
Monitoring of Batch Industrial Crystallization with Growth,
Nucleation, and Agglomeration. Part 1: Modeling with Method of
Characteristics
Marcella Porru* and Leyla Özkan
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ABSTRACT: This paper develops a new simulation model
for crystal size distribution dynamics in industrial batch
crystallization. The work is motivated by the necessity of
accurate prediction models for online monitoring purposes.
The proposed numerical scheme is able to handle growth,
nucleation, and agglomeration kinetics by means of the
population balance equation and the method of characteristics.
The former offers a detailed description of the solid phase
evolution, while the latter provides an accurate and efficient
numerical solution. In particular, the accuracy of the prediction
of the agglomeration kinetics, which cannot be ignored in industrial crystallization, has been assessed by comparing it with
solutions in the literature. The efficiency of the solution has been tested on a simulation of a seeded flash cooling batch process.
Since the proposed numerical scheme can accurately simulate the system behavior more than hundred times faster than the batch
duration, it is suitable for online applications such as process monitoring tools based on state estimators.

1. INTRODUCTION

Batch crystallization is an important operation for formulation
and separation of high value-added chemicals in crystalline
form from liquid solutions in pharmaceutical, food, agriculture,
and fine chemical industries. By means of crystallization we are
interested in achieving quality targets for the final solid product
such as high purity and yield, morphology, and crystal size
distribution (CSD). These properties are determined by
complex crystallization kinetics of growth, and nucleation, as
well as agglomeration and breakage, which in turn depend on
the crystallization operating windows (mainly supersaturation,
temperature profile, and mixing). Hence, optimal operating
conditions strategies should be followed to guarantee a more
efficient and environmental-friendly achievement of the
specification targets. To attain this task a process engineer
can rely on modern computer-aided techniques. To this end,
rigorous simulation models of the system at hand are a valid
tool for process understanding, process design, design of
experiments, evaluation of process alternatives, and online
control and monitoring.
From the perspective of the crystallization operation

supervision, the accurate online monitoring of industrial
crystallizers is still considered a challenge due to the limitations
of hardware sensors for the measurements of the key variables
such as solute concentration and CSD. These limitations
include high investments costs, measurement delays, and
measurements errors because of calibration difficulties.1,2

Hence, there is much to be gained by using online model-
based technologies such as state estimators, also known as soft
sensors, that are able to predict the performance of the

operation within a desired accuracy based on the process model
and measurements of secondary variables.
In a recent study on the estimability properties of batch

crystallization systems Porru and Özkan3 found that the
performance of the CSD estimation relies on the accuracy of
its model since the CSD is not distinguishable neither with
measurements of secondary variables such as temperature and
volume nor concentration measurements.
In the light of the above-mentioned arguments, the goal of

this work is to develop a simulation model of the CSD
evolution in industrial crystallizers usable for real time
monitoring objectives. The model has to satisfy two require-
ments:

(i) it must be as detailed as required for the modeling of
growth, nucleation, and agglomeration kinetics in order
to cover for an appropriate prediction of the undis-
tinguishable dynamics of the CSD

(ii) it must be computationally efficient to predict the CSD
in real time.

A rigorous process model for crystallization systems consists
of material and energy balances for the liquid phase, and
material balances for the crystalline phase. The natural
framework for the modeling of the crystalline phase in terms
of CSD is the population balance equation (PBE).4−6 The PBE
is a partial differential equation (PDE) which describes the
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dynamics of the particle phase space allowing the complete
description of the properties of the particle distribution. More
specifically, the PBE is a conservation balance of the number of
particles in the crystallizer, which is a function of time and
space, where the spatial domain may include an external and
internal coordinate. The external coordinate identifies the
location of the crystals in the crystallizer. The internal
coordinate represents the characteristic size of the particles.
Normally, the chosen internal coordinate is the crystal length L
rather than the crystal volume v.7

It must be pointed out that obtaining the solution of the PBE
is challenging because it is analytically intractable.7 Analytical
solutions have been only found for the most idealized systems.
For example Gelbard and Seinfeld8 provide analytical solutions
when the seeds distribution belongs to the exponential
distribution and the internal coordinate is expressed in terms
of v. The analytical solution proposed by Pinar et al.9,10 is based
on the limiting assumption that the CSD does not change its
shape during the process.
With the advancement of computer science, the numerical

solution of the PBE has become very appealing. However, the
accurate numerical solution of the PBE is often challenging due
to numerical diffusion,11 and instability problems.12 A variety of
numerical techniques have been proposed. They can be divided
into four main classes: the finite difference method, the method
of weighted residuals, Monte Carlo methods, and discretization
techniques. A complete overview of these strategies can be
found in Mesbah et al.12 and Costa et al.13 It is adequate to say
that the discretization techniques consist of the discretization of
the internal coordinate domain along a grid of length (or
volume) classes, and the substitution of the PDE with a system
of ordinary differential equations (ODEs). According to
Mesbah et al.,12

• the discretization techniques have the best numerical
accuracy,

• among these discretization techniques, the finite volume
method and the method of characteristics (MOC) are
particularly amenable for online applications because
computationally efficient algorithms can be built based
on them.

Regardless of the numerical technique employed, the
majority of the simulation studies presented in the literature
only takes into account growth and nucleation kinetics,12,14−17

while only a few works address the simulation of the
agglomeration phenomena. As a result, these studies are often
unable to describe industrial crystallization operations in a
realistic way. The model of the aggregation of parent crystals4

to obtain agglomerates has been first developed in volume basis
since the total volume of the crystals is conserved in case of
pure agglomerating systems.
The simulation of the agglomeration rates presents

computation complexities related with the presence of integrals
of nonlinear functions. However, when a numerical solution
based on a discretization technique is used, it has been found
convenient to treat the CSD as a truly discrete distribution and
to reformulate the agglomeration mechanism with discrete
equations.18 Many mechanisms have been proposed: Batterham
et al.19 propose an ad-hoc model applicable to a geometric
discretization scheme so that the volume classes vi obey to vi+1/
vi = 2. The main drawback in this approach is that this type of
grid becomes very coarse at large sizes, which produces a
consistent overprediction of CSD at large volumes. Aligned

with this approach, the more recent works of Kumar and
Ramkrishna20−22 are remarkable. They first propose a discrete
mechanism for the agglomeration, that is applicable to uniform
grids,20 observing that the accuracy of the prediction depends
on the density of the grid points, but this demands high
computation time. To overcome this problem, they then
develop an algorithm that automatically changes the grid: a fine
grid is added when needed, and a coarse grid is added at smaller
sizes.21 Finally, they simulate a system undergoing growth,
nucleation, and agglomeration by combining the proposed
model and the method of characteristics (MOC).22 Results
have a good fit with the available analytical solutions. However,
the CPU times required by this technique remain too high23 to
make the algorithm appealing for online monitoring purposes.
Even if the agglomeration mechanism proposed in the

literature21,22 seems to be very accurate, its use is limited to
those cases for which the number density can be described on a
volume basis. In fact, the number density would be expressed in
length units if the kinetics parameters are estimated from CSD
data given on a length basis.24 Indeed, data from focus beam
reflectance measurement probes measure a chord length
distribution (CLD), which is given in length bases. CLD is
then converted in CSD by means of geometric inverse
modeling.14,25 CSD measurements in terms of length also
naturally arise from images techniques25,26 due to the inherent
2D feature of the pictures. In the case of length units used, the
agglomeration term has a more complex structure including the
integral of a function which is nonlinear in the internal
coordinate. This makes the method proposed by Kumar and
Ramkrishna20−22 difficult to extend.
To the best of our knowledge few papers have proposed a

numerical solution for agglomeration expressed in length basis.
Marchal et al.27 proposed an approximation of the agglomer-
ation term based on the application of the mean value theorem
on frequency. This method does not conserve the particle
number and gives poor performance.20,28 Hounslow et al.18

proposed a method that consists of a discrete reformulation of
the PBE, but it is applicable to grids which obey to the
geometric series Li+1/Li = 21/3, Li being the ith length class. This
type of grids becomes very coarse for large sizes. In fact, to
cover a length range from 0.1 to 1300 μm, only 42 classes
would be modeled. Moreover only 5 classes would cover the
range from 500 to 1300 μm: 516, 650, 820, 1032, and 1300 μm,
respectively. Hence, the use of the algorithm proposed by
Hounslow et al.,18 would lead to a poor estimation of the
number density function at large crystal dimensions. Majumder
et al.23 use an algorithm based on the Lattice Boltzmann
method. However, the CPU time required by this method
seems not to be compatible with real-time applications, being
comparable to the process duration.
In this work, we propose a novel numerical solution with the

method of characteristic (MOC) in order to obtain an accurate
and computationally efficient solution for PBE accounting for
the growth, the nucleation, and the agglomeration phenomena
together expressed on a length basis. The proposed method
includes an accurate computation of the integral constituting
the agglomeration term. The method is applicable to any CSD
shape, and does not require any specific grid for the length
domain, overcoming the limitations of the algorithm proposed
by Hounslow et al.18 With the proposed method we are able to
simulate the system behavior more than hundred times faster
than the batch run duration (with a computer with Intel(R)
Core (TM)2 Quad CPU 2.83 GHz and MATLAB 2016a),
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which, differently from other methods found in the literature,23

makes it appealing for online use for monitoring purposes.
This paper is organized as follows. Section 2 presents the

formulation of the CSD dynamic model by means of the PBE
including growth, nucleation, and agglomeration kinetics. The
MOC and the discretization scheme for the CSD are described
respectively in sections 3 and 4. In section 5 the numerical
solution of the PBE with the MOC and the proposed
discretization scheme is addressed. This section also explains
step by step how to handle the complexity due to the
agglomeration term. The proposed algorithm is tested on the
simulation of a seeded batch flash cooling crystallization in
section 6. Conclusions are given in section 7.

2. THE POPULATION BALANCE EQUATION AND
CRYSTALLIZATION KINETICS

The most detailed model for describing the evolution of the
CSD is the population balance equation (PBE) (eq 1). The
PBE describes the conservation of crystal identities in the
crystallizer. The crystals can be distributed in time and space.
The spatial domain may include an external (the position of the
entity in the crystallizer) and an internal (the characteristic size
of the identity) coordinates. In batch industrial crystallization
applications, the crystallizer is often assumed to be well mixed,
and the CSD is not a function of the external coordinate, but a
function of the internal coordinate x and the time instant t:

δ

∂
∂

+ ∂
∂

= − +

+ −

x t
t

x t x t
x

x t
V t
t

x t x

B x t D x t

( , ) ( , ) ( , )

( , )
d(log ( ))

d
( , ) ( )

( , ) ( , )

0 0

(1)

In (eq 1) x t( , ) stands for the number density function which
defines the number of the crystals per unit of crystallization
volume and with size ranging from x to x + dx. x t( , ) is the
growth rate, x t( , )0 is the nucleation rate, B(x, t) and D(x, t)
are the birth and death rates due to agglomeration and breakage
phenomena. V is the crystallization volume, x0 is the dimension
of the crystal nuclei. Often, the chosen internal coordinate is
the crystal length L. Accordingly, the number density function
has units [#/μm m3].
The crystallization is commonly operated in seeded, batch, or

semibatch mode where the introduction of crystal seeds
prevents undesirable primary nucleation phenomena that
negatively influence the CSD. The secondary nucleation,
generally due to attrition generated by the crystal−crystal and
crystal−crystallizer collisions, produces small crystals of length
L0. The agglomeration mechanism which involves the cohesion
of parent crystals is often observed in industrial setups, while
the breakage is less common at sufficiently low agitation speeds.
Finally, the changes of the number density due to volume
variation are usually negligible compared to the other
mechanisms. Under the above-mentioned conditions the PBE
(eq 1) reduces to

