotype.
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77) and from 16 control cases without AD pathology
(mean age at time of death: 50.25 years, range: 18 – 74
years). RNA concentrations were determined spectropho-
tometrically and 1 μg aliquots were reverse transcribed
using the Omniscript™ Reverse Transcriptase Kit (QIA-
GEN; Victoria, Australia).

Primers required to assess the expression of BAT1 and β-
ACTIN mRNA were purchased from Genset Pacific Pty.
Ltd (Lismore, Australia): BAT1(F): 5'-AGAGGCTCTCTCG-
GTATCA-3', BAT1(R): 5'-GCTGATGTTGACCTCGAAA-3',
BACTIN(F): 5'-TGGAATCCTGTGGCATCCATGAAAC-3',
BACTIN(R): 5'-TAAAACGCAGCTCAGTAACAGTCCG-3'.
Primers for glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) were as previously described [30]. 5 μL cDNA
was amplified in a 20 μL reaction on a LightCycler™
(Roche, USA). Each 20 μL PCR reaction contained 1.25
mM dNTP, 20 pmol each primer, 0.25 mg/mL BSA, 1.5
units Taq Platinum polymerase and 0.5 × SYBR Green
(Invitrogen, USA). Amplifications of cDNA were per-
formed as follows: Denaturation at 95°C for 5 minutes,
followed by amplification with 44 cycles at 94°C for 30
seconds, annealing (62°C for BAT1, 64°C for β-ACTIN,
and 65°C for GAPDH) for 15 seconds and 72°C for 40
seconds. Amplicons were separated on 1% TBE agarose
gels and visualised by ethidium bromide staining. The
quantification of cDNA was achieved with SYBR Green I
dye (Sigma, USA).

Standard curves were generated using 10-fold dilutions of
a previously purified bulk cDNA PCR product (stored at a
concentration of 1 ng/μL) and analysed using a 'fit points'
method with the LightCycler™ run software, version 4.0.
Melting curve analyses were used to confirm the genera-
tion of a single product. This was further confirmed by
agarose gel electrophoresis. The amplified BAT1 PCR
products were sequenced using big-dye terminator chem-
istry on an ABI automated DNA sequencer (ABI, USA) to
confirm the specific amplification of BAT1. The house
keeping genes β-ACTIN and GAPDH were used for nor-
malization of BAT1 mRNA expression. Statistical signifi-
cance analysis was performed using the Mann-Whitney U
test.

The Statistical Package for Social Sciences (SPSS version
11.5; SPSS Inc., Chicago, Illinois, USA) was used to estab-
lish genotype and allele frequencies and to check for
Hardy-Weinberg equilibrium (HWE). Initial data compar-
ison involved Pearson's χ2 and odds ratio (OR) analysis of
two by two contingency tables to compare the relative
genotype frequencies in AD and control groups. SPSS was
further employed to perform Cochran Armitage testing for
trends where assumptions of HWE were not met. The
same programme was also used to perform direct logistic
regression analysis, where all variables were entered into

the equation simultaneously to determine the overall con-
tribution of each genotype on AD in this cohort, whilst
controlling for established AD risk factors (age and gen-
der). Estimation of linkage disequilibrium and analysis of
haplotypes was performed using Thesias [31].

GenBank codes for genes investigated in this study
include APOE (MIM: 107741, GeneID: 348), TNFA (MIM:
191160, GeneID: 7124) and BAT1 (MIM: 142560,
GeneID: 7919).

Results
Pearson's chi-square (χ2) and Odds ratio (OR) analysis of
the BAT1 -22 1/1 and 1/2 genotypes revealed a significant
association between a complete absence of the BAT1 -
22*2 allele and AD (Table 1). However, this apparent
level of protection afforded by the BAT1 -22*2 allele
revealed no gene dosage effect and was limited to
homozygosity of this allele (Table 1). Pearson's χ2 and OR
analysis of the TNFA -308 single nucleotide polymor-
phism (SNP) revealed a weak yet mildly significant trend
whereby possession of the -308*2 allele conferred protec-
tion from the development of AD. However, this was only
significant when allele frequencies were analysed (Table
1). No significant protective effect was observed when
genotype frequencies were analysed. Pearson's χ2 and OR
analysis of genotype and allele frequencies from data gen-
erated through the genotyping of the TNFA -850 SNP
revealed a strong association of the TNFA -850*2/2 geno-
type and the TNFA -850*2 allele with an increased risk for
AD (Table 1).

