
A Common Polymorphism in the Promoter Region of the
TNFSF4 Gene Is Associated with Lower Allele-Specific
Expression and Risk of Myocardial Infarction
Massimiliano Ria1*¤, Jacob Lagercrantz1, Ann Samnegård2, Susanna Boquist1, Anders Hamsten1, Per
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Abstract

Background: The TNFSF4/TNFRSF4 system, along with several other receptor-ligand pairs, is involved in the recruitment and
activation of T-cells and is therefore tentatively implicated in atherosclerosis and acute coronary syndromes. We have
previously shown that genetic variants in TNFSF4 are associated with myocardial infarction (MI) in women. This prompted
functional studies of TNFSF4 expression.

Methods and Results: Based on a screening of the TNFSF4 genomic region, a promoter polymorphism (rs45454293) and
a haplotype were identified, conceivably involved in gene regulation. The rs45454293T-allele, in agreement with the
linked rs3850641G-allele, proved to be associated with increased risk of MI in women. Haplotype-specific chromatin
immunoprecipitation of activated polymerase II, as a measure of transcriptional activity in vivo, suggested that the
haplotype including the rs45454293 and rs3850641 polymorphisms is functionally important, the rs45454293T- and
rs3850641G-alleles being associated with lower transcriptional activity in cells heterozygous for both polymorphisms. The
functional role of rs45454293 on transcriptional levels of TNFSF4 was clarified by luciferase reporter assays, where the
rs45454293T-allele decreased gene expression when compared with the rs45454293C-allele, while the rs3850641 SNP did
not have any effect on TNFSF4 promoter activity. Electromobility shift assay showed that the rs45454293 polymorphism, but
not rs3850641, affects the binding of nuclear factors, thus suggesting that the lower transcriptional activity is attributed to
binding of one or more transcriptional repressor(s) to the T-allele.

Conclusions: Our data indicate that the TNFSF4 rs45454293T-allele is associated with lower TNFSF4 expression and
increased risk of MI.
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Introduction

TNFSF4 (also designated OX40L, gp34 and CD134L,

GenBank accession no. NM_003326), the ligand of the TNFRSF4

(OX40 receptor), is a member of the tumor necrosis factor (TNF)

superfamily. TNFSF4 is a T-cell activator that seems to promote

the survival (and perhaps prolong the immune response) of CD4+
T-cells at sites of inflammation [1]. T-cells are indicated to have an

essential role in the development of atherosclerosis [2]. Activated

CD4+ and CD8+ T-cells, B cells and vascular endothelial cells

have been reported to express TNFSF4 [3].

Based on a mouse atherosclerosis model [4] to positionally

identify potential human candidate genes, we have provided

evidence that genetic variation in the TNFSF4 gene contributes to

the risk of developing myocardial infarction (MI) [5]. A single

nucleotide polymorphism (SNP) in the first intron of TNFSF4

(rs3850641) and haplotypes including this SNP were found to be

associated with risk of MI in women in two independent

populations and with angiographically assessed severity of CAD.

TNFSF4 haplotypes were also associated with variation in some

risk factors for CAD; carriers of a specific haplotype had

significantly higher plasma concentrations of HDL cholesterol

and serum amyloid A (SAA) than did carriers of other haplotypes.

Furthermore, gene targeting of Tnfsf4 in mice showed that

deficient animals had significantly smaller atherosclerotic lesions

and higher levels of plasma total cholesterol and HDL cholesterol

than controls, while mice over-expressing Tnfsf4 had significantly

larger atherosclerotic lesions when compared to controls, indicat-

ing that Tnfsf4 is a gene influencing atherosclerosis susceptibility in

mice. Further support for a role of TNFSF4 in atherosclerosis was
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obtained in a study where blockage of the TNFSF4/TNFRSF4

interaction reduced lesion formation in low-density lipoprotein

(LDL) receptor-deficient mice [6]. In contrast, a German case-

control study failed to replicate the association between TNFSF4

and MI [7].

The functional polymorphism responsible for the association

between TNFSF4 and risk of MI has not been defined, nor is it

known whether high or low expression of TNFSF4 is associated

with MI in man. Since the observed association with MI [5]

involved a haplotype spanning regions of the gene located both

upstream and downstream of the transcription start site, the

functional variant(s) could be located anywhere along the stretch of

DNA defined by this haplotype. However, due to its location, the

rs3850641 polymorphism in intron 1 is unlikely to be the

functional variant. Nevertheless, interaction between the

rs3850641 polymorphism and a putative enhancer binding site

located in intron 1 cannot be excluded, but a functional variant in

linkage disequilibrium with rs3850641 and located in the

promoter or in other regulatory regions is a more plausible

explanation.

In an attempt to identify the functional SNP(s) or a minimal

haplotype suitable for further functional studies, we performed a

detailed screening of the TNFSF4 genomic region. New genetic

variants were subsequently examined in one of the clinical studies

previously used to establish the association between TNFSF4 and

MI. A promoter polymorphism was identified which is in linkage

disequilibrium with the rs3850641 SNP and associated with MI in

women. Functional analyses of the transcriptional activity of these

genetic variants were then performed both in vivo, using haplotype-

specific chromatin immunoprecipitation of activated polymerase II

(haploChIP assay) [8], and in vitro with assays of luciferase reporter

gene expression; electromobility shift assay (EMSA) was employed

to analyze allele-specific binding of transcription factors in vitro.