∂
∂

+ ∂
∂

= −n L t
t

G L t n L t
L

B L t D L t
( , ) ( , ) ( , )

( , ) ( , )A A (2)

with left boundary condition (eq 3a) and initial condition (eq
3b)

=n L t B G( , ) / L0 0 0 (3a)

=n L n( , 0) seeds (3b)

where n(L,t) denotes the number density function in [#/μm
m3], G denotes the growth rate in [μm/s] and B0 is the
nucleation rate in [#/s m3]; DA and BA denote the death and
birth rates due to agglomeration only. L0 is the dimension of
the crystal nuclei. nseeds denotes the initial CSD of the seeds in
terms of number density function.
The PBE is coupled with the mass and energy balances in the

liquid phase of the crystallization system by means of the
kinetics G, BA, DA, B0 which are functions of time with the
supersaturation. Supersaturation, on the other hand, depends
on temperature, and concentration of the solute. The
crystallization kinetics considered in this work are listed in
(eqs 4). The size independent power law kinetics for crystal
growth G (eq 4a) is widely used in crystallization modeling12,16

because of its simplicity. The secondary nucleation B0 (4b) is
modeled through the Evans kinetics29 with only crystal-impeller
collisions considered. The birth BA and death DA functions due
to agglomeration phenomena are modeled according to
Hounslow et al.,18 as shown in (eq 4c) and (eq 4d). Note
that the modeling of the agglomeration phenomena is a source
of nonlinearities for the system. The agglomeration kernel β is
considered size-independent and calculated according to the
empirical expression (eq 4e).
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∫ β λ λ λ=
∞

D L n L L n( ) ( ) ( , ) ( ) dA
0 (4d)

β ε= aG (4e)

In (eqs 4) kg, kci, L
min, gg, gn, and a are kinetic parameters to be

estimated. C and Csat(T) are the solute concentration and the
solute concentration at saturation, respectively, NQ, NP, and ε
are the impeller parameters: flow and power numbers and
specific power input, respectively.
The models for crystals agglomeration in length basis (eq 4c)

and (eq 4d) were originally derived by Hounslow et al.18 by
converting the mechanism expressed in volume basis4 (eq 5a)
and (eq 5b) to a length-based form. In (eqs 4) the functionality
with time is omitted.

∫ β′ = ′ − ϵ ϵ ′ − ϵ ′ ϵ ϵB v v n v n( ) 1/2 ( , ) ( ) ( ) dA

v

0 (5a)

∫ β′ = ′ ′ ϵ ′ ϵ ϵ
∞

D v n v v n( ) ( ) ( , ) ( ) dA
0 (5b)

where the prime is employed to emphasize that the variables
and parameters are expressed in volume basis rather than length
basis. The agglomeration kernel β′(v − ϵ, ϵ) is a measure of the
number of collisions between particles of volume v and ϵ that
successfully merge to produce a particle of volume v + ϵ. One
can note that the solution of the agglomeration terms is more
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challenging when expressed in length basis compared with the
volume basis because the former includes a nonlinear
functionality of the internal coordinate.
For the sake of clarity, it must be pointed out that the kinetic

laws (eq 4a), (eq 4b), and (eq 4e) reported in this section do
not influence the derivation of the proposed methodology.
Hence, they can be replaced with different ones on the
condition that length-independent growth rate laws are chosen.

3. METHOD OF CHARACTERISTICS
As it is pointed out in the Introduction, the crystallization
model (eq 2) in length basis and with kinetics (eqs 4) cannot
be solved analytically without making certain assumptions.
Thus, we have chosen the numerical solution with discretiza-
tion methods. Among the various techniques,12,13 the one
based on the method of characteristic (MOC) is very appealing
because of its simplicity and accuracy.
The MOC is a mathematical procedure that identifies

characteristic curves. On these curves, the partial differential
equation (PDE) becomes an ordinary differential equation
(ODE). In the particular case of the population balance
equation (PBE) at hand, this method eliminates the convection

term ∂
∂

G L t n L t
L

( , ) ( , ) through the transformation of (eq 2) in22

=

+ = + −

⎧
⎨
⎪⎪

⎩
⎪⎪

L t
t

G L t

n L t
t

n L t
G L t

L
B D

d ( )
d

( , )

d ( , )
d

( , )
d ( , )

d A A
(6)

The system (eq 6) is defined by the boundary condition (eq
3a) and the initial condition (eq 3b) inherited from the PDE
(eq 2):

=

=

n L t B G

n L n

( , ) /

( , 0)

L0 0

seeds

0

plus the extra initial condition for the internal coordinates:

= =L L(0) t 0 (7)

In (eqs 6), the integral of the first equation

= ϑL t( )

corresponds to the characteristic curve along on which the
ODE for n is solved. In other words, the set of differential
equations (eqs 6) represents the evolution of the number
density as seen by an observer moving with the growth velocity.
The use of the MOC is particularly convenient in the case of

size-independent crystal growth, since in this case the system
(eq 6) simplifies as (eq 8).

=

= + −
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which is accompanied by the boundary condition:

=n L t B G( , ) /0 0 (9)

and the initial conditions (eq 3b) and (eq 7)

=

= =

n L n

L L

( , 0)

(0) t

seeds

0

4. DISCRETIZATION OF THE DISTRIBUTED DOMAIN
OF THE INTERNAL COORDINATE L AND THE
DISTRIBUTED VARIABLE n

To solve the PBE with the MOC (eq 8) in a simulation
environment, the internal coordinate L has to be discretized
along a certain number of grid points at every time interval, as
shown in Figure 1. In the following we refer each point of the

grid with the expression “length class” Li. The crystal classes are
collected in the vector variable Λ = [L0, L1, L2, ..., Lmax]

T with
dimension dim(Λ) = γ. The number of classes γ has to be
tuned as a trade-off between accuracy of the numerical solution
and computational time, and it may increase at every iteration
as it will be explained in subsection 5.2. According to the
discretized grid, the variable number density function n(L)
distributed in the continuous domain of characteristic length L
is treated as a vector N = [n(L0), n(L1), n(L2), ..., n(Lmax) ]