By convention Pearson's χ2 and OR analysis are com-
monly used to evaluate data generated from large geno-
typing studies and explore frequency distributions.
However, in order for such analysis to produce meaning-
ful outcomes strict conditions of HWE must be met. In the
current study the distributions of APOE and BAT1 -22 alle-
les were in HWE (χ2, P = .54 and p = .97, respectively)
within the control populations. However significant devi-
ation from HWE within the control group populations
was observed for TNFA -850 and TNFA -308 (χ2 test, P <
.005). Therefore, subsequent analyses employed Armit-
age's trend test (rather than Pearsons's χ2 analysis), to cor-
rect for potential type I errors associated with departure
from HWE [32].

Armitage's testing for trends revealed a significant associ-
ation between APOE ε4 and AD (χ2 = 108.91, P < 0.0001).
TNFA -850*2 was also significantly associated with
increased risk for AD while a significant protective trend
was observed for BAT1 -22*2 (Table 2). The protective
effect initially observed for TNFA -308*2 in the genotype
and allele frequency distribution analysis (Table 1) did
not reach significance using Armitage's test for trend
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(Table 2). This may reflect a haplotypic association with
BAT1 -22*2 since the alleles are in linkage disequilibrium
(LD) in the West Australian population [25].

Logistic regression analysis including age and gender asso-
ciated BAT1 -22*2/2 with protection against AD, while
TNFA -850*1/2 and TNFA -850*2/2 conferred risk (Table
3). These findings support Armitage's test for trend results
and suggest a possible gene dosage effect for the presence
of the TNFA -850*2 allele.

Additional logistic regressions analysis of interaction
terms between APOE ε4 and the TNFA and BAT1 SNPs
showed no interactions between the effects marked by
APOE ε4, and BAT1 -22*2/2, TNFA -850*1/2 or TNFA -
850*2/2. Furthermore, a stratified analysis based on
APOE genotype using the Mantel-Haenszel technique
showed no significant differences in Odds ratios when
estimating effects on AD risk of individual SNPs versus a
combination of these SNPs with APOE ε4. This suggests
that the observed protective effect of BAT1 – 22*2/2 and
the increased risk associated with TNFA -850*2 are inde-
pendent of APOE ε4 genotype.

BAT1 and TNFA are located in close proximity within the
MHC [21,22] and their alleles are in marked LD [25].
Therefore, the computer programme Thesias [31] was
used to generate LD matrices for analysis of LD and for
haplotype analysis. BAT1 -22, TNFA -308 and TNFA -850
were all in LD, so haplotype frequencies were estimated
under LD for all three markers and combinations of two
markers. The only significant result was obtained for BAT1
-22*1 in combination with TNFA -850*2 (OR = 1.54, P <
0.05). However, the individual Odds ratios for TNFA -
850*1/2 and TNFA -850*2/2 were higher than for the
above haplotype (i.e. individual OR for TNFA -850*1/2 =
1.8 and for TNFA -850*2/2 = 2.7). This indicates that the
presence of BAT1 -22*1 in haplotypic association with
TNFA -850*2 cannot explain the risk effects conferred by
TNFA -850*2. Therefore, both the protective effect associ-
ated with BAT1 -22*2 and the increased risk associated
with TNFA -850*2 are more likely due to the individual

Table 1: Analysis of Genotype and Allele frequencies of the BAT1 -22, TNFA -308 and TNFA -850 polymorphisms

Marker Genotype or allele Ctrl numbers (%) AD numbers (%)

BAT1 -22 1/1 144 (40.1) 117 (43.0)
1/2 167 (46.5) 138 (50.7)
2/2 48 (13.4) 17 (6.3)a

1 455 (63.4) 372 (68.4)
2 263 (36.6) 172 (31.6)

TNFA -308 1/1 226 (63.0) 188 (69.1)
1/2 104 (29.0) 70 (25.7)
2/2 29 (8.0) 14 (5.1)
1 556 (77.4) 446 (82.0)
2 162 (22.6) 98 (18.0)b

TNFA -850 1/1 287 (79.9) 183 (67.3)
1/2 61 (17.0) 70 (25.7)
2/2 11 (3.1) 19 (7.0)c

1 635 (88.4) 436 (80.1)
2 83 (11.6) 108 (19.9)d

Ctrl = Control cases without AD pathology
AD = Alzheimer's disease cases
a BAT1 -22*2/2 versus non-2/2 in AD, P < .005 (Pearson χ2 = 8.49) OR = 0.43 (95% CI = 0.24 – 0.77).
b TNFA -308*2 allele in AD, P = .048 (Pearson χ2 = 3.91) OR = 0.75 (95% CI = 0.57 – 1.00).
c TNFA -850*(2/2, 1/2) versus 1/1 in AD, P < .001 (Pearson χ2 = 13.06) OR = 1.94 (95% CI = 1.35 – 2.78.0).
d TNFA -850*2 allele in AD, P < .001 (Pearson χ2 = 16.57) OR = 1.90 (95% CI = 1.39 – 2.59).

