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ABSTRACT

Organic acids such as monocarboxylic acids, dicarboxylic acids or even more complex molecules such as sugar acids, have
displayed great applicability in the industry as these compounds are used as platform chemicals for polymer, food,
agricultural and pharmaceutical sectors. Chemical synthesis of these compounds from petroleum derivatives is currently
their major source of production. However, increasing environmental concerns have prompted the production of organic
acids by microorganisms. The current trend is the exploitation of industrial biowastes to sustain microbial cell growth and
valorize biomass conversion into organic acids. One of the major bottlenecks for the efficient and cost-effective
bioproduction is the export of organic acids through the microbial plasma membrane. Membrane transporter proteins are
crucial elements for the optimization of substrate import and final product export. Several transporters have been
expressed in organic acid-producing species, resulting in increased final product titers in the extracellular medium and
higher productivity levels. In this review, the state of the art of plasma membrane transport of organic acids is presented,
along with the implications for industrial biotechnology.
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INTRODUCTION

Organic acids are an essential group of platform chemicals pro-
duced by microbes. Most of the organic acids produced industri-
ally are used in the food industry. Currently, the major source

of production of these compounds is the chemical synthesis
from petroleum derivatives. Nonetheless, several organic acids
are already industrially generated via microbial cell-factories,
including succinic, lactic, citric, gluconic and acetic acid (Alonso,
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Rendueles and Dı́az 2015). Microbial production of organic acids
comprises several membrane transport processes, mostly con-
trolled by membrane proteins, namely substrate import, trans-
port of metabolites between organelles and product export.
These processes, critical for the bioproduction of organic acids,
are the major topic of this review.

MICROBIAL CELL FACTORIES IN THE
PRODUCTION OF BIO-BASED ORGANIC ACIDS

The global organic acids market was valued at 17 billion euros
in 2016. The forecasts predict an annual growth of 8.3%, which
should reach 30 billion euros by the year 2023 (Sahu 2017) with
an impact in a broad range of industrial sectors (Fig. 1). The most
significant contributions to this growth are the use of renew-
able resources, the rising market and the growing demand from
developing countries for bio-based organic acids.

The industry of microbial organic acid production is under
continuous development to increase cell factory productivity,
yields and range of products. Along with classical strain engi-
neering approaches and adaptive laboratory evolution (ALE)
strategies, the development of recombinant DNA technology
together with synthetic biology has allowed the rational engi-
neering of organic acid-producing microbes. Meanwhile, beyond
the classical industrial microbes, such as Escherichia coli, Saccha-
romyces cerevisiae and Corynebacterium glutamicum, we have wit-
nessed the appearance of other species isolated from natural
sources, displaying a high capacity to generate organic acids
(Buschke et al. 2013; Na et al. 2012; Becker and Wittmann 2015).

Membrane transporters as tools for the improvement of
cell factories

Nowadays, most industrial microorganisms are metabolically
engineered to produce specific products and/or to metabo-
lize specific substrates. For decades, the transport mechanisms
and energetics of these compounds were underestimated, and
most attention was given to the engineering of metabolic path-
ways. Recently, the scientific community and biotech companies
focused their efforts on transporter engineering, envisaging the
development and improvement of microbial cell factories (Sauer
et al. 2008; Boyarskiy and Tullman-Ercek 2015; Kell et al. 2015).

The microbial fermentation industry faces two major bottle-
necks in the production line: the first relates to product accu-
mulation and toxicity inside the cell and low product titers in
the extracellular medium; the second is associated with cell fac-
tory capacity to assimilate carbon and energy sources for prod-
uct biosynthesis. These two obstacles in microbial fermenta-
tion can be overcome by transport activity of endogenous or
exogenous membrane transporters, importers and/or exporters,
as well as their genetic manipulation regarding expression lev-
els and generation of mutant alleles with increased transport
capacity or altered specificity (Sauer et al. 2010; Boyarskiy and
Tullman-Ercek 2015; Kell et al. 2015).

