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Abstract The intestine plays a crucial role in regu-
lating whole-body lipid metabolism through its
unique function of absorbing dietary fat. In the small
intestine, absorptive epithelial cells emulsify hydro-
phobic dietary triglycerides (TAGs) prior to secreting
them into mesenteric lymphatic vessels as chylomi-
crons. Except for short- and medium-chain fatty
acids, which are directly absorbed from the intestinal
lumen into portal vasculature, the only way for an
animal to absorb dietary TAG is through the chylo-
micron/mesenteric lymphatic pathway. Isolating in-
testinal lipoproteins, including chylomicrons, is
extremely difficult in vivo because of the dilution of
postprandial lymph in the peripheral blood. In addi-
tion, once postprandial lymph enters the circulation,
chylomicron TAGs are rapidly hydrolyzed. To
enhance isolation of large quantities of pure post-
prandial chylomicrons, we have modified the Tso
group’s highly reproducible gold-standard double-
cannulation technique in rats to enable single-day
surgery and lymph collection in mice. Our tech-
nique has a significantly higher survival rate than the
traditional 2-day surgical model and allows for the
collection of greater than 400 μl of chylous lymph
with high postprandial TAG concentrations. Using
this approach, we show that after an intraduodenal
lipid bolus, the mesenteric lymph contains naïve
CD4þ T-cell populations that can be quantified by
flow cytometry. In conclusion, this experimental
approach represents a quantitative tool for deter-
mining dietary lipid absorption, intestinal lipopro-
tein dynamics, and mesenteric immunity. Our model
may also be a powerful tool for studies of antigens,
the microbiome, pharmacokinetics, and dietary com-
pound absorption.
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The intestine plays a crucial physiological role in
whole-body lipid metabolism through dietary fat ab-
sorption. In the small intestine, absorptive epithelial
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cells emulsify hydrophobic dietary triglycerides (TAGs)
prior to secreting them into the mesenteric lymphatics
as chylomicron particles (1). Dietary TAG first enters
the duodenum and is hydrolyzed by pancreatic lipase in
the small intestinal lumen. Free fatty acids and mono-
acylglycerol, which are hydrolysis products of dietary
TAG, are then absorbed into the enterocyte, resynthe-
sized into TAG, and packaged into chylomicrons
(reviewed here (2, 3)). Mature chylomicrons are then
secreted through the basolateral membrane into the
mesenteric lymphatics (4). Except for short- and
medium-chain TAG, which are directly absorbed from
the intestinal lumen into portal blood, the only way for
an animal to absorb dietary TAG is through this
chylomicron/mesenteric lymphatic pathway (5, 6).

The human small intestine is almost always secreting
lipoproteins. These include intestinal HDLs, a major
pathway for cholesterol absorption; intestinal VLDL
that can contribute up to ∼11% of the TAG in plasma;
and the major intestinal lipoprotein, the chylomicron,
which is the major carrier of dietary TAG (7–9). Chy-
lomicrons are secreted as early as 13 min after a lipid
meal and reach their peak secretion rate at ∼2 h after a
meal (10). Chylomicron secretion continues over the
next ∼6 h, which is considered the postprandial period
(11). Several studies have demonstrated that oral glucose
can also mobilize stored intracellular TAG in enter-
ocytes and can potentiate the secretion of lipid-poor
chylomicrons for up to 16 h after the last meal (12, 13).

While chylomicron assembly is largely driven by
TAG in the diet, there are situations where enterocyte
de novo lipogenesis can also provide fatty acids for
intestinal lipoproteins (14). An important example is
during the fasting state, when apical fatty acids are
absent, yet the small intestine still secretes apoB48-
containing particles (essentially a constitutive intesti-
nal VLDL) (8, 15, 16). In addition, there is evidence that
diet-induced insulin resistance and hyper-
triglyceridemia results in the overproduction of both
chylomicrons and intestinal VLDL, and that these
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particles are loaded with TAG that comes from de novo
synthesized and plasma fatty acids (17–19). Therefore,
by the time most people are ready to eat their next
meal, they are still in the postprandial state of the
previous meal, and even when they enter a fasting
period, the small intestine still secretes apoB-containing
particles with TAG and cholesterol.

Diseases where dietary fat absorption is defective
include inflammatory bowel disease, cystic fibrosis,
short bowel syndrome, intestinal wasting diseases (20,
21), and lysosomal acid lipase deficiencies (like Wolman
disease or cholesterol ester storage disease) (22–25).
Defective dietary fat absorption is not simply an
inability to extract fat from a meal (since the gut can
adapt to defects in surface area and length), it also re-
sults in the use of noncanonical absorption pathways
that form abnormal and potentially dysfunctional
chylomicrons. There are many molecular events that
have dramatic effects on chylomicron secretion; these
include intracellular dysfunction in dietary TAG ab-
sorption and intracellular resynthesis (26–29), endo-
plasmic reticulum events like the lipidation of nascent
chylomicrons (30, 31), and changes in the source of
chylomicron TAG (i.e., from dietary fatty acids, or less
frequently, from de novo fatty acids and glycerol
phosphate) (32, 33). The net result is often a rescue of
total fat absorption but at the cost of normal chylomi-
cron synthesis and secretion.