Table 2: Armitage test for trend for BAT1 and TNFA genotypes

Marker Genotype trend χ2-value P-value

BAT1 -22 1/1 < 1/2 < 2/2 7.26 <.05
TNFA -308 1/1 < 1/2 < 2/2 5.28 .07
TNFA -850 1/1 < 1/2 < 2/2 20.17 <.00005

Table 3: Direct logistic regression analysis

Variable Odds ratio P-value 95.0% C.I.

BAT1 -22*2/2a 0.436 <.01 0.238 – 0.798
TNFA -850*1/2b 1.8 <.005 1.218 – 2.669
TNFA -850*2/2c 2.709 <.05 1.260 – 5.824

Direct logistic regression model with Odds ratios representing risk 
assessment for AD.
a Homozygosity of BAT1 -22*2 allele (with absence of allele as 
reference).
b Heterozygosity of TNFA -850*2 allele (with absence of allele as 
reference).
c Homozygosity of TNFA -850*2 allele (with absence of allele as 
reference).
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SNPs themselves or a potential haplotypic association
with other genes.

In order to test whether transcription of BAT1 and the
homologous gene DDXL was altered in AD, mRNA levels
of both BAT1 and DDXL were examined in brain frontal
cortex tissue of AD and control cases. Analysis of BAT1
mRNA levels (Figure 2) revealed significantly elevated
mRNA levels for BAT1 normalized against β-ACTIN (a)
while normalization with GAPDH (b) showed marginal
significance for increased BAT1 mRNA levels in the AD
brains (Mann-Whitney U test: P = .037 and P = .057
respectively).

Discussion
AD is a multifactorial disorder with a number of altera-
tions in the immune profile occurring during disease pro-
gression in both the brain [33] and the periphery [34,35].
Recently studies have reported links between risk for AD
and polymorphisms in the promoter regions of TNFA at
positions -308 [6,18] and -850 [11]. The current study uti-
lized a well characterised sample to investigate these
potential associations in an Australian cohort. In addi-
tion, BAT1 has been implicated in modulation of inflam-
matory cytokines [20]. Therefore, the current study
investigated alleles of the BAT1 -22 promoter polymor-
phism as a potential risk factor for AD, singly or in haplo-
typic association with the TNFA promoter
polymorphisms.

Analysis of individual SNPs revealed no significant associ-
ation between AD and TNFA -308*2. This contrasts with
reports in the literature that associate the TNFA -308*2
allele with either increased risk for AD [6,18] or protec-
tion against this disorder [7,19]. While data from the cur-
rent study appears to be more supportive of a potential
protective role for TNFA -308*2 against AD (Table 1), no
conclusions can be drawn solely based on genotype and
allele frequency analysis due to control group deviations
from HWE that might affect the rate of type I error. How-
ever, it is possible that the inconclusive result obtained for
TNFA -308*2 may be due to haplotypic associations of
this polymorphism with other MHC markers such as the
BAT1-22*2 allele.

In contrast to the ambiguous result obtained for TNFA -
308*2, analysis of individual SNPs revealed that TNFA -
850*2 was clearly significantly associated with increased
risk for AD. The literature shows association of the TNFA
-850*2 with vascular dementia [11] and individuals at
high risk for dementia, such as those with Down's Syn-
drome [36]. However, a clear association of TNFA -850*2
with AD has only previously been reported as a synergistic
effect in combination with APOE ε4 in a Northern Irish
population [11], while a similar study in a population

from Northern Spain failed to produce evidence in sup-
port of a synergistic effect between TNFA -850*2 and
APOE ε4 [12]. The authors suggested that this discrepancy
might reflect true genetic differences between the popula-
tions and pointed out that differences in allele frequency
distributions between the two different European popula-

Semi-quantitative RT-PCR of BAT1 and DDXL mRNA in fron-tal cortex of AD (n = 12) and control cases (n = 16)Figure 2
Semi-quantitative RT-PCR of BAT1 and DDXL mRNA 
in frontal cortex of AD (n = 12) and control cases (n = 
16). Data is represented as Box-plots showing median values 
and quartiles. (A) BAT1 mRNA levels normalized against β-
ACTIN (Mann-Whitney U test: *P = .037), (B) BAT1 mRNA 
levels normalized against GAPDH (Mann-Whitney U test: **P 
= .057).
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tions might indicate linkage disequilibrium between the
TNFA -850 and another marker that might represent the
true disease causing gene [12].