Methods

Human subjects
The biobank and database of the Stockholm Coronary

Atherosclerosis Risk Factor (SCARF) study were used for the

genotype-phenotype association studies. DNA samples from a total

of 387 individuals with MI before age 60 and 387 age- and sex-

matched population-based control subjects were examined in the

present study. Genotyping was successfully performed in 376

patients with MI and 385 controls, while complete data were

obtained from 359 patients and 382 controls. Recruitment

procedures, inclusion and exclusion criteria, investigation program

and basic clinical characteristics have been described in detail [9].

All subjects gave informed written consent to their participation in

the study, the protocol of which had been approved by the ethics

committee of the Karolinska University Hospital.

Sequencing, SNP validation and genotyping
Polymorphisms detected in silico were validated by sequencing

genomic DNA from whole blood of 20 healthy subjects. Parts of

the regulatory region from 2449 bp upstream to 374 bp

downstream of the TNFSF4 transcription start site (2823 bp in

total) and parts of intron 1 were PCR amplified and sequenced

using a standard cycle-sequencing system (PTC-225, MJ Research,

Waltham, MA, USA). Primer sequences are provided in Tables S1

and S2.

Genotyping was performed using TaqManH assays (Assay-by-

Design, Applied Biosystems, Foster City, CA, USA). Post-PCR

allelic discrimination was carried out measuring allele-specific

fluorescence on the ABI PrismH 7000 Sequence Detection System

(Applied Biosystems, Foster City, CA, USA) using the Sequence

Detection System software version 1.01.

Cell culture
THP-1 [10] and U937 [11] cells were grown in RPMI-1640

supplemented with 10% foetal bovine serum (Gibco BRL, Paisley,

UK), 1 mM sodium pyruvate, 0.05 mM 2-mercaptoethanol,

penicillin (100 U/ml), and streptomycin (100 mg/ml) in humidi-

fied air at 37uC and 5% CO2.

For the haploChIP analyses, nine established Epstein-Barr virus

(EBV)-transformed human B cell lines [12] (a kind gift from Prof.

Anna Wedell, Center for Molecular Medicine, Karolinska

Institutet, Stockholm, Sweden) were maintained at 2x106 cells

per ml in RPMI 1640 medium with GlutaMAXTM I (Gibco BRL,

Paisley, UK) supplemented with 10% heat inactivated FBS,

penicillin (100 U/ml), and streptomycin (100 mg/ml). To geno-

type these cells, DNA extraction was performed using Genomic-tip

100/G kit (Qiagen Nordic, Hilden, Germany) according to the

manufacturer’s protocol; yield and efficiency of extraction were

measured by making quantitative spectrophotometric absorbance

readings at 260 nm.

For the luciferase assay HEK293T cells (obtained from ATCC)

were grown in Dulbecco’s Modified Eagle’s medium supplement-

ed with 10% FBS, 2mM glutamine, penicillin (100 U/ml), and

streptomycin (100 mg/ml).

Semi-quantitative reverse transcription polymerase chain
reaction (RT-PCR)

Total RNA was prepared with RNeasy kit (Qiagen Nordic,

Hilden, Germany) and reverse-transcribed into cDNA by using

oligo dT primers and Superscript II (Invitrogen, Life Technolo-

gies, Carlsbad, CA, USA) according to the manufacturer’s

instructions. Real-time RT-PCR was performed on ABI Prism

Sequence Detection System 7000 (Applied Biosystems, Foster

City, CA, USA) and the results were normalized to the house

keeping gene RPLP0. cDNA (3 mL) was amplified by real-time

PCR with 1xTaqMan Universal PCR Master Mix and Assay-on-

Demand Hs00967195_m1 (Applied Biosystems, Foster City, CA,

USA) according to the manufacturer’s instructions. Each sample

was analyzed in duplicate under the following conditions: 2 min at

50uC, 10 min at 95uC, 0.15 min at 95uC, and 1 min at 60uC. The

PCR amplification was related to a standard curve. Reactions

were performed in MicroAmp Optical 96-Well Reaction Plates

(Applied Biosystems, Foster City, CA, USA). The following

primers and probe were used for the amplification of the RPLP0

gene: RPLP0-F-59-CCA TTC TAT CAT CAA CGG GTA CAA-

39; RPLP0-R-59-AGC AAG TGG GAA GGT GTA ATC C-

39and probe RPLP0-59-TCT CCA CAG ACA AGG CCA GGA

CTC GT-39.