A key component of chylomicrons are their apoli-
poproteins, which regulate multiple metabolic events.
ApoB-48 is the structural protein making up chylomi-
crons (30, 34–36). ApoC-III and apoC-II work in oppo-
sition to each other to tightly regulate the clearance of
chylomicron TAG from blood into tissues (apoC-III
inhibits LPL hydrolysis (37) and LDL receptor-mediated
endocytosis (38), respectively, and apoC-II stimulates
LPL activity (39)). Chylomicrons acquire apoE in the
plasma, which is required for the ultimate clearance of
remnant chylomicrons from blood into the liver (40).
Together, these activities of apolipoproteins are crucial
to ensuring not only that extraintestinal tissues have
access to dietary TAG but also that TAG is also effi-
ciently removed from the circulation into the liver.

When apolipoproteins are missing or defective, di-
etary TAG is not metabolized normally. For example,
chylomicrons containing excess apoC-III inhibit LPL
and LDL receptor clearance pathways so successfully
that these particles are retained in plasma and cause
severe hyperlipidemia (41–44). Interestingly, excess
apoC-II is also associated with reduced LPL activity and
hypertriglyceridemia (45, 46). Clinically, dysfunction in
the clearance of chylomicron TAG from blood is a
major clinical problem (47–49). Children with short
bowel disease, or patients missing small intestine, are
often treated with parental intravenous lipids, which
contain emulsified TAG but not apolipoproteins (48,
50). Though this effectively delivers soluble TAG to the
blood (like chylomicrons do), the bulk of intravenous
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lipids is rapidly cleared by the liver, resulting in fatty
liver and inefficient calorie replenishment (50, 51). This
clinical scenario highlights the physiological impor-
tance of chylomicrons and the critical role of the in-
testine in the postprandial state.

Causes of abnormal chylomicron synthesis include: 1)
inability to maintain the primary site of lipid absorp-
tion: The proximal duodenum and jejunum have the
highest fat absorption and chylomicron synthesis ca-
pacity (52). If dietary fat is unabsorbed in these prox-
imal locations, and instead travels to the ileum, the
chylomicrons produced will often contain less TAG but
more bacterial lipopolysaccharide (LPS) per particle (53,
54). Bacterial LPS is known to travel through enter-
ocytes, and during this process, it can be incorporated
on chylomicrons. The amount of LPS can be tempo-
rarily reduced when chylomicron secretion is blocked
with Pluronic L81 (55), but the dynamics of this process
are not clear. 2) Defects in the trafficking of dietary
TAG through absorptive enterocytes: there are three
regulated steps of dietary lipid absorption—luminal
hydrolysis and fatty acid traffic through the unstirred
water layer into the mucosa, intracellular fatty acid re-
esterification into TAG, and enterocyte chylomicron
secretion into lymph. Dysfunction at each step yields
small dense chylomicrons or chylomicrons containing
inappropriate apoproteins. These changes can lead to
either inefficient metabolism of chylomicrons by li-
pases on peripheral tissues and chylomicron retention
in the blood (56, 57), or alternatively, can cause chylo-
microns to speed through the vasculature avoiding tis-
sue lipid delivery and instead load the liver with dietary
fat (as in chylomicrons lacking apoC-III or containing
excess apoC-II) (58–60). This deprives peripheral tissues
of metabolic substrates (61). These processes are an
underappreciated mechanism in how the small intes-
tine can direct whole-body metabolism.

Because of these complexities in chylomicron char-
acter, metabolism, and formation, it is difficult to find a
direct replacement or comparator for mechanistic
studies (62, 63). Our group and many others routinely
use fatty acids bound to albumin or lipid emulsions
because they are so much simpler to prepare and dose
than chylomicrons (64–68). Isolating intestinal lipopro-
teins is not trivial. Chylomicron remnants can be iso-
lated from plasma via ultracentrifugation in the 2–6 h
after a gavage, but these particles will be a mixture of
partially hydrolyzed chylomicrons varying in size and
TAG content (69). It is also difficult to isolate a large
quantity of chylomicron remnants from plasma, espe-
cially in quantities needed for cell culture experiments.
Another approach is to cannulate the thoracic lymph
duct prior to its intersection with the subclavian vein,
which will capture mesenteric lymph as it enters the
circulation (70). Again, large quantities of lymph are
difficult to obtain using this approach. Finally, lymph
can be statically sampled from the mesenteric lymph
duct at a single time point after a lipid meal (71, 72).



This approach requires perfusion of the gut but does
not allow for terminal measurement of the movement
of dietary lipids through the gastrointestinal tract or
their absorption capacity between the lumen and
enterocytes. Lymph volumes are also quite small.

It should also be emphasized that intestinal lymphatic
system is not merely a passive duct for drainage of fats
and for fluid balance. Lymph is an immune compart-
ment. In addition to absorbing dietary TAG and other
nutrients, the intestine must also regulate immune ho-
meostasis in response to intestinal microbiota while
maintaining vigilance against infectious microorgan-
isms. This task is complex; microbiota contain a multi-
tude of antigens, expressed on organisms that have
heterogeneous interactions with the host and are
constantly changing both in composition and behavior.
In addition, the immune response must also remain
sensitive to inflammatory signals produced by damaged
or infected enterocytes. There is a major interest in the
dynamics of inflammatory versus suppressive lympho-
cytes in the small intestine, and the mesenteric lymph
(both postnodal and prenodal compartments) is a major
site of these dynamics (72–74).