The current study presents data in support of the notion
that TNFA -850*2 contributes to the risk of AD independ-
ently of the APOE ε4 allele. Furthermore, logistic regres-
sion analysis revealed a possible gene dosage effect with
increase in copy numbers of the TNFA -850*2 allele lead-
ing to higher Odds ratios. It is, however, possible that a
gene linkage with TNFA -850*2 would show a parallel OR
pattern, and might account for the apparent gene dosage
effect attributed to the TNFA -850*2 allele. Since all three
markers investigated exerted their effects independently of
APOE ε4 but were found to be in LD with one another,
haplotype frequencies, taking into account LD between
markers, were estimated for all three MHC markers and
also for combinations of two markers in order to investi-
gate whether an AD risk or protection associated haplo-
type could be responsible for the effects observed.

Only one haplotype (BAT1 -22*1 in combination with
TNFA -850*2) appeared to be significantly associated
with risk for AD, but the observed Odds ratio was lower
for this haplotype (OR = 1.54) than the OR for the single
polymorphisms associated with AD risk (TNFA -850*1/2,
OR = 1.8 and TNFA -850*2/2, OR = 2.7). This indicates
that, although in LD with the other two markers TNFA -
850*2 did not exert its risk for AD through a haplotypic
association with these polymorphisms. While it cannot be
entirely ruled out that linkage disequilibrium with other
as yet not identified markers may be responsible for the
effect observed in this investigation, the current study
identifies the TNFA -850*2 allele as a candidate marker
that may confer risk for AD in the Australian population.
Further investigation with larger participant numbers and
in other populations is clearly warranted.

While the polymorphisms in the promoter regions of
TNFA are likely to directly affect transcription of the TNFA
gene, ultimate levels of TNFα protein in tissues can also be
influenced by other regulating factors such as BAT1. In the
current study BAT1-22*2/2 was significantly associated
with protection against the development of AD. Similar to
the association between increased risk for AD and the
presence of the TNFA -850*2 allele, the protective effect of
BAT1-22*2/2 was found to be independent of APOE ε4
status. Furthermore, none of the estimated haplotypic
associations with the two TNFA markers that are in link-
age disequilibrium with BAT1 have provided evidence to
suggest that the effect observed for BAT1-22*2/2 is due to
a haplotypic association with these markers. While the
possibility remains that the protective BAT1 effect might
be due to LD with another gene as yet not investigated, it

is also possible that BAT1 might assert an independent
effect on AD risk.

A potential independent role for BAT1 in AD pathology is
supported by the notion that the BAT1 -22 polymorphism
may not only have the potential to affect transcription of
BAT1 but, through the role BAT1 plays in mRNA stabiliza-
tion, this protein may also affect translation of a number
of inflammatory cytokines linked to AD pathology,
including TNFA. It has previously been reported that
BAT1 plays a potential role in the regulation of inflamma-
tory cytokines, including TNFA [20,21] and the BAT1 -22
allele has been associated with certain autoimmune dis-
ease susceptible ancestral haplotypes such as the 8.1 MHC
AH amongst others [21]. Since BAT1 appears to regulate a
number of inflammatory cytokines for which alterations
are observed in AD pathology the current study is the first
to provide evidence to show that a BAT1 promoter poly-
morphism is significantly associated with AD pathology.

It is of interest to note that for the TNFA -850 polymor-
phism the less frequent allele conferred risk for AD while
the opposite was found for the less frequent allele (C) of
the BAT1 -22 polymorphism which was associated with a
decreased risk for AD. This finding that the BAT1 -22*2
(C) allele is associated with protection against AD is in
contrast to the findings for autoimmune disorders where
the less common number 2 allele is implicated with
ancestral haplotypes that confer increased risk [20,21]. In
order to explain this phenomenon it is important to gain
a better understanding of the function of BAT1. The yeast
homolog of BAT1, Sub2p, has been shown to be required
for mRNA export through nuclear pores [37,38]. Previous
findings have shown that the -22 C BAT1 allele, associated
with the autoimmune disease susceptible 8.1 MHC ances-
tral haplotype, may result in reduced BAT1 transcription
[21]. However, it has also been demonstrated that both
injection of excess UAP56 (BAT1) into Xenopus oocytes as
well as depletion of HEL, the Drosophila homologue of
UAP56, by RNAi resulted in defects in mRNA export from
the nucleus [39,40]. This indicates that both excess levels
of BAT1 and a lack of this protein can lead to abnormali-
ties in mRNA export and splicing. Hence, the presence of
different alleles of BAT1 -22 may potentially lead to a
range of different aberrations in mRNA processing result-
ing in a variety of different phenotypic manifestations of
pathology. It is, therefore, possible that the BAT -22*2
allele per se may be protective against AD but still also be
part of an array of SNPs that may confer risk for certain
autoimmune disorders. The complexity of potential phe-
notypical effects as well as possible haplotypic associa-
tions of BAT1 -22 with other genes indicate that further
studies are warranted to explore whether the BAT1-22*1
allele may confer an independent risk for AD other than
Page 7 of 10
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just in haplotypic combination with TNFA -850*2 as
observed in the current study.