MEMBRANE TRANSPORTERS IN THE IMPORT
OF RENEWABLE SUBSTRATES

The most used renewable feedstocks in the bio-based industrial
production of carboxylic acids are cheese whey, lignocellulosic
biomass, glycerol and pectin-rich wastes (Alonso, Rendueles and
Dı́az 2015). Lactose is the most abundant sugar in cheese whey;

xylose along with arabinose are abundant sugars in lignocellu-
losic hydrolysates; pectin-rich wastes, such as citrus and beet
pulp, are rich in galacturonic acid (Alonso, Rendueles and Dı́az
2015; Deng, Wang and Yan 2016). Frequently, these sugars are
hardly assimilated and metabolized by microbial cell factories.
This bottleneck is associated with the lack of membrane pro-
teins or extracellular enzymes capable of respectively taking up
or converting these substrates into assimilated forms. There-
fore, membrane transporters are engineered in microbial cell
factories to increase the efficiency of substrate influx, by altering
transporter specificity, affinity and/or capacity, ultimately lead-
ing to improved production yields (Van Dyk 2008; Kell et al. 2015;
Deng, Wang and Yan 2016).

Extensive efforts were devoted to the use of genetically engi-
neered E. coli as a sustainable platform for the production of
industrially important compounds, including organic acids (for a
review see Chen et al. 2013; Yang et al. 2020). One of the few exam-
ples reporting the engineering of membrane transporters for the
uptake of substrates to improve organic acid production in E. coli
is the study by Wu, Liu and Singh (2018). Here, the increased pro-
duction of catechol (gluconic acid precursor) was achieved after
the co-expression of the catechol biosynthetic pathway and the
transporter CouP, which enabled the uptake of aromatic com-
pounds present in lignin. In a more recent work, Khunnonkwao
et al. (2018) described the improvement of succinic acid pro-
duction upon re-engineering of xylose transporters in E. coli.
The filamentous fungus Aspergillus niger is the oldest industrial
workhorse due to its great robustness to extreme acid environ-
ments and better fitness for industrial fermentation (Tong et al.
2019). Genome design and metabolic engineering approaches to
optimize the A. niger cell factory for industrial citric acid produc-
tion can be found in Tong et al. (2019). However, few transporter
engineering strategies for substrate influx were described in this
species. The endogenous low-affinity glucose transporter Lgt1
was expressed in the citrate-producing A. niger H915–1 strain,
under the control of the low-pH-inducible promoter Pgas, lead-
ing to enhanced glucose absorption during the acid producing
period and enhanced citrate production (Liu et al. 2018).

Yeasts are considered one of the most promising groups of
industrial microorganisms to produce organic acids and ethanol.
Thus hereafter, emphasis will be given on the functional expres-
sion of xylose, arabinose, lactose, glycerol and galacturonic acid
transporters in attempts to improve organic acid biorefinery
applications in yeasts.

Xylose

The heterologous expression of xylose transporters in S. cere-
visiae for the conversion of this lignocellulosic sugar into ethanol
was extensively reported in the literature. More than 80 heterol-
ogous xylose transporters or putative xylose transporters have
already been expressed in S. cerevisiae (for a review see Moysés
et al. 2016). Significant examples include SUT1, SUT2, XUT1, XUT3
(Xyp33), XUT4, Xyp29 (STL12), SUT3 (Xyp37) from Scheffersomyces
stipitis, GXF1 from Candida intermedia, At5g59250 from Arabidopsis
thaliana, An29–2 and An25 from Neurospora crassa, xtrD from A.
nidulans, MgT05196 from Meyerozyma guilliermondii and Xylh from
Debaryomyces hansenii. More than 80% of these putative trans-
porters or annotated sugar transporters were not functional in
S. cerevisiae, probably due to misfolding or improper localiza-
tion (Moysés et al. 2016). The ones that were properly expressed
in the HXT-null S. cerevisiae strain displayed activity for xylose
transport, but the majority showed a preference for glucose over
xylose.
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Figure 1. Annual production of organic acids according to market sector/application in 2015 and estimated growth for 2024 (adapted from https://www.alliedmarket
research.com/organic-acids-market).