Using the Tso Lab’s highly reproducible gold-
standard double-cannulation technique as the founda-
tion for our studies, we now describe a 1-day surgical
model for isolating mesenteric lymph. Our procedure
differs from previous design by reducing the surgery
and experimental period to a single day, improving
TAG excursion in response to duodenal lipids, and
dramatically improving surgical success rate, which re-
duces the number of experimental animals needed.
MATERIALS AND METHODS

Animals
C57BL/6J mice were obtained from Jackson Labs (Bar

Harbor, ME), and in-house bred WT mice aged 8–14 weeks
were used. All mice were housed on a 12-h light/dark cycle
with ad libitum access to standard chow and water. Whether
mice are fasted overnight or not will depend on the experi-
mental design. In practice, we find that an overnight fast is
not necessary unless we are concerned about differences in
rate of stomach emptying. For all experiments presented
here, mice were not fasted overnight prior to surgery. All
surgical procedures were approved by the University of
Pittsburgh Internal Animal Care and Use Committee (proto-
col #20047008) and comply with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals.

Cannulation of mesenteric lymph and
intraduodenal infusion tube

For these procedures, mice are placed under isoflurane
anesthesia (induction at 5% and 2% maintenance during sur-
gery), and both a mesenteric lymph duct cannula and
duodenal infusion tube are installed. Prior to surgery, the
mice are placed on a heated surgical pad. A surgical incision is
made along the midline, and the abdominal viscera were
manipulated with a retractor to expose the mesenteric lymph
duct. The duct is partially cut at the proximal end, and the
catheter tip (micro-Renathane tubing cut on the bias to form
a cannula tip; Braintree Scientific; catalog no.: MRE-025) was
inserted at the outermost part of the duct and fastened with a
drop of Krazy glue. For placement of the duodenal feeding
tube, the stomach is exposed and drawn partially out of the
abdominal cavity. We use an 18G needle to insert the micro-
Renathane tubing (Braintree Scientific; catalog no.: MRE-
037) into the stomach and just past the pyloric sphincter into
the duodenum. This is secured with a purse-string suture.
Using 5-0 suture, we closed the incision and placed the mouse
in Snuggle restraint jacket (mouse Snuggle; Lomir,
Inc, https://maps.google.com/?q=213+West+Main+Street+
Malone,+NY+12953&entry=gmail&source=g; Malone, NY;
MS02.5PM). Snuggled mice are placed on a rotator table in a
temperature and humidity-controlled polyacrylic filter-top
container (12” W × 14” L × 8” H). The externalized
duodenal feeding tube is connected to a Harvard infusion
pump. The externalized lymph catheter is carefully placed to
allow gravity flow of lymph into Eppendorf collection tubes
on ice. Mice stay in the chamber throughout the experiment.
Postsurgery, mice continuously receive 5% glucose in saline, at
a 0.3 ml/h infusion rate, via duodenal tube to compensate for
fluid and electrolyte loss because of lymphatic drainage. The
original Tso Lab 2-day lymph fistula model used postsurgery
and overnight infusion of glucose/saline infusion to keep rats
well hydrated (they cannot resorb the fluid lost in diverted
lymph) (75). Because the mesenteric lymph is diverted, ani-
mals cannot be calorically replenished with lipids overnight;
so instead glucose is preferable. Fluids must be infused via the
intraduodenal infusion tube because the animals are
restrained and cannot access water. In the Tso Lab protocol,
rats are restrained in Bollman cages; in our protocol, mice are
restrained with Snuggles. Either way, if the restraint is loos-
ened enough for ad lib access to water, the animals will chew
out their stitches and cannulas.
Lipid infusion and collection of hourly lymph
Mice are given a 300 μl bolus (which takes 2–3 min to infuse

the total volume), of lipid (SMOFlipid 20% lipid injectable
emulsion; Fresenius Kabi AG) followed by continuous
glucose/saline at 0.3 ml/h.

Choice of infusion TAG and amount. Each 100 ml of SMO-
Flipid 20% contains refined soybean oil (6.0 g), medium-
chain TAG (6.0 g), refined olive oil (5.0 g), fish oil (3.0 g),
purified egg phospholipids (1.2 g), all-rac-α-tocopherol
(16–23 mg), glycerol (2.5 g), sodium oleate (30 mg), and so-
dium hydroxide to adjust pH. This test lipid is designed for
clinical use in patients receiving intravenous parenteral
nutrition. It contains lipids that are traditionally absorbed
via both the lymphatic and portal route (refined soybean
and olive oils and medium-chain TAG, respectively) (76).
Lymph was collected on ice for 1 h prior to lipid infusion
(which represents a “fasting” experimental time point) and
then hourly for 6 h continuously after the bolus infusion.
Weight of each hourly lymph samples was recorded and
used for flow rate.

1-Day protocol. One hour prior (−1) to the bolus lipid infu-
sion, mice received a continuous duodenal infusion of 5%
glucose in sterile saline, and a single hour of “fasting” lymph
is collected. At time 0, the continuous intraduodenal infusion
is switched to a bolus infusion of 0.3 ml SMOFlipid (which
1-day mesenteric lymph fistula model in mice 3
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takes ∼2–3 min to infuse). Immediately after the bolus lipid,
the continuous glucose infusion is resumed. Lymph is then
collected hourly on ice for 6 h after the bolus infusion. At 6 h,
mice are euthanized, and tissues are collected.

2-Day protocol. In parallel with the 1-day mice, 2-day mice
receive a continuous duodenal infusion of 5% glucose in sterile
saline after the surgical implantation of both cannulas. The
design branches at time 0, which would be the time for bolus
lipid infusion in a 1-day model. Instead, 2-day mice continue to
receive the continuous duodenal infusion of 5% glucose in
sterile saline for the next ∼18 h (through the overnight period).
On the morning of the second day, a single hour of “fasting”
lymph is collected. At this point, as in the 1-daymodel, at time 0,
the continuous intraduodenal infusion is switched to a bolus
infusion of 0.3ml SMOFlipid. Immediately after the bolus lipid,
the continuous glucose infusion is resumed. Lymph is then
collected hourly on ice for 6 h after the bolus infusion. At 6 h,
mice are euthanized, and tissues are collected.

TAG assay. TAG concentrations were determined using
TAG assay kit (Randox Laboratories Company, Crumlin, UK;
catalog no.: TR210). Briefly, 2 μl of the diluted samples was
incubated with 200 μl of enzyme reagent at 37◦C for 5 min in a
96-well plate. The plate was read byMULTISKANG0 (Thermo
Fisher Scientific, Waltham, MA) plate reader at 500 nm. Stan-
dards and blanks were used for calculation of concentrations.
Flow cytometry
Cells from lymph collected prelipid and postlipid infusion

were stained with antibodies on ice and protected from light.
Intracellular staining was performed using the eBioscience
Foxp3 staining kit as per the manufacturer’s instructions
(Thermo Fisher Scientific; catalog no.: 00-5523-00). Cells were
washed between each step using eBioscience™ Flow Cytom-
etry Staining Buffer (Thermo Fisher Scientific; catalog no.: 00-
4222-26). Flow cytometry samples were run at the University
of Pittsburgh Flow Cytometry Core using a BD LSR II (Becton
Dickson Biosciences) after appropriate compensation.
Collected events were set at 100,000. Compensation controls
using single stains were made using One Comp ebeads and
UltraComp ebeads (eBioscience, Thermo Fisher Scientific;
catalog no.: 01-3333-42) according to the manufacturer’s in-
structions. Automatic compensation was conducted by
fluorescence-activated cell sorting Diva software. Fluores-
cence minus one control was used to determine appropriate
gate positions at the same time of experimental preparation.
Our gating strategy is summarized as follows (and in
supplemental Fig. S1). When gating any sample, leukocytes
were identified by forward scatter (FSC) area (FSC-A) by side
TABLE 1. Reagents used fo

Reagent

CD4 monoclonal antibody (RM4-5), PerCP-Cyanine5.5, eBioscience™ (1:
CD25 monoclonal antibody (PC61.5), PE-Cyanine7 (1:250 dilution)
CD44 monoclonal antibody (IM7), eFluor 450, eBioscience™ (1:100 dilut
CD62L (L-Selectin) Monoclonal Antibody (MEL-14), APC (1:400 diluion)
FOXP3 Monoclonal Antibody (FJK-16s), Alexa Fluor 488 (1:200 dilution
LIVE/DEAD™ Fixable Near-IR Dead Cell Stain Kit
eBioscience™ Foxp3/Transcription Factor Staining Buffer Set
eBioscience™ Flow Cytometry Staining Buffer
PE anti-mouse CD45 Antibody (1:200 dilution)
CD16/CD32 Monoclonal Antibody, eBioscience™ (1:100 dilution)
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scatter area, followed by identification of single cells using
FSC height by FSC width. Finally, live cells were gated on
using FSC-A by Live/Dead viability dye (Near-IR Dead Cell
Stain Kit; Thermo Fisher Scientific; catalog no.: L10119). The
absence of the dye indicates live cells. Live cells were then
identified as leukocytes using CD45 (BioLegend, San Diego,
CA; catalog no.: 103106) by FSC-A and then further identified
as helper T cells with CD4 (Thermo Fisher Scientific; catalog
no.: 45-0042-82) by FSC-A. To distinguish naïve CD4 cells, CD4
was gated by CD25− CD44low CD62hi (Thermo Fisher Scien-
tific; catalog nos.: 25-0251-82, 48-0441-82, and 17-0621-82,
respectively), and for Treg cells, CD4+ was gated by CD25+

Foxp3+ as double-positive cells. Fluorescence minus one
controls were used to determine all gates except FSC by side
scatter and single cells. When appropriate, Fc receptors were
blocked using CD16/CD32 Monoclonal Antibody (Thermo
Fisher Scientific; catalog no.: 14-0161-81), before staining with
antimouse fluorochrome-conjugated antibodies FlowJo soft-
ware (Treestar, Ashland, OR) was utilized for final analysis of
collected data. Thermo Fisher Scientific and BioLegend an-
tibodies used are described in Table 1.

Statistics
Values are expressed as mean ± SEM. The differences be-

tween two groups were analyzed by Student’s t test, and the
lymph flow rate and lymphatic TAG concentrations were
analyzed by multiple unpaired t tests using GraphPad Prism 9
(GraphPad Software). Differences were considered statistically
significant at P < 0.05.

RESULTS

Adapted the classic murine conscious lymph fistula
model (6, 77–79) to a single day experimental design

In our 1-day surgical model, the implantation of
double cannulas is immediately followed by duodenal
lipid infusion for the delivery of dietary TAG directly
to the small intestinal lumen (bypassing stomach
emptying, pancreatic enzyme secretion, or bicarbonate
buffering dysfunction that can occur in diseases of the
small intestine (21, 80)).

The 1-day surgical model is summarized in Fig. 1.
Double cannulation takes approximately 2–4 h. Mice
recover in Snuggle restraints and in a warmed and
humidified incubator. One hour prior to the bolus lipid
infusion, mice receive a continuous duodenal infusion
of 5% glucose in sterile saline, and a single hour of
“fasting” lymph is collected. The continuous
r flow cytometry analysis

Catalog number Source

100 dilution) 45-0042-82 Thermo Fisher Scientific
25-0251-82 Thermo Fisher Scientific

ion) 48-0441-82 Thermo Fisher Scientific
17-0621-82 Thermo Fisher Scientific

) 53-5773-82 Thermo Fisher Scientific
L10119 Thermo Fisher Scientific

00-5523-00 Thermo Fisher Scientific
00-4222-26 Thermo Fisher Scientific

103106 BioLegend
14-0161-81 Thermo Fisher Scientific



Fig. 1. Experimental model for 1-day versus 2-day lymph fistula mouse. A: Double cannulation takes approximately 2–4 h. Mice
recover in Snuggle restraints and in a warmed incubator. B: One-day experimental model. One hour prior (−1) to the bolus lipid
infusion, mice receive a continuous duodenal infusion of 5% glucose in sterile saline, and a single hour of “fasting” lymph is
collected. At time 0, the continuous intraduodenal infusion is switched to a bolus infusion of 0.3 ml SMOFlipid. Immediately after
the bolus lipid, the continuous glucose infusion is resumed. Lymph is collected hourly on ice for 6 h after the bolus infusion. At 6 h,
mice are euthanized, and tissues were collected. C: Two-day experimental model. Mice receive a continuous duodenal infusion of 5%
glucose in sterile saline as in (B), but the infusion continues for an additional ∼18 h. D: On the morning of the second day, a single
hour of “fasting” lymph is collected. As in (B), at time 0, the continuous intraduodenal infusion is switched to a bolus infusion of
0.3 ml SMOFlipid. Immediately after the bolus lipid, the continuous glucose infusion is resumed. Lymph is collected hourly on ice for
6 h after the bolus infusion. At 6 h, mice are euthanized, and tissues were collected. Created with BioRender.com.
intraduodenal infusion is then switched to a bolus
infusion of 0.3 ml SMOFlipid. Immediately after the
bolus lipid, the continuous glucose infusion is resumed.
Lymph is collected on ice for 6 h continuously at 1-h
intervals after the bolus infusion (for a total of six
samples, each 1 h of lymph flow). Figure 2 shows
anatomical models and surgical photos of the 1-day
technique.

This differs from the classic 2-day lymphfistulamodel
by several points: 1) 2-day surgical model mice receive a
continuous duodenal infusion of 5% glucose in sterile
saline after surgeries until administration of lipid bolus
the next day (overnight after cannula implantation); 2)
mice that survive the overnight period then receive their
bolus infusion of lipid (day 2) and lymph is then collected
as in the 1-day surgical model; 3) the total duration of the
experiment is reduced from 2 days to a single day.

Improved survival rates after 1-day surgical model
design

Surgical success is considered a mouse that has milky
lipid-rich flowing lymph starting ∼15 min after the
duodenal lipid infusion and lasting at least 5 h. If an
animal died prior to the start of the lipid infusion, or had
no lymph flow after duodenal infusion, this qualifies as
an experimental loss. We found that animals that un-
derwent the 1-day surgical design had a 63.0% success
rate, with 17 of 27 mice (Fig. 3A). In the classic 2-day
surgical design, mice received the glucose/saline infu-
sion immediately postsurgery and throughout an over-
night recovery period. These mice received the
duodenal lipid infusion on the morning of the second
day. Thesemice weremuchmore likely to die during the
recovery period prior to the duodenal infusion, and they
weremore likely to lose steady lymph flow during either
the glucose/saline infusion or in response to duodenal
lipid. The success rate for this surgical design was 38.0%
(8 of 21 mice), which is much lower than the 1-daymodel.