HaploChIP analyses
The chromatin immunoprecipitation assay was performed as

described [8] with some modifications. Preparation of chromatin

and immunoprecipitation were carried out using the ChIP-ITTM

kit (Active Motif, Carlsbad, CA) according to the manufacturer’s

instructions, with some modifications. A total of 16108 cells grown

in suspension culture were harvested by centrifugation and fixed

using volumes adjusted to the amount of cells; all the incubation

steps were followed by 5 min centrifugation. Nuclei containing

pellets were resuspended in half of the original volume to increase

chromatin concentration and sheared using a Branson 450

Sonifier with 12 pulses of 20 sec each (settings: output 4, cycle

85, time seconds) to an optimal length of 1500 bp. Samples were
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cooled on ice for 30 sec between pulses. For chromatin

immunoprecipitation, specific antibodies against phosphorylated

serine residues of the c-terminal domain (CTD) of RNA

polymerase II (Pol II) (Ser5, MMS-134R clone H14; Biosite AB,

Täby, Sweden) were used. An antibody against total Pol II (N-20;

sc-899; Santa Cruz Biotechology) was used as a positive control,

while anti-SV40 T Antigen pAb101 (sc-147; Santa Cruz

Biotechology) was used as mock antibody control. Recovery of

antibody bound protein/DNA complexes, washing, collection of

immunoprecipitated DNA, reversion of cross-links and DNA

purification were performed according to the manufacturer’s

instructions. Allele-specific loading of Pol II was evaluated by

PyrosequencingTM as described [13]. Briefly, DNA was amplified

using primer pairs with one biotinylated 5’ end (Table S3) [14].

The amplification products were captured on streptavidin coated

sepharose beads (Amersham Biosciences AB, Uppsala, Sweden),

denatured and then washed. Pyrosequencing primer was added

and analyzed as described [15]. Pyrosequencing was performed

using the 5696 PSQTM 96MA Pyro Gold Reagents. To quantify

the two alleles, measurement of the area under the peak cor-

responding to each allele was performed using the PSQTM96MA

SNP software. Results for each polymorphism were expressed as

ratio between the two alleles and normalized to the starting material

which was set to 1 to reflect the condition of a heterozygous genomic

DNA.

Luciferase assay
The genomic region upstream of the TNFSF4 transcription start

site (TSS) (from nt -1392 to -6) was amplified with primers 59-

TGTTCTCCTAATGCAAGGCATA and 59-CAATCTGGG-

TAGAGGGAAGAT from individuals homozygous for either

one or the other allelic variant and cloned into pCRII (Invitrogen,

Life Technologies, Carlsbad, CA, USA); this construct was

subsequently digested with KpnI and XhoI to generate a fragment

spanning the promoter region from nt -973 to -6 (including the

rs45454293 SNP) and transferred to pGL3-Basic expression vector

(Promega). Double-stranded DNA fragments (nt 476-492 from

TSS) harbouring intron 1 rs3850641 SNP flanked by KpnI and

XhoI restriction sites were generated by annealing of oligonucle-

otides carrying either one or the other allelic variant (59-GA-

CTCTCGAGCTATCACAATGGGTAGAGGTACCGACT). The

polymorphic site is underlined while the restrictions sites are in

italics. Double-stranded oligonucleotides were cloned into pGL3-

Promoter expression vector (Promega) upstream of the SV40

endogenous promoter. Luciferase assay was carried out using the

Luciferase Assay System (Promega) according to the manufactur-

er’s protocol. Cells were transfected with 0.1, 0.25 or 0.4 mg of

either one of the constructs and 0.25 mg of the -galactosidase

CMV-lacZ plasmid as an internal control for transfection

efficiency using FuGene6 transfection reagent (Roche Molecular

Biochemicals). 48 h after transfection cells were lysed with

Reporter Lysis Buffer (Promega), and b-galactosidase and

luciferase activity were measured using a Vmax kinetic microplate

reader (Molecular Devices, Wokingham, UK) and a dual injection

luminometer (Luminoskan Ascent, Labsystem), respectively. Each

experiment was independently repeated three times and each

sample was studied in duplicate.

EMSA
The sequences of the double-stranded oligonucleotides used in

electrophoretic mobility shift assays (EMSAs) were as follows:

rs45454293, 59-TTTCTTTGAGGTCGTGGCTGGCCTC and

rs3850641, 59-ATTACTATCACAATGGGTAGACCAG. The

polymorphic sites are underlined. Nuclear extracts from human

THP-1 and U937 cells were prepared according to Alksnis et al.

[16]. All buffers were freshly supplemented with 0.7 mg/mL

leupeptin, 16.7 mg/mL aprotinin, 0.5 mmol/L PMSF, and

5 mmol/L 2-mercaptoethanol. The protein concentration in the

extracts was estimated by the method of Kalb and Bernlohr [17].

Incubation for EMSA was conducted as described [18,19], and the

reaction products were applied to 7% (w/v) polyacrylamide gel

(80:1 acrylamide/N,N9-methylene-bisacrylamide weight ratio),

whereafter electrophoresis was performed in 22.5 mM Tris/

22.5 mM boric acid/0.5 mM EDTA buffer for 2 h at 200 V.

Figure 1. The TNFSF4 gene as represented in the NCBI database. Vertical arrows denote SNPs tested in human subjects. