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Summary

COVID-19 pneumonia is associated with hypoxaemic respiratory failure, ranging from mild to severe. Because of the

worldwide shortage of ICU beds, a relatively high number of patients with respiratory failure are receiving prolonged

noninvasive respiratory support, even when their clinical status would have required invasive mechanical ventilation.

There are few experimental and clinical data reporting that vigorous breathing effort during spontaneous ventilation can

worsen lung injury and cause a phenomenon that has been termed patient self-inflicted lung injury (P-SILI). The aim of

this narrative review is to provide an overview of P-SILI pathophysiology and the role of noninvasive respiratory support

in COVID-19 pneumonia. Respiratory mechanics, vascular compromise, viscoelastic properties, lung inhomogeneity,

work of breathing, and oesophageal pressure swings are discussed. The concept of P-SILI has been widely investigated in

recent years, but controversies persist regarding its mechanisms. To minimise the risk of P-SILI, intensivists should

better understand its underlying pathophysiology to optimise the type of noninvasive respiratory support provided to

patients with COVID-19 pneumonia, and decide on the optimal timing of intubation for these patients.
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� Experimental and clinical evidence on non-COVID-19

acute hypoxaemic respiratory failure and acute respi-

ratory distress syndrome (ARDS) suggest that vigorous

spontaneous breathing efforts during noninvasive

respiratory support can worsen lung injury, inducing

‘patient self-inflicted lung injury’ (P-SILI).
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� No clinical study has demonstrated that a ventilatory

strategy to limit the risk of P-SILI can improve patient

outcomes, particularly in patients with COVID-19.

� This review article highlights the controversy as to

whether the pathophysiology of COVID-19 differs

from that of conventional acute hypoxaemic respi-

ratory failure and ARDS, and how it can be associated

with P-SILI and its clinical management.
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COVID-19 may present with mild to severe symptoms, the

latter often associated with acute respiratory distress syn-

drome (ARDS), possibly complicated by multiple organ

dysfunction.1,2 Experimental and clinical evidence on non-

COVID-19 acute hypoxaemic respiratory failure (AHRF) and

ARDS supports the existence of ventilator-induced lung

injury.3Despite a clear rationale, comparatively fewdata report

that vigorous spontaneous breathing efforts during noninva-

sive respiratory support canworsen lung injury, inducingwhat

has been termed ‘patient self-inflicted lung injury’ (P-SILI).4,5

To date, no clinical study has demonstrated that a venti-

latory strategy to limit the risk of P-SILI can improve patient

outcomes.6e8 During the early phase of the COVID-19

pandemic, P-SILI was highlighted as a rationale to justify

early intubation over noninvasive respiratory support.9

Although evidence has been limited, it seems that regional

strain and heterogeneity do not result in P-SILI in healthy

lungs, thus raising questions regarding the mechanisms

underlying P-SILI in already-damaged lungs, such as in

COVID-19. It is likely that the loss of normally aerated lung

volume for the same tidal volume increases global and

regional strain, and leads to pivotal effects on diaphragm

curvature and contraction. If respiratory neuromuscular

function is intact, the increased respiratory drive is trans-

lated into stronger muscle contraction and more negative

pleural swings, which could result in pendelluft phenomena,

tidal recruitment, pulmonary oedema, and increased

regional strain.10 However, in COVID-19, P-SILI may be only

part of a complex multitude of events that can contribute as

determinants of failure of noninvasive respiratory support.

Attention should also be paid to the degree of hypoxaemia

and its effects on peripheral organs, as COVID-19 is charac-

terised by multiple organ involvement.1,11

Thus, invasive mechanical ventilation (MV) should be

considered, but bearing in mind its possible systemic com-

plications.8,12 Controversy remains whether the pathophysi-

ology of COVID-19 differs from that of conventional ARDS.13e16

Therefore, the straightforward application of concepts

derived from ARDS to COVID-19 pneumonia might have

drawbacks.13e16 The aim of this narrative review is to provide

an overview of the pathophysiology and the role of noninva-

sive respiratory support in COVID-19 pneumonia. Respiratory

mechanics, vascular compromise, viscoelastic properties,

lung inhomogeneity, work of breathing, and oesophageal

pressure swings are discussed. Different approaches are

described to help the intensivist minimise the risk of P-SILI.
COVID-19-induced pneumonia

Once SARS-CoV-2 enters the alveolar type II epithelial cells,17

it begins to replicate, compromising alveolarecapillary bar-

rier integrity and infecting other cell types, ultimately result-

ing in multiple organ involvement.1 The exact

pathophysiology of pulmonary involvement in COVID-19 is

still under investigation, but there is evidence showing initial

alveolar collapse, lung inhomogeneity, and changes in visco-

elastic properties of the lungs,13 and macro- and microvas-

cular involvement, including endothelial inflammation,

oedema, and extracellular matrix injury,18 which result in an

altered ventilation/perfusion ratio (V0
A/Q0) and impairment of

hypoxic vasoconstriction.19,20 Some of these pathophysiolog-

ical features are shared with other lung diseases, making the

differential diagnosis quite challenging.17,21,22 In COVID-19,

low arterial partial pressure of oxygen/fraction of inspired
oxygen ratio (PaO2/FiO2) is not only associated with true

shunting, but also with extensive areas of low V0
A/Q0,23 which

correspond to ground-glass areas on chest CT. Lung biopsies

obtained from patients who died from COVID-19 demon-

strated a distinctive vascular feature of endothelial injury,

disrupted cell membranes, and widespread thrombosis with

microangiopathy.24 The V0
A/Q0 mismatch can also be pro-

moted by a hyperactivation of the coagulation cascade, which

fosters thrombotic and embolic mechanisms, leading to

higher V0
A/Q0 and physiological dead space.25 The natural

history of COVID-19 pneumonia also involved diffuse alveolar

damage after secretion of proteases and reactive oxygen spe-

cies, and formation of antibodyevirus immune complexes.26

Finally, endothelial cell damage and dysregulated angiogen-

esis may promote pathological fibroproliferation.26 The

fibrotic pattern seems to be preponderant in late phases of the

disease.27 Postmortem trans-bronchial lung cryo-biopsies of

patients with COVID-19 admitted to the ICU showed intra-

alveolar hyaline membranes, alveolar oedema, and proteina-

ceous exudate formation, and a proliferative profile charac-

terised by derangement and obliteration of the alveolar

structures and fibrosis.17,21,22 These anatomical and structural

alterations result in significant changes in respiratory me-

chanics.27 The mechanical stretch of lung epithelia results in

increased release of tissue growth factor and lung remodel-

ing.28 All these mechanisms might be associated with

different degrees of hypoxaemia, respiratory system compli-

ance, and potential for lung recruitment.13e16 Different phe-

notypes of COVID-19 have been described and modelled since

the beginning of the pandemic, alternately described as

different presentations of COVID-19 or distinct stages of the

same disease.9,29 In this context, a milder, earlier phenotype (L

or 1) includes multiple, focal ground-glass opacities and is

associated with low elastance, low V0
A/Q0 ratio, and low

recruitability. An intermediate phenotype (2) represents the

progression of phenotype L (or 1) to H (or 3).29 Finally, pheno-

type H (or 3) is more similar to a typical ARDS pattern.9,29

Different characteristics on chest CT have been identified in

survivors vs non-survivors,30,31 and post-mortem studies re-

ported a highly variable degree of lung damage corresponding

to these distinct phenotypes.18 Nonetheless, patients that

were actually intubated and subjected to invasive MV typically

had high respiratory system elastance, similar to that seen in

conventional ARDS.13 Despite distinct respiratory system ela-

stance, recruitability patterns, and clinical pre-

sentations,15,16,20 the current literature seems to agree that

COVID-19 phenotypes are the extremes of a single disease

entity as it progresses, characterised by distinct host re-

sponses to SARS-CoV-2 and different levels of lung damage.

Moreover, it remains difficult to determine whether the in-

crease in lung damage is associated with the severity of

COVID-19 pneumonia per se or the type of noninvasive respi-

ratory support strategy, which may result in P-SILI.

Therefore, an individualised approach to themanagement of

respiratory support in COVID-19 pneumonia is required.32e34
Mechanisms of P-SILI

Patients with COVID-19 can present with dyspnoea and

hypoxaemia, which may require noninvasive or invasive res-

piratory support. Because of the shortage of ICU beds during

the pandemic,35 a relatively high number of patients were

treated with noninvasive respiratory support for many days

even when their clinical status would have required
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Fig 1. Interstitial and capillary pressure and lung stress. Interstitial pressure is normally higher than pleural pressure, and higher when stress

is greater. This suggests that transpulmonary pressuremeasured by oesophageal pressure (Poes) may underestimate actual trans-alveolar and

trans-capillary pressure and its potential injurious effects on the lung. (aed) Different interstitial and capillary pressures after changes of

extravascular pressure and their effects. Fluid movement from the capillary bed to the interstitium (Jv)¼Kf([PcePi]es[pcepi]). (a) JvA¼([1.47e

{e0.98}]e[1.96e1.18])¼1.67 kPa. (b) JvB¼([1.96e{e2.45}]e[1.96e0.78])¼3.24 kPa. In this case, a greater passage of fluid from the capillary to the

interstitial space is present. (c) JvC¼([0.98e{e0.49}]e[1.96e0.98])¼0.49 kPa. (d) JvD¼([0.98e{e0.98}]e[1.96e0.98])¼0.98 kPa. Pc, hydrostatic oncotic

pressure; Pi, hydrostatic interstitial pressure; Ppl, pleural pressure; pc, capillary oncotic pressure; pi, capillary hydrostatic pressure.
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intubation and invasive MV, which may have led to P-SILI. In

COVID-19, four potential mechanisms of P-SILI may be sug-

gested: (i) increased lung stress/strain,36e39 (ii) inhomoge-

neous distribution of ventilation,4,40 (iii) changes in lung

perfusion,16,23 and (iv) patienteventilator asynchronies during

noninvasive positive-pressure ventilation (NPPV).41,42
Increased lung stress/strain

Stress is defined as the distribution of forces applied per unit of

lung area, represented by the transpulmonary pressure PL,
36

(i.e. the difference between alveolar pressure and pleural

pressure, estimated by oesophageal pressure [Poes]), whereas

strain is defined as the change in volume divided by the initial

lung volume (functional residual capacity).36 Lung stress de-

pends on the difference between airway and pleural pressures,

whereas strain assesses overstretch and is directly propor-

tional to stress.27,43 The calculation of strain is difficult at

bedside, making lung stress the best surrogate of strain.36

During spontaneous breathing, airway pressure is reduced

when compared with invasive MV, but this does not reduce

the risk of high transpulmonary pressures. In fact, PL is the

distending pressure of the lung and during spontaneous

breathing reflects the inspiratory effort.5,37 Under normal

spontaneous breathing conditions, during the inspiratory

phase, pleural pressure is uniformly decreased, while PL is

uniformly increased.37 Importantly, at a given lung elastance,
swings in PL are similar whether generated by spontaneous

breathing or controlled MV.5,37 Under pathological conditions,

greater inspiratory efforts are needed to obtain a similar tidal

volume, and early spontaneous breathing effort yields higher

negative pleural pressure and PL in the dependent and more

caudal regions of the lung,37,44,45 resulting in inhomogeneous

distribution of pressures and volume across the vertical

gradient. When positive airway pressure is added to sponta-

neous breathing, as occurs during CPAP and NPPV, the

resulting PL is higher, depending on positive-pressure and

negative-oesophageal-pressure swings.10,37,39,46 In patients

with COVID-19, increased efforts have been associated with

higher inspiratory pressures and volumes and increased PL,

which may progress to barotrauma (pneumothorax and

pneumomediastinum).47,48 Recent studies emphasised that

expiratory efforts may also cause P-SILI.10,46 During excessive

expiratory muscle activity, the pleural pressure increases,

leading to markedly reduced PL and collapse of most depen-

dent lung regions and of peripheral airways.49 Thus, both high

inspiratory and expiratory efforts may promote P-SILI, espe-

cially in lung diseases, which feature inhomogeneous distri-

bution, such as COVID-19.
Inhomogeneous distribution of gas

Inspiratory pendelluft has been defined as intraparenchymal gas

redistributionwhenthe inspiratoryefforthasnotyet inducedan
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inspiratory flow at the airway opening. It is caused by different

regional time constants or dynamic pleural pressure variations

in spontaneously breathing patients, yielding significant tidal

recruitment and regional over-distension of dependent regions,

independent of inspired tidal volumeVT.
50 Experimental studies

suggest that pendelluft may further worsen lung damage.4,5,50

However, limited evidence is available from the clinical

setting.50,51 A recent observational study of patients without

COVID-19 reported pendelluft in 40% of those ventilated with

pressure support.50 Upon reduction of pressure support, gases

were redistributed from the ventral to dorsal regions, doubling

thebaseline pendelluftvolumeand increasing the carbondioxide

concentration at the lowest pressure support. The higher the

pendelluft volume is, the higher are the respiratory distress and

work of breathing, increasing the risk of P-SILI.
Changes in lung perfusion

In COVID-19 pneumonia, there are perfusion inhomogeneities

(areas hyper- and hypo-perfused).52,53 During spontaneous

breathing with increased inspiratory effort, pulmonary capil-

lary vessels may be compressed, thus increasing the pulmo-

nary resistance. The increase in trans-alveolar and trans-

capillary pressures recruits previously collapsed capillary

vessels and over-distends those located in healthy and

ground-glass areas, which may lead to increased blood flow in

damaged regions and alveolarecapillary membrane injury

(Fig. 1). At end-inspiration, the right atrium pressure may

decrease to a lower level (below 0.27 kPa), not allowing a

compensatory increase in the cardiac output (FrankeStarling

law). In normal physiological conditions, a net balance be-

tween fluids from pulmonary capillaries and the interstitium

occurs, with a negative interstitial pressure, which becomes

more negative at increased inspiratory stress.54e57

Higher negative interstitial pressure yields greater trans-

capillary and trans-alveolar pressure gradient, facilitating

injury of lung endothelial and epithelial cells and increased

capillary perfusion and blood volume, thus leading to lung

damage and oedema.58e60

Furthermore, the pressure measured in the oesophagus un-

derestimates interstitial pressure of around 0.78e0.98 kPa at

lower stress and 1.47e1.67 kPa at higher stress.55 Thus, during

spontaneous breathing and noninvasive respiratory support, the

interstitial pressure becomes progressively more negative at

higher inspiratory stress and lower at lower inspiratory stress.54

In COVID-19, the presence of micro-thrombi with abnormal

pulmonary circulation alters the V0
A/Q0 distribution; this is com-

pounded by hyper-perfusion of poorly ventilated lung regions,

which is likely the cause of hypoxaemia, and by hypoperfusion of

normally andpoorly aerated lung regions, leading to higherV0
A/Q0

and dead spacing.23 Noninvasive ventilatory support increases

intrathoracic pressure, reduces venous return and end-diastolic

volume both in the right and left cardiac cavities, improves car-

diac contractility, and decreases both trans-alveolar and trans-

capillary pressure, thus resulting in less pulmonary damage.61
Increased patienteventilator asynchronies

Patienteventilator asynchronies are associated with worse

outcomes in mechanically ventilated patients.41,42 The most

common asynchronies are ineffective effort and double trig-

gering, which can be seen during NPPV.41 Under-assistance

carries a risk of excessive load on the respiratory muscles

while increasing the tidal volume.5,62 Stronger inspiratory
efforts increase the PL, trans-vascular pressure gradient, and

tidal recruitment, with pendelluft and regional over-distension,

possibly worsening injury of dependent lung regions.5,41 Over-

assistance is more difficult to detect, but may result in

excessive inspiratory flow (exceeding the patient’s demand),

thus resulting in ineffective effort, delayed or prolonged

cycling, and reverse triggering.41 However, the threshold at

which the combination of asynchronies and increased PL may

lead to P-SILI is not clearly defined.
How can P-SILI be prevented?

In recent years, the concept of P-SILI in spontaneously

breathing patients has evolved, engendering many efforts for

detection of the underlying mechanisms and development of

therapeutic strategies to minimise P-SILI. Noninvasive respi-

ratory support strategies may fail because of a variety of rea-

sons, including P-SILI itself, high work of breathing,

inadequate sedation, decreased level of consciousness, dete-

rioration of gas exchange, interface intolerance, or underlying

conditions.63 A recent consensus of 39 experts64 concerning

themanagement of COVID-19-related acute respiratory failure

using a Delphi method suggested that high-flow nasal oxygen

therapy (HFNOT) should be used in patients who are unable to

maintain peripheral oxygen saturation (SpO2) > 90% despite

oxygen delivery through a Venturi mask, to avoid the need for

tracheal intubation and invasive MV. NPPV (with PEEP) should

be considered when the patient’s work of breathing increases

progressively or in case of mixed (hypoxic and hypercapnic)

respiratory failure. In case of altered mental status or hae-

modynamic instability, or failure of noninvasive respiratory

support to maintain SpO2 >90%, tracheal intubation should be

considered, with a lung-protective ventilation strategy: VT of

4e6 ml kg�1 of predicted body weight, plateau pressure Pplat
�2.94 kPa, driving pressure�1.47 kPa, and individualised PEEP.

Recruitment manoeuvres should be adopted in selected cases,

whereas prone positioning can be safely and widely adopted.

Following these recommendations, three approaches have

been suggested to minimise P-SILI: (i) the limitation of tidal

volume, (ii) the application of PEEP, and (iii) the reduction of

spontaneous effort. All three of these strategies should be

combined with appropriate sedation and metabolic control.
Limitation of tidal volume

High tidal volume during noninvasive respiratory support has

been associated with potential risk of lung damage and worse

prognosis in patients without COVID-19.65 Therefore, VT

should be limited during spontaneous breathing, although this

is very difficult to monitor at the bedside, especially when

using HFNOT or CPAP via helmet interfaces.65,66
Application of PEEP

In patients without COVID-19, the efficacy of PEEP in reducing

P-SILI is explained by less atelectatic areas and peripheral

airway collapse, more homogeneous distribution of inspira-

tory stress, reduced regional over-distension in dependent

regions, and decreased pressures generated by spontaneous

efforts.67 In a recent small RCT, PEEP did not affect pendelluft

despite decreased ventilation heterogeneity.68 That is in

contrast with a previous study, where PEEP reduced the

amplitude of pendelluft.69 Higher PEEP levels increase end-

expiratory lung volume, acting also on the curvature of the
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example of spontaneous breathing in patients with severe COVID-19. During spontaneous breathing at ZEEP or CPAP, the airway pressure

(PAW) is zero (at zero PEEP, ZEEP) or equal to PEEP (if CPAP) in the non-dependent regions of the lung, while it is equal to the superimposed
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diaphragm, possibly leading to less pulmonary and muscular

injury.70 PEEP frequently improves gas exchange, which can

potentially reduce respiratory drive.70 Given the existence of

different degrees of lung damage in patients with COVID-19,

those with lower elastance of the respiratory system and

poor recruitability may present alveolar over-distension and

increased PL, driving pressure, and plateau pressure with high

PEEP levels.71,72 In contrast, using low PEEP levels, Pplat and PL
remain within safe range, while driving pressure decreases. In

patients with severe COVID-19 with increased respiratory

system elastance (patchy-like ARDS), higher PEEP levels may

be required.9 The common approach of applying high levels of

PEEP may worsen the underlying microvascular injury.25

Figure 2 summarises the effects on the lung during spon-

taneous breathing at zero-PEEP and CPAP, with the addition of

pressure support in a representative patient with COVID-19.
Reduction of spontaneous effort

Spontaneous breathing during AHRF and ARDS is not al-

ways encouraged73 because of the possible inhomogeneous
distribution of pressures and regional volumes, which

cannot be monitored with standard methods. Thus, pa-

tients at risk of P-SILI should be promptly recognised and

managed through a two-pronged strategy: (i) adequate

sedation, preferably assessed by a validated instrument,

such as the Richmond Agitation Sedation Scale, to minimise

respiratory drive; and (ii) appropriate use of neuromuscular

blocking agents (NMBAs). COVID-19 pneumonia may pre-

sent with a rapid onset of respiratory failure with initially

preserved respiratory system elastance, reversible with few

days of positive-pressure ventilation, and a slow moderate-

to-severe form of ARDS, which may require longer duration

of MV and rescue therapies, such as NMBAs.33 An obser-

vational study74 concluded that longer use of NMBA may

protect patients with COVID-19 ARDS from barotrauma.

NMBAs decrease chest wall elastance, reduce

patienteventilator asynchronies, and improve lung recruit-

ment and inflammation.75 However, as mentioned previ-

ously, COVID-19 may present at different stages of illness,

which calls into question the propriety of using a one-size-

fits-all strategy for all patients. Thus, more conservative
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approaches should be recommended,76 but patients cannot

be kept on passive MV for a long time and other approaches

need to be pursued.

Figure 3 shows the differences in airway pressure; trans-

pulmonary pressure; and oesophageal pressure of possible

active, passive, and active plus support strategies in a repre-

sentative patient with COVID-19.
Noninvasive respiratory supports and P-SILI

In most cases, noninvasive respiratory supports represent the

first steps in the complex management of COVID-19 pneu-

monia.77 Gattinoni and colleagues33 claimed that early intuba-

tion and MV should be prioritised in severe COVID-19

pneumonia to prevent progression to more severe lung injury.

However, this assertion was not based on strong scientific ev-

idence78,79 and should be interpreted cautiously. Spontaneous

breathing is known to be beneficial in mild-to-moderate cases

of ARDS (non-COVID-19).80,81 Indeed, recent evidence raised

concern on the need for early intubation of patients with

COVID-19 because neither the time from ICU admission to

intubation nor the use of high-flow oxygen support was asso-

ciated with increased survival in patients with COVID-19.82

Additionally, in a cohort of 4643 patients with COVID-19,

those who received NPPV or invasive MV on ICU admission

had a higher severity of ARDS and higher 90 day mortality.83 A

recentmeta-analysis in a cohort of 8944 patientswith COVID-19
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Fig 3. Normal and high respiratory drive and effort during passive,