Comparison in lymph flow rates and total lymph
secretion between 1-day and 2-day experimental
models

We collected a 1 h of lymph flow from each mouse in
the hour prior to duodenal lipid infusion (mice
1-day mesenteric lymph fistula model in mice 5
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Fig. 2. Anatomical models and surgical photos for 1-day lymph fistula mouse. A: Cartoon mouse showing key areas of the liver and
gastrointestinal tract and in green, the lymphatic vasculature. Red circle orients the site of the main mesenteric lymph duct and the
focus on our surgical technique. B: The mesenteric lymph duct is found when the small intestine and liver are gently moved out of
the body cavity. Black arrows in cartoon highlight key anatomical and surgical landmarks (clockwise from top of cartoon: liver,
mesenteric fat, and clear cannula tubing). Photo shows the same anatomical and surgical landmarks as in cartoon but in white arrows.
C: Higher magnification photo of the clear mesenteric cannula (upper white arrow), inserted into the mesenteric lymph duct (lower
white arrow). Cartoon shows the mesenteric lymph cannula (upper black arrow, yellow tube) and clear mesenteric lymph duct (lower
black arrow, green tube). D: Photo of the blue tip of the inserted duodenal feeding tube at ∼5 cm into proximal duodenum. Cartoon
shows the insertion of the duodenal feeding tube through the stomach wall, advanced ∼5 cm into proximal duodenum. E: After
implantation of duodenal and mesenteric lymph duct tubes, the midline incision is closed, and mice are placed in restraint snuggles
on a warming pad on a gently rocking table. Fluid replenishment and test meals are delivered via an infusion pump through the
intraduodenal feeding tube, and flowing mesenteric lymph is collected on ice in Eppendorf tubes. Cartoon legend is shown below
figure. Created with BioRender.com.
received the infusion of glucose/saline except during
the 2–3 min lipid infusion), and then we collected
hourly lymph samples for 6 h and kept lymph on ice.
We found that the basal flow rate was not different
between the two groups (Fig. 3B, time 0). Flow rates for
both groups increased from 1 to 3 h after lipid infusion
at the same rate. In rats, this increased lymph flow is a
vagal response to duodenal lipid (81). Our data are the
first to suggest that this occurs in mice as well as rats.
Lymph flow rates only differ in the late postprandial
period at hour 5 between groups (Fig. 3B, time 5).
Overall, there is not a significant difference in the total
amount (or volume) of lymph collected in 6 h between
groups (Fig. 3C). This suggests that if mice survive the
overnight recovery period, they can produce lymph
volumes like their 1-day surgical model counterparts.

Increased TAG secretion in lymph in response to
shortened experimental time

We measured lymphatic TAG concentrations
following a bolus intraduodenal lipid infusion
(Fig. 4A). In both groups, TAG secretion into lymph
peaked at 3 h postlipid infusion. However, the magni-
tude of increase in TAG concentration is much higher
in the 1-day compared with 2-day surgical model mice,
and the 1-day mice secrete significantly more TAG into
lymph than their 2-day counterparts over the entire
course of lymph collection (Fig. 4B).
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We wondered if the difference in TAG secretion
could be attributed to the length of the recovery period
because of the possibility that the long recovery period
postsurgery diminishes small intestinal function. To test
this possibility, we infused lipid and collected hourly
lymph as in the 1-day design and followed this with an
overnight recovery with continuous glucose/saline and
a second lipid infusion on day 2 (experimental model
depicted in Fig. 4D). Basal lymphatic TAG concentra-
tions (0 h) were not different between the mice
receiving their first or second lipid bolus, and after
both bolus infusions, the lymphatic TAG peak at 3 h
(Fig. 4C). Regardless of whether the mouse is receiving
its second lipid bolus (as in Fig. 4C) or is receiving its
first lipid bolus after an overnight recovery (as in first
Fig. 4A), the magnitude of TAG in lymph is ∼3× higher
when the lipid infusion occurs on the first day than
when it occurs on the second day. Therefore, the dif-
ference in TAG excursion is tied to length of time
postsurgery, with 1-day lipid infusions resulting in
higher lymphatic TAG concentrations.

Analysis of T lymphocytes in mesenteric lymph
before and after a lipid bolus

Lymphocytes have been successfully isolated from
∼5 μl static lymph and routinely from mesenteric
lymph nodes (mLNs) but not from actively flowing
lymph from mice receiving luminal nutrients (82–85).
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Fig. 3. Surgical success and lymph flow comparison between 1-day and 2-day surgical models. A: WT mice were fitted with an
intaraduodenal feeding tube and a mesenteric lymph cannula. Mice received a bolus infusion of 300 μl of lipid. Surgical success
resulted in the secretion of milky lipid-rich flowing lymph starting ∼15 min after the duodenal lipid infusion and lasting at least 5 h.
Data are plotted as the number of successful mice (1 day = 17 and 2 days = 8). N = 48. B: Hourly lymph flow rate in the 6 h after
intraduodenal lipid infusion. In open circles, WT mice received lipid on the same day as surgery (1 day). In black squares, WT mice
received lipid on second day after surgery (2 days). C: Total volume of lymph secreted by mice in each experimental paradigm.
Values are means ± SEM or means + SEM. **P < 0.005.
Using our 1-day surgical model, mice received a
continuous duodenal infusion of 5% glucose in sterile
saline immediately after implantation of both cannulas,
and then clear lymph was collected during this “pre-
lipid bolus” period. At time 0, the continuous intra-
duodenal glucose/saline infusion is switched to a bolus
infusion of 0.3 ml lipid. Immediately after the bolus of
lipid, the continuous glucose infusion is resumed.
“Postlipid bolus” lymph was then collected hourly on
ice for 6 h continuously after the bolus infusion.
Lymph was pooled from n = 2–3 mice during each
experiment to have enough cells for flow cytometry
analysis, and the experiment was repeated three times.