Arabinose

Along with xylose, arabinose is the second most abundant pen-
tose sugar present in lignocellulosic hydrolysates. S. cerevisiae
possesses endogenous arabinose transporters (Hxt9, Hxt10 and
Gal2), Gal2 being the most prominent (Wang et al. 2013). How-
ever, the consumption of this sugar pentose is inefficient and
inhibited by glucose, since Gal2 exhibits a much lower affinity for
arabinose than for glucose or galactose (Becker and Boles 2003;
Subtil and Boles 2011a). To improve the kinetics of arabinose
uptake, transporter genes from other organisms have been func-
tionally expressed in engineered arabinose-metabolizing S. cere-
visiae strains. Two characterized L-arabinose transporters, LAT-1
from N. crassa and MtLAT-1 from Myceliophthora thermophila were
expressed in this yeast (Li et al. 2015). The expression of both
transporters in a S. cerevisiae strain containing a L-arabinose
metabolic pathway resulted in a much faster L-arabinose uti-
lization, greater biomass accumulation and higher ethanol pro-
duction than the control strain. Expression of the PcAraT ara-
binose transporter from Penicillium chrysogenum enabled growth
on arabinose in the presence of glucose in a S. cerevisiae strain
deficient in hexose phosphorylation and able to metabolize ara-
binose (Bracher et al. 2018). This transporter showed significantly
higher affinity for arabinose compared to the endogenous Gal2
and had far less pronounced inhibition of arabinose uptake in
the presence of glucose or xylose.

Lactose

A recombinant S. cerevisiae flocculent strain heterologously
expressing the β-galactosidase LAC4 and lactose permease
LAC12 genes from Kluyveromyces lactis was used for ethanol
production from lactose in a continuous culture operation
(Domingues et al. 1999). This approach resulted in an ethanol
production yield of 0.51 g/g of lactose. In continuous fermen-
tation conditions, this engineered S. cerevisiae strain reached
an ethanol productivity of 11 g/L/h, which represented a 7-fold
rise compared with values of ethanol productivity from lactose
previously mentioned in the literature (Domingues et al. 1999).
The expression of the lactose transporter CDT-1, the intra-
cellular β-galactosidase GH1–1 from N. crassa and the lactate
dehydrogenase ldhA from Rhizopus oryzae in S. cerevisiae allowed

the production of lactic acid from lactose, cow’s milk, or whey
(Turner et al. 2017). A lactic acid yield of 0.358 g/g lactose was
achieved from a Yeast extract-Peptone medium containing
about 80 g/L whey.

Glycerol

Heterologous expression of glycerol facilitators (Fps1 homologs)
from non-Saccharomyces yeast species that show superior growth
on glycerol, e.g. Cyberlindnera jadinii, Komagataella pastoris,
Pachysolen tannophilus and Yarrowia lipolytica, improved the max-
imum specific growth rates of the S. cerevisiae CBS 6412–13A
strain by 30–40% in synthetic glycerol medium (Klein et al.
2016). Conversely, no improvement was visible after the over-
expression of the endogenous S. cerevisiae FPS1 gene. Deletion
of the endogenous glycerol/H+ symporter STL1 did not impair
the superior growth of these strains. A significant increase in
ethanol production (from none to 8.5 g/L) was obtained upon the
expression of the heterologous aquaglyceroporin CjFPS1 from C.
jadinii in the strain CBS DHA, which catabolizes glycerol via the
dihydroxyacetone (DHA) pathway(Asskamp, Klein and Nevoigt
2019). Further optimizations, including the reduction of oxygen
availability in the shake flask cultures, increased the ethanol
titer up to 15.7 g/L.

Galacturonic acid

The introduction of the galacturonic acid transporter GAT1
from N. crassa, along with a fungal reductive pathway for
galacturonic acid catabolism (gaaA, gaaC and gaaD from A. niger
and lgd1 from Trichoderma reesei), allowed the engineered S.
cerevisiae strain to metabolize galacturonic acid (Biz et al. 2016).
This strain was only able to catabolize galacturonic acid when
a co-substrate was added (fructose). Tracing experiments with
13C-galacturonic acid revealed its conversion into glycerol (Biz
et al. 2016). Recently, the expression of another galacturonic
acid transporter, GatA from A. niger, allowed a more rapid
consumption of this acid (Protzko et al. 2018). The involvement
of endogenous yeast hexose transporters Hxt1–7 and Gal2 in
the glucose-inhibited uptake of undissociated galacturonic
acid in acidic conditions was also uncovered. Expression of

https://www.alliedmarketresearch.com/organic-acids-market
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glucose-insensitive GatA coupled with uronate dehydrogenase
allowed the engineered S. cerevisiae strain to produce 8 g/L of
meso-galactaric acid from citrus peel waste supplemented with
additional glucose (Protzko et al. 2018).