T (or
in short N = [n0, n1, n2, ..., nmax]

T) associated with the vector of
the classes Λ, as shown in Figure 1. Thus, dim(N) = dim(Λ) =
γ.
On the basis of this notation, the number of crystals M0,Li+1−Li

per unit volume in the size range [Li+1, Li] is computable with
good approximation using the trapezoidal rule, provided that
Li+1 − Li is sufficiently small, that is to say:

∫= ≈
+ −

−
+ +

+

+
M n L L

n n L L
( ) d

( )( )
2L L

L

L
i i i i

0,
1 1

i i
i

i

1

1

(10)

5. NUMERICAL SOLUTION OF THE PBE BY USING THE
MOC

To understand the solution of the PBE by using the MOC, let
us decompose the general problem into three subproblems. Let
us analyze the behavior of a system accounting for (i) only
crystal growth, (ii) crystal growth and nucleation, and (iii) only
agglomeration. The subsequent step will be the combination of
the findings to simulate a crystallization process accounting for
the three kinetics, and the improvement of the computational
efficiency of the proposed algorithm.

5.1. Crystal Growth Only. In this section, the use of the
MOC is addressed for the case of only crystal growth. In this
case the system (eq 8) reduces to

Figure 1. Discrete crystal length and size distribution.
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from which it is easy to conclude that the number density
maintains the shape of the initial seeds nseeds(Li), i = 1, ..., γ
while the length axis travels at a velocity equal to the growth
rate, or in other words:

γ+ = =n L Gt L n L i( , ) ( ), 1, ...,i i iseeds (12)

every point of the initial profile is displaced in time t by a
quantity Gt in the positive direction of L. The number of
classes γ remains constant during the simulation duration.
Practically speaking, an iterative numerical scheme to solve (eq
11) is given by

= =t n n0;in i t i, ,seedsin (13a)

γ= =k N ifor 1, ..., ; for 1, ...,samp (13b)

= + −L L G t t( )i t i t, , in fin infin in (13c)

=n ni t i t, ,fin in (13d)

end (13e)

= =t t n n; i t i tin fin , ,in fin (13f)

end (13g)

where Nsamp is the number of iterations needed to simulate the
batch run, and tf in − tin is the sampling interval. tin (or tfin) is the
beginning (or end) of the time interval. In this scheme one can
use chemical and physical properties, and kinetics calculated at
the beginning of the time interval tin (e.g., G = Gin) to obtain an
approximation of the integral of the ODEs (eq 11a), provided
that the time interval is small enough. If numerical instability or
inaccurate solution of the ODEs are experienced, we
recommend to shorten the sampling interval or to choose a
different discretization scheme taking into account a balance
between computational complexity (i.e., number of functions
evaluations) and online implementation capability.
5.2. Crystal Growth and Nucleation. In the presence of

crystal growth and nucleation the discretized model of the
system within the MOC becomes

γ
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i i
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0 0 (14)

Practically speaking, in this case the L axis is shifted in the
positive direction due to the growth phenomena. In the mean

time, the smallest modeled crystal class L1 becomes larger than
the characteristic dimension of the nuclei L0. Thus, the
distribution of seeded crystals does not undergo changes in
its shape, and additionally, a number of crystals equal to B0/G is
continuously added. From a numerical point of view, one can
analyze the phenomena during a single sampling time: at every
sampling time the L axis is shifted due to growth, and a new
crystal class (or in other words a new element in the vector Λ)
has to be added to accommodate the nuclei. Accordingly, the
dimension of the grid γ increases with time, and the grid may
become nonhomogeneously spaced. The behavior of the L axis
can be visualized in Figure 2.

In parallel, the number density of the crystals existing at time
tin is conserved. In addition, a number of nuclei equal to B0/G is
generated by the nucleation phenomena. A corresponding
numerical scheme can be

= =t n n0; i t iin , ,seedsin (15a)

γ= =k N ifor 1, ..., ; for 1, ...,samp (15b)

=L Lt1, 0fin (15c)

= + −+L L G t t( )i t i t1, , in fin infin in (15d)

=n B G/t1, 0,in infin (15e)

=+n ni t i t1, ,fin in (15f)

end (15g)

γ γ= = = +t t n n; ; 1i t i tin fin , ,in fin (15h)

end (15i)

It must be pointed out that the necessity of incorporating to the
mesh grid a new length class L0 at every time interval makes the
grid nonuniform when the growth rate is not constant with
time. Indeed, the spacing between the first class L1 and its
adjacent class L2 at any time tfin is L2,tfin − L1,tfin = L2,tfin − L0 =
G(tfin − tin).
The major drawback of dealing with the nucleation by means

of MOC is that for long simulation durations the dimension of
the vectors N and Λ becomes intractable, and the simulation
time becomes comparable with (or longer than) the operation
time, making the model difficult to use for any real time
application. However, this problem can be easily overcome for

Figure 2. Schematic evolution of the length classes due to growth and
nucleation.
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batch processes by setting an appropriate sampling interval tfin
− tin, which guarantees a good trade-off between speed and
accuracy. In case this would not be enough, a regularization of
the mesh grid by elimination of length classes in the region of
the fines could be performed. According to the discretization
scheme used in this paper, the elimination of the cells does not
affect the shape of the distribution, while the number of the
crystal is conserved by means of (eq 10).
5.3. Agglomeration Only. The literature is limited when it

concerns the simulation of the agglomeration term in length
basis due to the inherit complexity of the solution of the PBE in
this case. Thus, most of the models proposed are not suitable to
describe industrial cases. In this section a numerical solution of
the net agglomeration rate BA − DA compatible with the MOC
is presented. The net agglomeration rate is handled by
numerically solving the integral terms in (eq 4c) and (eq 4d)
according to the discretization:

∫β
λ λ

λ
λ=

−
−

B L
L n L n

L
( )

2
(( ) ) ( )

( )
dA i

i
L

i

i

2

0

3 3 1/3

3 3 2/3

i

(16)