Lymph (∼0.5 ml) was resuspended in 5 ml PBS, pel-
leted, and all cells were then stained with a CD4+ T-cell
panel. As shown in Fig. 5A, ∼3–4 million cells were
present in 1 ml of lymph. Of these, 98–100% were
CD45+ leukocytes (Fig. 5B) and 40–46% CD4+ cells
(Fig. 5C). Of the total population of CD4+ cells, 77–84%
were naïve CD4 cells (Fig. 5D), which had ∼3–4% of
CD4+CD25+Foxp3+ regulatory T cells (Fig. 5E). We
found no significant differences between the pop-
ulations of these cells in the prelipid versus postlipid
bolus groups (summarized in Fig. 5E). This analysis
demonstrates the presence of CD45+ leukocytes, CD4+

and naïve CD4 cells, and regulatory T cells, and the
similar lymphocyte populations in the prelipid and
postlipid bolus lymph. In addition, the 1-day lymph
fistula surgical model is appropriate for quantitative
fluorescence-activated cell sorting immune profiling in
a variety of experimental conditions.

DISCUSSION

The mouse lymph fistula technique should be
considered the gold-standard technique for deter-
mining the partitioning of dietary nutrients into lymph
in response to duodenal nutrients. It has been used to
successfully uncover major mechanisms including the
role of apolipoproteins, intestinal lipoproteins, lipid
absorption, the secretion of incretin hormones into
lymph in response to both lipids and glucose, and the
relative absorption of xenobiotic toxins through the
portal and lymphatic routes (4, 78, 53, 86–90). Our
contribution to this technique is to 1) reduce the
experimental time from 2 days to 1 day; 2) improve the
1-day mesenteric lymph fistula model in mice 7



Fig. 4. Increased TAG secretion in lymph in response to shortened experimental time. A: In open circles, WT mice received
intraduodenal lipid on the same day of surgery (1 day), n = 17. In black squares, WT mice received intraduodenal lipid after an
overnight recovery period, on the day after surgery (2 days), n = 8. TAG concentrations in lymph in response to lipid bolus were
determined by chemical assay. B: Total mass of TAG secreted during the 6 h after intraduodenal bolus. C: In white diamonds, WT
mice received lipid on the same day as surgery (day 1). In black diamonds, the same mice received a second intraduodenal lipid dose
the day after surgery—experimental model shown in (D). n = 10+, and values are means ± SEM. P < 0.05 or means + SEM. *P < 0.05,
**P < 0.005, and ***P < 0.0001. Model created with BioRender.com.
magnitude of duodenally infused lipids in lymph; 3)
increase the reproducibility of the approach in mice;
and 4) improve animal welfare; and 5) reduce the
number of mice needed because of the higher survival
rate.

A major experimental hurdle for collecting mesen-
teric lymph is the number of mice needed to ensure
that enough mice survive the surgery and recover prior
to and after lipid infusion. This is especially critical
when using precious genetically modified mice and
their WT littermates. By increasing the survival rate, we
reduce the costs associated with both cohort generation
and surgical labor. Our results show that the 1-day
surgical model not only reduces the number of mice
needed in each cohort but also reduces the amount of
time the mice must survive after surgery (from ∼24 to
∼6 h). It had been thought that the overnight recovery
period would let the animal to recover postoperative
gastric contraction, reduce any “hang-over” anesthesia
effects on lymph flow, and move the experimental
period away from the immediate postsurgery recovery
period (Dr Patrick Tso, unpublished communications
and (77)). Our experiments actually test this assumption,
and we find that the 24-h recovery period is not
necessary for lymph flow and may paradoxically make
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survival rates worse. This could be because recovery
from major abdominal surgery cannot be achieved
overnight and is fraught with risks of poor temperature
regulation and hydration (in addition to the possibility
that mice chew out their stitches or cannulas). Our
updated surgical design reduces both unnecessary ani-
mal death and the potential for animal distress during
this fragile postsurgical period. This supports a major
goal of American Association for Accreditation of
Laboratory Animal Care, which is animal “Replace-
ment, Reduction, Refinement” (91).

We attribute increased survival not only to the
reduction in surgical and experimental time but also to
the use of alternative restraint after surgery. The
lymph fistula technique has been primarily carried out
in rats, which are restrained after surgery in Bollman
restraint cages (70, 92). Both mice and rats move
torsionally, even when their limbs are restrained, and
they will rapidly and lethally chew out stitches and
cannulas if not appropriated restrained. We have
moved away from the Bollman restraint cage and
instead used mouse Snuggles (which are essentially a
soft restraint jacket) in both the 1-day and 2-day pro-
tocols described here. The Snuggles have two advan-
tages: they keep the animals warm, and the mice are not
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Fig. 5. Analysis of T lymphocytes in mesenteric lymph before and after a lipid bolus. WT mice were fitted with mesenteric lymph
cannula and intraduodenal feeding tube. Mice then received a continuous duodenal infusion of 5% glucose in sterile saline. During
this “prelipid bolus” period, clear lymph was collected. At time 0, the continuous intraduodenal infusion is switched to a bolus
infusion of 0.3 ml lipid. Immediately after the bolus lipid, the continuous glucose infusion is resumed. “Postlipid bolus” lymph was
then collected hourly on ice for 6 h after the bolus infusion. A: Number of cells per volume (1 ml) of lymph fluid collected and
quantification of percent of parent population. Data are pooled from three independent experiments (n = 2–3/experiment). B–E:
Representative flow cytometric plots showing lymphocytes from equal volumes of prelipid or postlipid bolus lymph. Cells gated: Live
lineage: negative for LIVE/DEAD stain, (B) total leukocyte: CD45+ cells gated on live cells, (C) CD4+ cell gated on CD45+ cells, (D)
naïve CD4 cells: CD62hi CD44low, and (E) Treg cells: CD25+ Foxp3+ gated on CD4+. Numbers on plots denote cell frequencies
(in percentages) of indicated parent populations and SEM, respectively. Data are representative examples of three independent
experiments with n = 2–3 mice per experiment.
able to move torsionally. We believe this approach im-
proves quality of life in the hours postsurgery and
improves survival after the surgery.