TRANSPORTER EXPRESSION FOR THE
OPTIMIZATION OF ORGANIC ACID EFFLUX

Regarding the microbial production of organic acids, sev-
eral reports pointed to the effectiveness and contribution
of membrane transporters for product efflux. The organic
acid transporters that thus far have been functionally char-
acterized in yeast, fungi and bacteria are listed in Table 1.
Among these transporters, a great majority belong to the 2-
hydroxycarboxylate transporter (2-HCT) (TC 2.A.24), Divalent
Anion:Na+ Symporter (DASS) (TC 2.A.47) and Sialate:H+ sym-
porter (SHS) (TC 2.A.1.12) families. Members of 2-HCT are
involved in the transport of di- and tricarboxylate substrates
(malate/citrate uptake) with either Na+ or H+ as the co-substrate
and precursor/product exchangers (Sobczak and Lolkema 2005).
Some members mediate the transport of monocarboxylate sub-
strates, 2-hydroxyisobutyrate and D-lactate (Bandell et al. 1998;
Pudlik and Lolkema 2012). The integral membrane proteins of
the DASS family are conserved from bacteria to humans. DASS
proteins typically mediate the coupled uptake of Na+ ions and
dicarboxylate, tricarboxylate, or sulfate (for a review see Lu
2019). A total of six members of DASS present a broad range
of substrates from mono-, di- to tricarboxylates. The SHS trans-
porter family, despite only having two distinct family members,
the sialic acid transporter NanT, and the lactate/pyruvate:H+

symporter orthologues, is the one with most members charac-
terized in yeast, accepting mainly mono- and dicarboxylates as
well as sugar acids (Casal et al. 2008; Ribas et al. 2017). Next,
we will highlight the transporters that had an impact on the
improvement of cell factories.

Glutamic acid

The bacterium Corynebacterium glutamicum is used in microbial
biotechnology for the production of glutamic acid. Glutamate
efflux, triggered by increased mechanic tension, was associ-
ated with the activation of the channel NCgl1221 (MscCG; Naka-
mura et al. 2007; Becker et al. 2013), belonging to the MscS Fam-
ily (TCDB 1.A.23 The Small Conductance Mechanosensitive Ion
Channel). However, the activation mechanism of C. glutamicum
mechanosensitive channels is not fully understood (for a review
see Nakayama et al. 2019). Several channels of this family are
described to play a critical role in product efflux of other amino
acids, namely lysine, isoleucine, threonine, methionine and oth-
ers (Van Dyk 2008; Kell et al. 2015).

Malic acid

In the natural malic acid producer Ustilago trichophora RK089,
the overexpression of two endogenous malate transporter genes
improved the production yields by 54% (Zambanini et al. 2017).
The overexpression of pyruvate carboxylase (pyc) together with
two malate dehydrogenases (mdh1, mdh2), and two malate trans-
porters (ssu1, ssu2) was carried out in a laboratory-evolved U.
trichophora strain that reached an extracellular malate titer of
120 g/L. Wild-type S. cerevisiae strains produce low levels of
malate. High yield production of malic acid required the elim-
ination of alcoholic fermentation, which in this yeast occurs

under fully aerobic conditions when high concentrations of
sugar are present (Zelle et al. 2008). The metabolic engineering
of a S. cerevisiae strain allowed an increase up to 10-fold of malic
acid titer relative to the control strain (Zelle et al. 2008). This
was achieved through the engineering of a glucose-tolerant, C2-
independent pyruvate decarboxylase-negative strain, together
with: (i) the overexpression of the endogenous pyruvate car-
boxylase encoded by PYC2, (ii) the overexpression of an allele of
the peroxisomal malate dehydrogenase MDH3 gene targeted to
the cytoplasm and (iii) the functional expression of the S. pombe
malate transporter SpMae1. These modifications per se improved
malate production, and the combination of all genetic modi-
fications reached a malate titer of approximately 59 g/L(Zelle
et al. 2008). Recently, seven dicarboxylic acid transporters were
expressed in a S. cerevisiae strain engineered for dicarboxylic
acid production (Darbani et al. 2019). In this work, the expres-
sion of the SpMae1 homologous gene from Aspergillus carbonar-
ius, AcDct, increased malate titer up to 12-fold. Upon SpMae1
expression, the following titers were obtained for malate (8 fold-
4.3 g/L), succinate (3 fold-2.6 g/L) and fumarate (5 fold-0.33 g/L).

Fumaric acid

The overexpression of the S. cerevisiae mitochondrial succinate-
fumarate carrier SFC1 gene enhanced fumarate export and pro-
duction by 47.6% in this yeast (Xu et al. 2012). A S. cerevisiae
strain engineered for the production of fumarate, deleted in
the fumarase FUM1 gene and expressing the RoPYC pyruvate
carboxylase gene of R. oryzae and the endogenous SFC1 gene,
resulted in a titer of 1.7 g/L of fumarate in batch culture.

Using a different approach, fumarate production in Candida
glabrata was improved by overexpressing the Sfc1 mitochon-
drial carrier in combination with the heterologous expression of
SpMae1 (Chen et al. 2015). This work established the metabolic
engineering of the tricarboxylic acid cycle in C. glabrata to con-
struct the oxidative pathway for fumarate production. Thus, a
set of genetic modifications to manipulate the oxidative path-
way was applied in the α-ketoglutarate dehydrogenase complex,
succinyl-CoA synthetase and succinate dehydrogenase. As a
result, the C. glabrata producer strain reached a fumarate titer of
8.24 g/L. Overexpression of the argininosuccinate lyase gene led
to a fumarate increase up to 9.96 g/L. The additional expression
of two dicarboxylic acid transporters, Sfc1 and SpMae1, allowed
an improvement of fumarate production (15.76 g/L; Chen et al.
2015).

In E. coli a set of C4-dicarboxylate transporters from differ-
ent organisms were cloned in a fumaric acid-producing strain
deleted in the genes fumABC, frdABCD, iclR and arcA, to evaluate
their impact on the production of this acid (Zhang et al. 2017b).
It was the overexpression of the endogenous transporters DcuB,
an anaerobic fumarate–succinate antiporter (Zientz, Six and
Unden 1996), and DcuC, a C4-dicarboxylate carrier that pro-
motes succinate efflux during glucose fermentation (Zientz et al.
1999), that displayed the highest impact on the production of
fumaric acid. These lead to an increase of fumaric acid yield by
48.5% and 53.1%, respectively. In fed-batch fermentation culture,
the fumaric acid producer strain overexpressing the dcuB gene
reached 9.42 g/L of fumaric acid after 50 h (Zhang et al. 2017b).

Succinic acid

Modulation of the simultaneous expression of E. coli transporter
genes dcuB and dcuC led to a 34% increase of succinic acid titer
in an engineered E. coli strain (Chen et al. 2014). In this work,
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Lü
et

al
.(

20
12

);
W

an
g

et
al

.(
20

09
)

Pf
FN

T
Pl

as
m

od
iu

m
fa

lc
ip

ar
u

m
1.

A
.1

6.
2.

7
6

La
ct

at
e:

H
+

sy
m

p
or

te
r;

D
-L

ac
ta

te
,

p
yr

u
va

te
,a

ce
ta

te
an

d
fo

rm
at

e
M

ar
ch

et
ti

et
al

.(
20

15
);

W
u

et
al

.(
20

15
)

Lc
tP

Ll
d

P
Es

ch
er

ic
hi

a
co

li
2.

A
.1

4.
1.

1
12

La
ct

at
e

p
er

m
ea

se
;L

-L
ac

ta
te

,D
-L

ac
ta

te
an

d
gl

yc
ol

at
e

N
ú
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four E. coli Dcu C4-dicarboxylate transporters were exploited for
succinate export. Single deletion of dcuA or dcuD did not affect
the export of this organic acid, while dcuB and dcuC deletion led
to 15% and 11% decrease of succinate extracellular titer, respec-
tively. The combined deletion of dcuB and dcuC genes resulted in
a 90% decrease of succinate titer. As a result, a ribosome bind-
ing site library was investigated to modulate and increase the
co-expression of dcuB and dcuC, which led to a 34% increase of
succinate titer produced by E. coli (Chen et al. 2014).