∫β λ λ=
∞

D L n L n( ) ( ) ( ) dA i i
0 (17)

The key step in the numerical solution of the integral is the
evaluation of the number density n at the lengths (Li

3 − λj
3)1/3, j

= 1, ..., i, by using a linear extrapolation between values at
computed nodes of the grid.
To test the accuracy of the proposed solution by comparing

it with the available analytical solution in literature,18 a pure
agglomerating system is considered first. Under pure
agglomeration, the system (eq 6) becomes

γ

=

= + − =

=

=

⎧

⎨

⎪⎪⎪⎪

⎩
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L
t

n L t
t

B L D L i

n L n L

n L t

d
d

0

d ( , )
d

( ) ( ) 1, ..., ;

( , 0) ( )

( , ) 0

i

i
A i A i

i iseeds

0 (18)

The adopted numerical procedure is described in the following,
highlighting the challenges and the strategies used to overcome
them.
Let us recall the discretization scheme adopted as shown in

Figure 1. The mesh grid is described by the vector Λ = [L0, L1,
L2, ..., Lmax]

T of crystal lengths. The number density function is
described by the vector N = [n0, n1, n2, ..., nmax]

T. The CSD is
univocally defined by the pair [Λ, N].
∀Li ∈ Λ: 1. The evaluation of (eq 16) involves the

computation of the elements of the vector Λi*

γΛ* = Λ* Λ* Λ* = *

Λ* = − =

γ*

L L j i

[ , ..., ] , dim( )

( ) , 1, ...,

i i i i i

i j i j

,1 ,
T

,
3 3 1/3

i

and γi* is the dimension of the subset of crystal classes

Λ = ⊂ Λ− L L[ , ..., ]i i0
T

(19)

γ γ* = Λ <−dim( )i i (20)

This vector Λi* provides a set of lengths for which the number
density has to be evaluated. The drawback is that, according to
the proposed discretization, the number density n(Λi,j*) is

usually not available because the crystal classes described by Λi*
may not belong to the set Λ. In the example below, this
concept is shown by using a vector of crystal lengths Λ = [Λ1,
···, Λγ]

T, Λ ∈ Rγ and γ = 11 with elements defined as Λ1 = 0; Λγ

= 100; Λi+1 = Λi+10. Λi (or Λi+1) denotes the ith (or (i+1)th)
element of the vector Λ. The corresponding vector Λi*
computed at Li = 100 is Λ100* = [100; 99.97; 99.73; 99.09;
97.82; 95.65; 92.21;86.13; 78.73; 64.71;0]. None of the
elements of Λ100* but Λ100,1* = 100 and Λ100,11* = 0 belong to
Λ (see Figure 3 for further clarifications).

2.The number density n(Λi,j*) is calculated by linear
extrapolation involving two adjacent length classes Lk, Lk+1
such that Lk < (Li

3 − Lj
3)1/3 < Lk+1, according to the simple

formula:

− =

+
−
−

− −+

+

n L L n L

n L n L
L L

L L L

(( ) ) ( )

( ) ( )
[( ) ]

i j k

k k

k k
i j k

3 3 1/3

1

1

3 3 1/3

(21)

3. Let us now recall the integral term in (eq 16)

∫ λ λ
λ

λ=
−

−
I L

n L n
L

( )
(( ) ) ( )

( )
dB i

L
i

i0

3 3 1/3

3 3 2/3

i

This integral is evaluated by computing the area under the
curve defined by the matrix of points [Λi

−, Fi]
T with

=

=
Λ* Λ

Λ*
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−

F F

F
n n
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( ) ( )
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,1 ,
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,
, ,

,
2

i

by means of a trapezoidal rule:

≈ Λ−I L F( ) trapz( , )B i i i

Fi is the vector of the integrand function evaluated at discrete
points.
4. The birth rate by agglomeration is then given by

β=B L
L

I L( )
( )

2
( )A i

i
B i

2

(22)

5. The evaluation of the death rate DA(Li) is much easier
because it involves the computation of the first moment M0 of
the CSD approximable with

∑=
γ

=

−

−+
M M

i
L L0

1

1

0, i i1
(23)

Figure 3. Comparison between the elements of the vectors Λi
− and Λi*

with a numerical example.
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where M0,Li+1−Li is the number of crystals per unit volume in the
size range [Li+1, Li] computed with a trapezoidal rule according
to (eq 10). Thus,

β=D L n L M( ) ( )A i i 0 (24)

It must be pointed out that in the description of the numerical
method adopted for the simulation of the agglomeration the
variable time t is omitted, but the net agglomeration rate BA(Li)
− DA(Li) is time dependent and must be recomputed at every
sampling time of the simulation.
After the evaluation of the agglomeration rate BA(Li) −

DA(Li), the system (eq 18) must be integrated over time. For a
small enough time interval (tfin − tin), the following
approximation can be used:

= + − −n n B L t D L t t t[ ( , ) ( , )]( )i t i t A i A i, , in in fin infin in (25)

Efficiency and performance of the proposed solution scheme
has been compared with the analytical solution of the
agglomerating system proposed by Gelbard and Seinfield,8

and recalled below (eqs 26−29)

τ τ
′ =

+
−

+

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥n v t

N
v

v v
( , )

4
( 2)

exp
2 /

2
0

0
2

0

(26)

where τ = N0 β t, and which is valid for the idealized case of an
exponential CSD

′ = −n v
N
v

v v( ) exp( / )0
0

0
0

(27)

Since (eq 26) is given in a volume basis, n′(v) must be
converted in a length basis for comparison purposes with the
proposed numerical solution by means of

π= ′n L t n v t
L

( , ) ( , )
2

2

(28)

π
= ⎜ ⎟⎛

⎝
⎞
⎠L v

v
( )

6 1/3

(29)

Figure 4 shows the time behavior of the CSD obtained with
the analytical (solid line) and the numerical (dot line) solution.

One can notice that the proposed numerical solution is in good
agreement with the analytical one. Small deviations are
observable in the region of the first half of the size domain,
while no deviations are present in the region of the larger
lengths.
Table 1 shows the conservation of the third moment M3 of

the CSD which is important to verify the accuracy of the

algorithm, since M3 does not change under pure agglomeration
kinetics. In particular, Table 1 reports the third moment of the
analytical solution and the numerical solution, and its loss due
to the numerical computation. One can notice that the
proposed numerical scheme is accurate since M3 is very well
preserved. It has been noticed that the numerical errors are
more abundant especially when the crystals size is distributed
around 1, while they become negligible for crystal sizes
preferentially distributed at L > 1. Therefore, the authors
discourage the use of scaled length domains while adopting the
proposed algorithm.
To demonstrate this, another simulation is carried out, with

seeds lognormally distributed around the length 74 μm and
with a spread of 1.21. The behavior of the CSD due to pure
agglomeration in this case is shown in Figure 5. Results are

obtained applying (i) the proposed algorithm accompanied by a
mesh grid for the crystal length uniformly distributed covering
300 μm with 300 crystal classes; (ii) agglomeration kernel-
taken constant at the value of 1.508 × 10−12; (iii) 3600 s of
crystallization; (iv) sampling time of 60 s. Under these
conditions the simulation takes 25.1 s. The computation of
the third moment reveals that in this latter case the volume of
the crystals is almost perfectly conserved, with a total mismatch

Figure 4. Comparison between the analytical solution (solid curves) in
length basis (eqs 26−29) and the numerical solution (dot line). The
initial CSD (eq 27) has parameters N0 = 0.285 and v0 = 3.50. The
agglomeration kernel is taken constant at the value β = 1 during the
five iterations.

Table 1. Conservation of the III Moment of the CSD

M3 M3

time analytical solution numerical solution loss at every iteration

0 1.9099 1.9099
1 1.9099 1.8779 1.66%
2 1.9099 1.8533 1.31%
3 1.9099 1.8333 1.08%
4 1.9099 1.8166 0.91%
5 1.9099 1.8023 0.78%

Figure 5. One hour agglomeration of a crystal population with initial
log-normal distribution around 74 μm with a spread of 1.21.
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between M3 at 0 s and its value at 3600 s equal to 0.006%. By
virtue of its accuracy and the limited computational effort, the
proposed numerical scheme seems adequate for real time
simulation for monitoring purposes. Moreover, it must be
pointed out that the proposed method is very flexible since it is
independent of the grid, which can be even inhomogeneous,
and thus perfectly fits with the numerical technique based on
MOC adopted for growth and nucleation simulation in this
paper.
5.4. Crystal Growth, Nucleation, and Agglomeration.

When the combination of growth, nucleation, and agglomer-
ation has to be simulated with the MOC approach, one has to
consider the system (eq 8) together with the algebraic equation
(eq 9) accounting for nucleation at the L0 length, and the initial
conditions (eq 3b) and (eq 7). This system is recalled below:
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A i A i

i i

i i

0 0

seeds

,0 (30)

Since all the phenomena previously discussed are involved here,
a suitable combination of the schemes proposed in previous
subsections must be implemented. For example, we suggest the
following scheme at every sampling time,

= =t n n0; i t iin , ,seedsin (31a)

γ= =k N ifor 1, ..., ; for 1, ...,samp (31b)

=L Lt1, 0fin (31c)

= + −+L L G t t( )i t i t1, , in fin infin in (31d)

= * + − −n n B L t D L t t t[ ( , ) ( , )]( )i t i t A i A i, , in in fin infin fin (31e)

end (31f)

γ γ= = = +t t n n; ; 1i t i tin fin , ,in fin (31g)

end (31h)

Here (eq 31c) and (eq 31d) upgrade the mesh grid due to
nucleation and growth. In (eq 31e) the number of particles per
unit volume ni,tfin* is due to the nucleation and growth
phenomena according to

* =n B G/t1, 0,in infin (32a)

* =+n ni t i t1, ,fin in (32b)

One can note that this numerical scheme comes from the
combination of (eqs 15) and (eq 25).
In the following sections, the proposed numerical scheme is

applied to simulate a crystallization process achieved by means
of the flash cooling technology.

6. RESULTS AND DISCUSSION: SEEDED FLASH
COOLING CRYSTALLIZATION

The method of characteristics (MOC) has been applied to
simulate the behavior of a seeded batch flash cooling
crystallization of a chemical species in water. In the flash
cooling crystallization the driving force (the supersaturation) is
achieved by the combination of (i) evaporation of the solvent
and (ii) cooling of the solution, obtained by means of vapor
extraction. The crystals dynamics are assumed to be determined
by crystal growth, secondary nucleation due to attrition, and
agglomeration, and the corresponding kinetics manifest a
dependency with other states of the system, namely temper-
ature and solute concentration.
The model of the process consists of material and energy

balances for the liquid and solid phases. The dynamics of the
temperature T (eq 33a), the concentration C (eq 33b), and the
volume V (eq 33c) are described by ODEs, while the
particulate feature of the solid product is modeled with the
PBE.5 Under the assumptions of perfect mixing, size-
independent crystal growth rate, absence of crystals and solute
in the vapor flow, dilute solution, and negligible effect of the
volume on the dynamics of the CSD, the crystallizer model (eq
33) is provided as follows.