TAG appearance in lymph represents a direct mea-
sure of the capacity and flux of enterocyte chylomi-
cron secretion (since there is no removal mechanism
for chylomicrons in this compartment—no lipases and
no tissue clearance mechanisms (53, 54)). The only way
for chylomicrons to disappear from lymph is to enter
the circulation at the thoracic duct. A fat tolerance test
is often used as a proxy for dietary fat absorption ca-
pacity. If this is done in the presence of Poloxamer 407,
it will block chylomicron metabolism and clearance by
LPL and other lipid receptors in the circulation leading
1-day mesenteric lymph fistula model in mice 9



Fig. 5. (Continued).
to elevated plasma TAG coming from both liver and
intestinal lipoproteins (93). This design cannot disen-
tangle the kinetics of chylomicron metabolism from
the metabolism of VLDLs in the absence of radiotracer
and will not allow the isolation of naïve chylomicrons
(since all the chylomicrons will be coated with polox-
amer). Therefore, the mesenteric lymph is the most
precise compartment for quantifying dietary lipid ab-
sorption and isolating chylomicrons.

Another advantage of isolating pure postlipid infu-
sion mesenteric lymph is the ease with which chylomi-
crons can be isolated compared with from blood. We
routinely ultracentrifuge lymph and simply collect the
top creamy portion (53, 64, 94, 95). In postprandial
lymph, this buoyant, density >1.006, fraction is almost
all chylomicrons (63, 96). Mice secrete both apoB48 and
apoB-100 on chylomicrons, whereas humans only make
apoB-48 in the intestine, so we rarely use apoB-48 to
differentiate murine lipoproteins (34). By comparison,
isolating TAG-rich lipoproteins (chylomicrons and
VLDL) from plasma is best done by tube slicing or
differential centrifugation (69). In both cases, the
chylomicron fraction will contain a heterogenous
mixture of chylomicrons, chylomicron remnants, and
VLDL.

We and others have a significant interest in intestinal
immune cells, including those with the potential to
travel between the gut and circulation. The lymphatic
niche is also an essential barrier to the movement of
10 J. Lipid Res. (2022) 63(11) 100284
enteric pathogens throughout the body. We undertook
a basic analysis of T-cell populations and did not focus
on specific effect/memory T-cell subsets. Our data
show that those analyses would be possible in the
future. That we find no differences in T-cell pop-
ulations in prelipid and postlipid bolus lymph could be
due to a lack of granularity, since we analyzed a single
mixed sample made up of 6 h of postlipid bolus lymph
(rather than individually analyzing each hour of
lymph). Because of the reasonable volume of lymph
collected each hour, these analyses would be possible in
the future. Despite this, we would not expect huge
differences in T-cell populations, since mesenteric
lymph is cannulated after the lymph leaves the mLNs.
Any immune cells that are trafficking between the
lamina propria and the mLN or vice versa would not be
present in this postnodal lymph, though naïve cells
would be present. This supports the role of the mLN as
the final mucosal firewall between activated immune
cells or bacterial translocation and peripheral tissues
(97–99). The mLN firewall is critical because escape of
antigen-presenting cells from the gut into the circula-
tion would stimulate naïve extraintestinal immune cells
to respond to mucosal antigens (dietary, microbial, and
self). The result would be highly inflammatory effector
immune cells trafficking to the site of those antigens
(the gut), which would result in autoimmune disorders
like Crohn’s disease and ulcerative colitis. Our model is
a unique biological site where appropriate versus



defective immune cell dynamics can be measured, and
the postnodal lymph compartment could be a rich
source of information about the inflammatory state of
the mucosa in many diseases.

In addition to chylomicrons, the small intestine
also secretes HDLs, fat soluble-vitamins, and antigen
from commensal microorganisms. It is intriguing to
speculate that comparisons of lymphocyte pop-
ulations, specialized lipids, antigens, and gut hor-
mones, in postnodal flowing lymph versus the blood
compartment could reveal dynamics of intestinal
immunity and mucosal barrier function, nutrient
processing, and dysfunction in these processes dur-
ing metabolic disease. We propose this 1-day lymph
fistula model as a valuable tool for directly
measuring these processes and show for the first
time that these analyses are possible with the 1-day
lymph fistula mouse model.
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