In C. glutamicum, the overexpression of the endogenous suc-
cinate exporter, SucE, increased succinate yield in an engineered
strain (Zhu et al. 2014). A dual-route for anaerobic succinate
production was devised, involving the reconstruction of the
glyoxylate pathway by overexpressing isocitrate lyase, malate
synthase and citrate synthase. This succinate producer strain
reached a succinate yield of 1.34 mol/mol of glucose. The addi-
tional overexpression of the endogenous succinate exporter,
SucE, increased succinate yield to 1.43 mol/mol of glucose. In
anaerobic fed-batch fermentation, the C. glutamicum succinate
producer strain overexpressing SucE led to a titer of 109 g/L suc-
cinate.

Itaconic acid

Expression of two Aspergillus terreus genes encoding organic acid
transporters, mttA and mfsA, increased itaconic acid production
in an A. niger strain expressing the cis-aconitate decarboxylase
(Li et al. 2011, 2012). MttA is a mitochondrial tricarboxylic acid
transporter that preferentially transports cis-aconitate instead
of citrate (Steiger et al. 2016). MfsA is an itaconate plasma mem-
brane exporter (Huang et al. 2014; Hossain et al. 2016). The
strains expressing mttA or mfsA displayed an increased ita-
conic acid (1.5 g/L) production when compared with an A. niger
strain expressing only cis-aconitate decarboxylase (0.8 g/L; Li
et al. 2013). Interestingly, the production did not increase fur-
ther when both transporters were co-expressed (0.9 g/L). In a
previous study in A. terreus, the overexpression of a bacterial
hemoglobin (vgb) led to an increased dissolved oxygen level,
having a strong effect on itaconic acid production (Lin et al. 2004).
Additional optimization was achieved by overexpression of the
fungal hemoglobin domain hbd1 and deletion of the oxaloac-
etate acetylhydrolase oahA gene, in combination with controlled
batch fermentation conditions, resulting in the increase of the
production level from 0.8 to 2.5 g/L of itaconic acid (Li et al. 2013).
In a subsequent study, a titer of 26.2 g/L and a maximum pro-
duction rate of 0.35 g/L/h were reached by overexpressing the
cytosolic citrate synthase citB (Hossain et al. 2016).

Lactic acid

The S. cerevisiae genome encodes at least two plasma membrane
monocarboxylate transporters, Jen1 (Casal et al. 1999; Soares-
Silva et al. 2003) and Ady2 (Paiva et al. 2004; Ribas et al. 2019)
with distinct specificities, mode of action and regulation mecha-
nisms (Casal et al. 2008, 2016). In a S. cerevisiae strain engineered
for lactate production, the constitutive expression of these two
transporters resulted in a higher accumulation of lactic acid in
the extracellular medium (Pacheco et al. 2012). In this study, the
authors expressed the lactate-dehydrogenase LDH gene from L.
casei in the S. cerevisiae W303–1A parental strain and in the
three isogenic strains jen1�, ady2� and jen1� ady2� to allow
lactate production. All the deleted strains expressing LDH were
able to produce higher titers of lactic acid compared with the
parental isogenic strain. Moreover, the constitutive expression

of JEN1 or ADY2 genes, along with LDH, resulted in the higher
external accumulation of lactic acid in the presence of glucose.
Upon glucose depletion, lactate consumption was also more
pronounced in cells expressing Jen1 and/or Ady2, suggesting the
involvement of these transporters in both the import and export
of lactic acid (Pacheco et al. 2012).

Citric acid

In a recent work, Steiger et al. (2019) identified CexA, the long-
time sought citrate exporter from A. niger. The constitutive
and inducible overexpression of CexA in the native citric acid-
producing species A. niger, resulted in significant increases in
secreted citric acid (Steiger et al. 2019). The inducible system
reached 109 g/L citric acid, five times higher than the parental
wild-type strain and three times higher than the constitutive
expression system.