possible response of patients with COVID-19 to passive, active, or acti

swings are higher during active breathing.
reported no differences on all-causemortality between patients

who undergo early vs late intubation.78 Moreover, early intu-

bation may be unavailable in some locations or unnecessary (if

patient severity is low, the patient is well adapted to noninva-

sive respiratory support despite hypoxaemia, or because of

clinical misjudgement).82,84 Large-scale provision of respiratory

support is the main problem of the COVID-19 pandemic, as the

number of available ICU beds is often lower than the number of

patients requiring assistance.85 Noninvasive respiratory sup-

port, when possible, requires lower doses of sedatives, causes

less delirium, facilitates mobilisation, and prevents secondary

infections and ICU-acquired weakness.86 Interestingly, when

compared with patients without COVID-19, patients with

COVID-19 receiving noninvasive respiratory support were

burdened by a two-fold higher risk of failure.87 The following

paragraphs discuss the main noninvasive respiratory supports

used in COVID-19 pneumonia: (i) conventional oxygen therapy

(COT), (ii) HFNOT, (iii) CPAP, and (iv) NPPV.
Conventional oxygen therapy

Non-intubated patients with COVID-19 who receive various

levels of oxygen support are still susceptible to sudden in-

creases in PL with possible lung damage, favouring the devel-

opment of pneumothorax or pneumomediastinum.87e89 COT

is a readily available low-complexity first-line respiratory

support modality, which requires less monitoring and
Passive

Active

Active+
support

active, or active (plus support) ventilation. Representation of the

ve (plus pressure support) ventilation. Oesophageal pressure (Poes)
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specialized staff. However, it may not be considered for pa-

tients with increased inspiratory effort.88,90
High-flow nasal oxygen therapy

Early in the COVID-19 pandemic, international scientific soci-

eties suggested that HFNOT should be avoided because of the

potential risk of airborne exposure to SARS-CoV-2 when

compared with COT.91e93 However, the rationale for this

recommendation came fromweak evidence. The correct use of

face masks and other personal protective equipment (PPE) re-

duces exposure to droplets and aerosol amongst front-line

healthcare workers,94 enough to making these strategies a

viable first-step therapy before NPPV and invasive MV are

considered. More recent guidelines suggested HFNOT as first-

line oxygen therapy as long as staff are wearing adequate

PPE.93 The WHO95 recommended strict monitoring (for 1 h) of

patients at high risk of intubation by experienced personnel in

case of respiratory deterioration. HFNOT, compared with COT,

has not been associated with increased survival, even though it

reduced the rate of invasive MV and ventilator-free days.96,97

Patients with COVID-19 who present reduced PaO2/FiO2 are at

higher risk of noninvasive ventilation (NIV) failure,98 and the

availability of devices that can provide HFNOT may be limited

during this global health crisis. HFNOTmay create a low level of

PEEP, but it is unable to prevent P-SILI.81 Additionally, the use of

HFNOT during prone positioning did not result in further

improvement.99 Compared with CPAP, it has been associated

with varying and controversial impacts on mortality (69% vs

36%100 and 16% vs 30%86). When compared with NPPV, HFNOT

resulted in no significant difference in days free of respiratory

support within 28 days.101 In patients with COVID-19 pneu-

moniawith poorly recruitable lungs, oxygenation improvement

with HFNOT may be associated with a higher and more stable

inspired oxygen fraction.102 HFNOT is promising in patients

with low severity,98,102 but not in those who need more

aggressive treatments, which may increase the risk of P-SILI.
Continuous positive airway pressure

Different interfaces have been proposed to deliver CPAP to pa-

tients with COVID-19 pneumonia. In a retrospective COVID-19

cohort, the use of face-mask CPAP resulted in improvement in

one-third of patients, whereas half were ultimately intubated.103

CPAP has been associated with lower risk of death if applied

within 7 days from hospital admission.104 In a small retrospec-

tive study, CPAP administered through a face-mask interface,

compared with COT, avoided intubation from Day 7e14.105 In

Europe, helmet CPAP has been considered the first choice for

respiratory failure to minimise aerosol generation,106 although

the importance of this concern is controversial, as noted previ-

ously. Both face-mask and helmet CPAP have been used in pa-

tients with COVID-19 to improve oxygenation. However, CPAP

failure was frequently observed and associatedwith the severity

of pneumonia on admission and higher inflammation.107 Hel-

met CPAP treatment presents a success rate greater than 60%108

and has been considered as a rescue therapy to improve sur-

vival.109 One RCT is ongoing to evaluate the impact of helmet

CPAP in patients with COVID-19 pneumonia.110
Noninvasive positive-pressure ventilation

Compared with HFNOT, helmet NPPV did not reduce the

number of days free of respiratory support within 28 days, but
did reduce the rate of intubation.101 Large RCTs are required to

better evaluate the advantages of using helmet NPPV in pa-

tients with COVID-19 pneumonia.
Prompt recognition of patients at risk of
noninvasive respiratory support failure

The recognition of patients at risk for noninvasive respiratory

support failure and tracheal intubation is of particular rele-

vance in COVID-19.8 Noninvasive or invasive respiratory sup-

ports may temporarily improve clinical status and oxygenation

without changing the natural course of the disease.84,101 This

makes rapid recognition of patients who are at higher risk of

disease progressiondand thus of the optimal timing for intu-

bationdquite challenging84; however, the literature seems to

agree that patients who are at high risk of noninvasive respi-

ratory support failure should be promptly identified and tra-

cheally intubated.78 Several scores have been proposed for

AHRF, but none has been validated yet in COVID-19. A useful

method to apply at bedside for identifying patients with AHRF

at risk of noninvasive support failure is the heart rate, acidosis,

consciousness, oxygenation, and respiratory rate (HACOR)

score,111 currently under investigation in the specific setting of

COVID-19.112 This score includes heart rate, pHa, Glasgow

Coma Scale (GCS), PaO2/FiO2, and ventilatory frequency, and

should be calculated after 1 h of noninvasive support. In case of

a HACOR score >5, intubation and MV should be provided

(specificity 90% and sensitivity 72%).113 Other scores have been

proposed in the specific setting of COVID-19 (e.g. the ‘COVID-19

score’, which includes evaluation of consciousness, oxygena-

tion, vital capacity, ionotropic support, and lung damage on

plain chest radiograph or CT scan),114 but again, none has been

validated. In one study, lung ultrasound was able to detect

patients with COVID-19 who would benefit from tracheal

intubation.115 Another score to predict failure of noninvasive

respiratory strategies has been developed116 and externally

validated. The score includes age, number of comorbidities,

respiratory rate oxygenation index (ROX), GCS, and use of va-

sopressors on the first day of noninvasive respiratory support

as independent predictors of failure. A retrospective observa-

tional study suggested chest radiograph findings as possible

predictors of intubation. The COVID-19 Opacification Rating

Score (CORS)was developed by assigning 1 point to each of the

12 lung zones of interest, in which an opacity was observed.

This score was predictive of intubation at <24 h, <48 h, and

during admission (all P<0.001).117 The Pneumonia Severity

Score has also been recognised as an independent predictor of

intubation in COVID-19 (P<0.001).118 Higher VT alone is also a

good predictor of need for intubation and noninvasive support

failure. However, it is very hard to control and monitor VT

during noninvasive support, and the main driver of larger VT is

the respiratory drive.46,119 As theorised two decades ago, the

higher the dead space and minute ventilation, the greater the

severity ofARDS.120 The use of heated andhumidified oxygen at

high-flow rates, as in HFNOT, can reduce the dead space and

yield survival benefits.46,119 For patients treated with HFNOT, a

ROX index (SpO2/FiO2/ventilatory frequency) <2.85, <3.47, and
<3.85 indicates need for intubation after 2, 6, and 12 h, respec-

tively.121 A singlemulticentre observational study identified the

Sequential Organ Failure Assessment (SOFA) score and the ROX

index as predictive tools for respiratory failure and tracheal

intubation duringHFNOT inCOVID-19.122Moreover, in the early

stage, when elastance is relatively preserved, ventilatory
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HACOR score >5 ([age × 0.0817]–1.633)+(7.819–[0.521 × GCS])+
(10–[0.385 × ROX])+3.844

(if vasopressors)+(0.359 × N of comorbidities)

(0.02354 × [total score]2)–(0.00079 × [total score]3)
–(0.11954 × [total score])+0.13527

Beats
min–1

Points

To do before
tracheal

intubation

C

O

V

I

D

19
19

Consciousness 1 Alert, obeying commands
2 Drowsy, responsive to commands
3 Drowsy, responsive to pain
4 Unresponsive

1) Optimise analgesia and sedation
2) Optimise Oxygenation and recruitment
(HFNOT/CPAP/NPPV)
3) Avoid patient–ventilator asynchronies
4) Control and prevent respiratory acidosis
5) Measure oesophageal pressure (Poes)
6) Avoid abrupt interruption of
HFNOT/CPAP/NPPV
7) Promptly recognise continuously high VT
irrespective of NPPV optimisation

1 ≥25 s (3.0 L min–1)
2 20–25 s (3.5 L min–1)
3 15–20 s (2.5 L min–1)
4 <15 s (2.5 L min–1)

1 No support
2 Single inotrope (low dose)
3 Single inotrope (moderate dose)
4 Single inotrope (high dose) or >1

1 Minimal
2 Moderate
3 Severe

1 SpO2 ≥92% room air
2 SpO2 ≥88–92% room air
3 SpO2 ≥88% oxygen supplement
4 SpO2 <88% oxygen supplement

Oxygenation

Vital capacity

Inotropic
support

Damage to
lungs

Total maximum
score

≤120
>120

≥7.35
7.30–7.34
7.25–7.29
<7.25

0
2
3
4

15
13–14
11–12
≤10

0
2
5
10

>200
176–200
151–175
126–150
101–120
≤100

0
2
3
4
5
6

≤30
31–35
36–40
41–45
>45

0
1
2
3
4

0
1

pH

GCS

Pa�2/FiO2

Ventilatory
frequency
(bpm)

Fig 4. Identification and first-line management of noninvasive respiratory support failure. One of the most sensitive and specific scores for

the detection of noninvasive respiratory support failure in acute hypoxaemic respiratory failure is the HACOR (sensitivity: 72%; specificity:

90% 1 h after initiation). Along with the HACOR, several parameters should be considered before proceeding to tracheal intubation. No

specific score for COVID-19 has been validated to date, but promising scores are reported in the figure. EPAP, end-expiratory airway

pressure; GCS, Glasgow Coma Scale; HFNOT, high-flow nasal oxygen therapy; NPPV, noninvasive positive-pressure ventilation; PaO2/FiO2,

partial pressure of oxygen/fraction of inspired oxygen; Poes, oesophageal pressure; ROX, rate oxygenation index; SpO2, peripheral oxygen

saturation; VT, tidal volume.
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frequency is not particularly high, but tidal volumes could be.123

Consequently, transpulmonary pressure and changes in pleural

pressure are preponderant, with possible haemodynamic con-

sequences.123 This phase may not be captured by ROX and

HACOR scores, as the chemical and metabolic stimuli are the

main inputs to the respiratory centres affecting the inspiratory

drive. The inspiratory drive is controlled by arterial partial

pressure of carbon dioxide and PaO2 feedback loops, which are

substantially modulated by sedation and metabolic alkalosis at

respiratory centres.123 If these are not properly managed, the

respiratory centres may demand a relatively high minute

ventilation, such as in the common scenario of hypoxaemia

and metabolic acidosis, leading to increased work of breathing

and dyspnoea.123 Although PL is difficult to quantify during NIV,

several strategies have proved promising. The energy expended

by the diaphragm correlates well with work of breathing and

can be easily derived by subtracting oesophageal pressure (Poes)

from the gastric pressure. Changes in Poes can correlate well

with inspiratory effort, whereas work of breathing is well rep-

resented by the Poes pressureetime product, which, to be real-

istic, should rely on variations in chest-wall pressure. Although

promising, these methods need validation and may involve

some manoeuvres, which are difficult to perform in spontane-

ously breathing patients (airway occlusion andmeasurement of

VT).
63 Apigo and colleagues124 recently proposed a new score for

evaluating work of breathing at the bedside in COVID-19. This

scale includes ventilatory frequency, nasal flaring on inspira-

tion, sternocleidomastoid use, and abdominal muscle use for a
maximum of 7 points; intubation is proposed if the total score

exceeds 4.124 Figure 4 shows a possible strategy to recognise

patients at risk of noninvasive respiratory support failure. The

degree of lung impairment and patients’ comorbidities remain

key factors to understandwhich device and respiratory support

could be more suitable for each patient to avoid intubation and

MV, and prevent P-SILI.114,117 The complexity of COVID-19,

including different pulmonary features (such as organising

fibrosis); endothelial injury; thromboembolism; and neurolog-

ical, kidney, andmyocardial injuries, hasmademanagement of

this disease even more complex than first expected.2,125
Conclusions

The concept of P-SILI has been widely investigated in recent

years, even though controversies persist regarding its mech-

anisms. To minimise the risk of P-SILI, intensivists should

better understand the pathophysiology of this condition to

optimise the modality of noninvasive respiratory support

provided to patients with COVID-19, and determine the

optimal timing of intubation for those in whom noninvasive

support fails.
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