ρ
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where

∫
ϕ ρ=

=
∞
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M n L L

3 ,

( ) dL

c c v 2

2
0

2

The meaning of the symbols is presented in the nomenclature
section. The values of the kinetic and impeller parameters, and
crystal properties are reported in Table 2. The set of
crystallization kinetics (eqs 4) has been employed to calculate

Table 2. Kinetic and Impeller Parameters

parameter value unit

kg 4.64 × 10−5 m/s
kci exp(12.54) #/m3 s
Lmin 100 μm
gg, gn 1
a 3.016 × 10−12

NQ 1.6
NP 2
ε 2.1 m2/s3

ρc 1600 kg/m3
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G, B0, BA, and DA. Kinetics parameters are chosen to give a fast
and growth driven crystallization with moderate nucleation and
agglomeration. The flow rate of vapor Fw is an input of the
system chosen to guarantee a low and almost constant
supersaturation level over the batch run.
The applied vapor profile generates a variation (i) of 22.5 K

between the initial and final temperature, (ii) of 141.9 kg/m3

between the initial and final concentration and (iii) of 0.3 m3

between the initial and final volume, during 6720 s of batch run.
We assume that the seeds are lognormally distributed with

location parameter μ = 74 μm and spread of σ = 1.6. The initial
mesh grid is uniformly distributed and consists of 300 lengths
with length interval of 2 μm. The nuclei have characteristic
length L0 = 0.1 μm. The behavior of the crystallization system is
simulated in MATLAB R2016a. The ODEs are solved with
ODE45 within a time interval of 60 s. At the end of this time
interval, the crystallization kinetics are provided and used to
upgrade the CSD based on the numerical schemes (eqs 31−32)
previously discussed. The value of the calculated second
moment M2 is fed back to the ODEs for the next iteration. It
must be pointed out that simulations conducted with a shorter
time interval than 60 s return the very same dynamic behavior,
but take a much longer simulation time. In the following,
simulation results of the CSD dynamics due to (i) crystal
growth, (ii) crystal growth and nucleation, and (iii) crystal
growth, nucleation, and agglomeration are presented and
discussed.
6.1. CSD Time Behavior under Crystal Growth Only.

For the case of crystallization driven by the growth kinetics
alone, the behavior of the number density n during the batch
run is shown in Figure 6a. In this graph the CSD is plotted
every 10 min. One can appreciate that the rate of shift of the
CSD curve is decreasing during the batch run according to the
growth rate which is depicted in Figure 6b. The latter depends
in turn on the temperature and the concentration in the
crystallizer.
For the sake of completeness, one can be interested in

observing the behavior of the CSD in the more intuitive volume
fraction function vf [m3/μm m3] which is presented in Figure 7.
Compared with the number density n, the volume fraction vf
retains the information on the total volume of the crystal phase
according to vf = n kvL

3. For this reason the area under vf is
increasing with time.

6.2. CSD Dynamics under Growth and Nucleation. The
presence of the nucleation term implies that crystal nuclei of
length L0 are produced. Thus, the number density evolves with
a tale on its left side. The growth of the seeds is negligibly
perturbed by the nucleation phenomena, as shown in Figure 8a.
It must be pointed out that the nucleation rate (depicted in
Figure 8b) is taken small, and consequently the growth rate is
not significantly different than the one of Figure 6b, obtained
for the case of growth only. If the nucleation rate were taken
higher, the growth rate would have been lower because
nucleation and agglomeration rates compete for the same
driving force (the supersaturation). Due to the small nucleation
rate, which generates a relative small left-tale for the number
density n, the plot of the volume fraction vf is similar to the one
obtained for the case of growth only, and for the sake of
conciseness it is not repeated here. However, if the nucleation
rate is larger, the volume fraction vf would develop a second
mode in the region of the fines. The simulation is obtained with
60 s of sampling interval and it is as accurate as the one
obtained using a sampling time of one second, but faster.

6.3. Growth, Nucleation, and Agglomeration. When all
the crystallization phenomena are taken into account, the shape
of the CSD in terms of number density (see Figure 9a)
becomes very interesting. The average dimension of the crystals

Figure 6. (a) CSD in terms of number density n for a pure growth crystallization system at every 10 min of operation. (b) Evolution of the growth
rate during the batch run under pure crystal growth.

Figure 7. CSD in terms of volume fraction vf for a pure growth
crystallization system at every 10 min of operation.
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becomes considerably larger due to agglomeration, and the
initial log-normal shape is not retained.
Figure 9b shows the net agglomeraton rate at the initial time

t0 (blue line) and after 5 (yellow line) and 10 (red line)
minutes. One can notice that (i) at the initial time crystals of
length smaller than 60 μm are consumed to generate larger
crystals, (ii) at time 5 and 10 min, the maximum consumption
of crystals due to agglomeration has moved toward larger and
larger crystal lengths, which is possible because large length
classes are continuously generated to the detriment of crystals
belonging to the finest classes which are consumed, and (iii)
the agglomeration also involves fine crystals produced by
nucleation.
Figure 10 shows the effect of the phenomena on the volume

fraction vf. One can notice that the volume fraction evolves
three modes that can be associated with (from the right to the
left) (i) agglomeration and growth of the initial seeds, (ii)
growth of seeds, and (iii) nucleation and agglomeration of the
nuclei.
Finally it must be pointed out that the simulation of 6720 s

(112 min) of batch crystallization accounting for growth,
nucleation, and agglomeration takes only 62 s, which makes the

proposed numerical scheme very attractive for online use for
real time monitoring purposes.

Figure 8. (a) CSD in terms of number density n for a crystallization system undergoing crystal growth and moderate nucleation, at every 10 min of
operation. (b) Evolution of the nucleation rate due to crystal-impeller attrition during the batch run.

Figure 9. (a) CSD in terms of number density n for a crystallization system undergoing crystal growth, moderate nucleation, and attrition, at every
10 min of operation. (b) Net agglomeration rate BA − DA as a function of the crystal length, at the beginning of the batch (blue), after 5 (yellow),
and after 10 (red) minutes of operation.

Figure 10. CSD evolution in terms of volume fraction vf for a
crystallization system undergoing crystal growth, moderate nucleation,
and attrition, at every 10 min of operation.
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7. CONCLUSIONS
In this paper the problem of simulating seeded batch
crystallization systems accounting for growth, nucleation, and
agglomeration for online model-based estimation technologies
has been addressed. The crystal size distribution (CSD)
evolution has been modeled within the framework of the
population balance equation (PBE). The method of character-
istics (MOC) has been chosen for the discretization of the PBE.
This method, coupled with a numerical integration with the
upgrade of the CSD every 1 min, offers accurate solution and
fast computational time. The proposed simulation model is
thus an appropriate estimation model to be used within
monitoring tools based on state estimators driven by plant
measurements.