ENGINEERING MEMBRANE TRANSPORTERS

Membrane transporters, like any protein, can display substrate
promiscuity, altered conformation, distinct affinity and capac-
ity depending on physiological conditions, as well as alter-
ations in folding and stability. Finding a membrane transporter,
either for import or export, might not be enough to achieve
the levels of cell factory productivity needed to obtain a cost-
effective and sustainable bioproduction process. The engineer-
ing of membrane proteins can diminish these constraints by
tuning the activity towards specific conditions and substrates.
This approach is frequently achieved by ALE experiments, muta-
genesis or recombination involving methods of synthetic biol-
ogy (Van Dyk 2008; Kell et al. 2015; Moysés et al. 2016). ALE of
host organisms combined with the identification of responsible
genetic changes and subsequent reverse engineering, is a pow-
erful approach to obtain novel or improved substrate specificity
of membrane transporters.

Engineering sugar transporters

Whereas it is common to look for exogenous transporters to
be cloned into producer strains, the endogenous transportome
can be used as a pool of transporters for cell factory optimiza-
tion. One such example is the complex landscape of the S. cere-
visiae genome that includes 20 transporter proteins belonging
to the Hexose Transporter (HXT) Family, with great potential to
be exploited in cell factories for the uptake of renewable sugars
from lignocellulosic wastes (Kruckeberg 1996; Moysés et al. 2016).
By using molecular modeling and docking studies, the endoge-
nous S. cerevisiae Gal2 transporter was engineered to improve
L-arabinose transport capacity (Subtil and Boles 2011b). In this
study, nine residues were found to interact with L-arabinose.
Rational protein design by directed mutagenesis allowed an
increase of transporter capacity for L-arabinose. Besides the
gain of function associated with arabinose transport capacity,
the F85S mutation specifically improved xylose transport (Wang
et al. 2017). In another study, the combination of computer-
assisted modeling, site-directed mutagenesis, error-prone PCR
approaches and selective growth conditions, resulted in the
identification of residues in both Hxt7 and Gal2 that yielded
glucose-insensitive xylose transporters (Farwick et al. 2014). The
mutant Gal2-N376F had the highest affinity for D-xylose, along
with a moderate transport rate for this pentose sugar, and com-
pletely lost the ability to transport hexoses (Farwick et al. 2014).
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Figure 2. The expression of endogenous or exogenous membrane transporter genes in engineered bacteria, yeast and filamentous fungi, allows the uptake of renewable
substrates, as well as the export and extracellular accumulation of specialty organic acids. Transporters on the left were expressed in the plasma membrane, to promote
the import of substrates. The transporters on the right were expressed either in the inner mitochondrial membrane or in the plasma membrane, to promote the export

of organic acids. The black arrows indicate the direction of the transport, either to the cytoplasm, out of the mitochondria or to the extracellular medium. Transporters
expressed in bacteria are marked with ∗. The figure was produced using the vector image bank of Servier Medical Art (http://smart.servier.com/).

To obtain a transporter able to sufficiently import arabinose
in the presence of glucose and xylose, a strain deficient in glu-
cose phosphorylation and able to metabolize arabinose was cre-
ated (Verhoeven et al. 2018). Subsequently, the engineered strain
was grown in medium with these three sugars. This way, condi-
tions were met where arabinose became the only metabolizable
sugar within the media, while glucose and xylose were exerting
selective pressure towards the evolution of an arabinose trans-
porter uninhibited by glucose and xylose. Consequently, muta-
tions within hexose transporter Gal2 in residues T89 and N376
were found to significantly increase the Km value of Gal2 for glu-
cose, and decrease the Km value for arabinose, enabling supe-
rior growth of the engineered strain in a medium containing the
three sugars (Verhoeven et al. 2018).

Engineering organic acid transporters

In an attempt to evolve an efficient fumarate exporter in S.
cerevisiae, a knock-out strategy was implemented in which
fumaric acid was turned into the energetically more favorable
catabolic product, by deletion of the fumarase (FUM1) and glu-
cose 6-phosphate dehydrogenase (ZWF1) genes (Shah 2016). The
malate and succinate transporter DCT 02 from A. niger was used
as a template expected to evolve into an efficient fumarate
exporter. However, the evolution experiment did not yield the
desired results, since only malate and succinate were secreted
to the extracellular medium, and further strategy refinement is
required (Shah 2016).