Therefore, while the possibility of LD with other genes
cannot be ruled out the current study provides evidence in
support for a potential role for BAT1 in AD pathology.
BAT1 -22 and TNFA -850 in combination with other bio-
chemical and cognitive markers might serve as genetic
markers for diagnostic purposes or AD risk assessment
strategies. Moreover, in light of current international drug
development research in the AD field, establishment of
genetic profiles may help to identify individuals more
likely to experience benefits from certain treatments or
may prevent individuals genetically unfavourably predis-
posed from receiving costly, yet ineffective treatment.
Since the SNPs investigated could also lead to functional
differences it is of great importance to investigate pheno-
typical characteristics conferred by these polymorphisms.

Considering that BAT1 has a potential regulatory role for
inflammatory cytokines [20,21] analysis of BAT1 mRNA
and protein levels in AD brain tissue may reveal a func-
tional role for the BAT1 protein in AD pathology. To
investigate whether transcription of BAT1 was affected in
AD, levels of BAT1 mRNA were determined in brain tissue
from confirmed AD and control cases. This revealed sig-
nificantly elevated levels of BAT1 and DDXL mRNA in Fc
of AD cases and suggests a potential functional role for
BAT1 in AD pathogenesis. It is not implausible to suggest
that levels of BAT1 may rise as a response mechanism to
counteract the inflammatory reactions that occur in
regions of AD pathology. However, a repetition of this
study with a larger sample size to enable parametric anal-
ysis of results may help to confirm the significance of
these findings.

These data are of particular interest in light of recent find-
ings that oligonucleotides spanning the promoter poly-
morphism -22 to -348 region of BAT1 autoimmune
disease resistant 7.1 AH bind DNA/protein complexes as
shown by electrophoretic mobility shift assays [41]. At
position -22 these complexes appear to include the
octamer binding protein family member, transcription
factor Oct1 [39]. Oct1 has been shown to bind TNFA at
position -857T and can interact with the pro-inflamma-
tory NF-κB transcription factor p65 subunit [42]. As TNFα
has been implicated in inflammation observed in AD
brains [2] the above studies together with the current find-
ings suggest an important association between BAT1
expression and regulation of inflammatory cytokines in
the AD brain. The exact mechanisms of this link between
BAT1 -22 promoter polymorphism and inflammatory
reactions in the AD brain remain to be explored in future
studies.

To establish the role of BAT1 in AD pathology it is imper-
ative to examine levels of BAT1 in AD affected tissues in a
larger number of cases. Apart from its presence in brain
tissue, BAT1 mRNA transcripts have been detected in pan-
creas, kidney, skeletal muscle, liver, lung and heart [43].
The presence of BAT1 in hematopoietic cells [20] makes
this protein a potential biomarker in early diagnosis or
monitoring of progression of disorders with inflamma-
tory responses, such as AD.

Conclusion
The current study has revealed an APOE ε4 independent
association of TNFA -850*2 with increased risk for AD,
and an APOE ε4 independent association of BAT1 -22*2/
2 with decreased risk for AD. These findings were not
enhanced by haplotype analysis of polymorphisms in
linkage disequilibrium suggesting that the observed
effects may have resulted from the single SNPs. Hence,
these SNPs may represent valuable markers in risk assess-
ment, prognosis and therapeutic approaches for AD. In
addition, the current study has provided evidence for a
novel role for BAT1 in AD pathogenesis. BAT1 may play a
role in regulating the inflammatory response in AD
through influencing mRNA export and translation. Inves-
tigations of BAT1 promoter polymorphisms and mRNA
and protein levels in other populations are clearly war-
ranted to confirm this initial finding. Inflammatory proc-
esses form important underlying mechanisms in AD
pathology. Elucidating the role of the currently investi-
gated SNPs in AD pathology may contribute towards an
understanding of the regulatory mechanisms of these
events, and may provide new targets for drug develop-
ment to combat AD.
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