■ APPENDIX

Derivation of the Agglomeration Mechanism in
Length-Based Form
In this Appendix, the procedure to convert the volume-based
agglomeration kinetics (eqs 5a, 5b) into their length-based
counterparts (eqs 4c, 4d) is described in detail. Recall the
relation between the volume v of a spheric crystal and its
diameter L,

π=v
L
6

3

(34)

and derive the relation between the infinitesimal volume dv and
the infinitesimal diameter dL:

π= L
Ldv

2
d

2

(35)

Then, recall the following definitions of number density (eq
36a), birth (eq 36b), and death (eq 36c) rates due to
agglomeration in volume and length bases, respectively.

′ = ′ =N Vn v v N Vn L L( ) d ; ( ) d (36a)

′ = ′ =N VD v v t N VD L L t( ) d d ; ( ) d dD A D A (36b)

′ = ′ =N VB v v t N VB L L t( ) d d ; ( ) d dB A B A (36c)

Here N′ is the number of particles in the crystallization volume
V of volume between v and v + dv. N is the number of particles
in the crystallization volume V having diameter between L and
L + dL. ND′ (or ND) is the number of particles in the
crystallization volume V that have disappeared from the of
volume class v + dv (or length class L + dL) by means of
agglomeration in an infinitesimal time interval. NB′ (or NB) is
the number of particles of dimension between v and v + dv (or
L and L + dL) produced in the crystallization volume V in an
infinitesimal time interval by means of agglomeration.
Since the crystals of volume between v and v + dv have

diameter between L and L + dL the following equalities hold:

′ =N N (37a)

′ =N ND D (37b)

′ =N NB B (37c)

which lead to the equalities

′ =Vn v Vn L L( ) dv ( ) d (38a)

′ =VD v v t VD L L t( ) d d ( ) d dA A (38b)

′ =VB v v t VB L L t( ) d d ( ) d dA A (38c)

Substituting (eq 35) into (eq 38a), (eq 38b), and (eq 38c) one
obtains:

π= ′n L n v
L

( ) ( )
2

2

(39a)

π= ′D L D v
L

( ) ( )
2A A

2

(39b)

π= ′B L B v
L

( ) ( )
2A A

2

(39c)

Let us now recall (eq 5b)

∫ β′ = ′ ′ ϵ ′ ϵ ϵ
∞

D v n v v n( ) ( ) ( , ) ( ) dA
0

Calling λ the diameter of a particle of volume ϵ, and defining
the length-basis counterpart of the agglomeration kernel β′(v,
ϵ) as β(L, λ), the relation

∫
π π
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(40)

results if (eqs 39) are substituted into (eq 5b). Equation 40
corresponds to (eq 4d) after cancellation of the factors

πL
2

2 and

πλ
2

2 .

Let us now recall eq 5a

∫ β′ = ′ − ϵ ϵ ′ − ϵ ′ ϵ ϵD v v n v n( )
1
2

( , ) ( ) ( ) dA

v

0

Given that (L3 − λ3)1/3 is the diameter of a particle of volume
(v − ϵ), and defining the length-basis counterpart of the
agglomeration kernel β′(v − ϵ, ϵ) as β ((L3 − λ3)1/3, λ), the
relation

∫
π

β λ λ λ

π λ
λ

πλ
πλ λ
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(41)

results if (eqs 39) are substituted into (eq 5a). Equation 41
corresponds to (eq 4c) after cancellation of the factors

πλ
2

2 and

π
2 from both sides.
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BA = birth function due to agglomeration, length bases [#/s
μm m3]
BA′ = birth function due to agglomeration, volume bases [#/s
μm3 m3]
B0 = nucleation rate for primary and secondary nucleation
[#/s m3]
C = solute concentration [kg/m3]
Cp = specific heat of the mixture [J/kgK]
Csat = solute concentration at saturation [kg/m3]
DA = death function due to agglomeration, length bases [#/s
μm m3]
DA′ = death function due to agglomeration, volume bases
[#/s μm3 m3]
Fw = mass flow of the vapor [kg/s]
G = crystal growth rate [μm/s]
gg = supersaturation order in the growth rate law [-]
gn = supersaturation order in the nucleation law [-]
hw = enthalpy of the vapor [J/kg]
kg = growth rate constant [μm/s]
kci = nucleation rate constant [#/m3 s]
kv = volumetric shape factor [-]
L = internal coordinate crystal length [μm]
L0 = characteristic length of crystal nuclei [μm]
Lmin = crystal length above which crystals undergo attrition
[μm]
M = mass of crystals [kg]
M0 = zeroth moment of n, proportional to the total number
of crystal identites [#/m3]
M2 = second moment of n, proportional to the total crystal
surface [# μm2/m3]
M3 = third moment of n, proportional to the total volume of
solids [# μm3/m3]
n = number density function, length bases [#/m3 μm]
n′ = number density function, volume bases [#/m3 μm3]
nseeds = number density function of the seeds [#/m3 μm]
NQ = impeller flow number [-]
NP = impeller power number [-]
Nsamp = number of iterations to simulate a batch run [-]
T = temperature of the system [K]
TR = reference temperature [K]
t = time [s]
tin, tf in = Initial and final time of a sampling interval [s]
V = volume [m3]
vf = volume fraction [m3/μm m3]
v = internal coordinates crystal volume [μm3]
x = internal coordinate crystal size [μm] or [μm 3]

0 = nucleation rate for primary and secondary nucleation
[#/s m3]

= number density function [#/m3 μm] or [#/m3 μm3]
= crystal growth rate [μm/s] or [μm3/s]

ΔHC = heat of crystallization [J/kg]
α = agglomeration parameter [-]
β = agglomeration kernel
ε = specific power input [m2/s3]
ρ = density of mixture [kg/m3]
ρc = density of the solid phase [kg/m3]
ϕc = crystal production term due to crystal growth [kg/s]
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