Through a rationally designed site-directed mutagenesis
strategy, the substrate specificity of the yeast Jen1 monocarboxy-
late transporter was altered to acquire the ability to transport
the dicarboxylic acids succinate (F270A and F270G; Soares-Silva
et al. 2011) and saccharate (S271Q; Ribas et al. 2017).

In two independent evolution experiments, S. cerevisiae
strains deficient in Jen1 were evolved for growth on lactate
as sole carbon and energy source (de Kok et al. 2012). Whole-
genome resequencing of evolved strains uncovered the presence
of single nucleotide changes in the acetate transporter gene
ADY2 (C755G/L219V and C655G/A252G). These Ady2 mutated
alleles encode efficient lactate transporters.

Presently, new relevant roles of protein transporters are being
uncovered, namely at the level of improving industrial strain’s
tolerance to by-products. An example of the complexity of the
roles of transporters in regulatory networks is reported by Zang
et al. (2017a) who, in the presence of 3.6 g/L acetic acid pH 3.7,
observed an increment of 14.7% in the final ethanol concentra-
tion for the S. cerevisiae strain lacking the ADY2 gene. By impair-
ing acetate uptake from the extracellular space, the accumula-
tion of intracellular acetate was reduced, and as consequence
cells acquired increased tolerance towards this organic acid.

FUTURE PERSPECTIVES FOR TRANSPORT
ENGINEERING

It is expected that in the near future, biorefineries increase
the production of platform chemicals from renewable resources
(Takkellapati, Li and Gonzalez 2018). The exploitation of indus-
trial biowastes to sustain microbial cell growth and valorize
biomass conversion into organic acids is one of these current
trends. Achieving optimal processes requires industrially robust
strains. One of the major bottlenecks for the efficient and cost-
effective bioproduction of organic acids is their export through
the microbial plasma membrane. Membrane transporter pro-
teins are thus crucial elements for the optimization of this pro-
cess. In this review, we presented examples of the most relevant
and emerging cell factories for the production of organic acids,

http://smart.servier.com/
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as well as the engineering strategies used to turn them into effi-
cient producers of this family of compounds.

In recent years, a great effort was dedicated to transporter
engineering, envisaging the development and improvement of
microbial cell factories. Examples of transporters engineered in
producer strains, especially in the yeast S. cerevisiae, are sum-
marized in Fig. 2. Despite these advances, as the functional and
structural characterization of membrane proteins is still a cum-
bersome process, the redesigning and engineering of optimized
cell membrane transporters for industrial organic acid produc-
tion is still at an early stage (Boyarskiy and Tullman-Ercek 2015;
Kell et al. 2015). Different strategies can be followed to obtain
improved transporters, namely with higher activity, altered sub-
strate specificity and product selectivity. ALE can be a suitable
approach when the desired transport process is directly linked
to a selective advantage, such as the import of a sole carbon
source necessary for growth. Nevertheless, its employment to
generate improved transporters for the efflux of solutes can rep-
resent a demanding challenge. The complexity of biorefiner-
ies relies on many factors, including the optimization of sev-
eral transporters, with complementary kinetic and regulatory
properties (Verhoeven et al. 2018). Structure-based or computer
simulation-based protein engineering is a powerful approach.
However, these methods are hampered by the low number of
robust three-dimensional structural models of transporter pro-
teins. According to the Protein Data Bank (https://www.rcsb.o
rg), transporter 3D structures account for less than 10% of the
total database entries, showing that membrane proteins remain
until now mostly uncharacterized, which evidences the need to
increase the existing knowledge on this field. The recent iden-
tification of the gene encoding the long-sought citrate exporter
from A. niger (Odoni et al. 2019; Steiger et al. 2019), is an example
of the effort that must be carried out towards the identification
of new transporters.

The biodiversity of the microbial world is an excellent pool
to uncover relevant transporters for organic acid production.
Achieving the efficient heterologous expression of transporters
is crucial to improve the robustness of microbial cell factories.
For instance, the proper expression of bacterial transporters
in fungi is constrained due to membrane incompatibility, low
expression levels and folding difficulties (Young et al. 2011),
limiting the options for prokaryotic transporter expression in
eukaryotic cells. Still, the versatility and plasticity of membrane
transporters suggest a promising future towards the optimiza-
tion and implementation of platform chemical bioproduction at
the industrial scale.
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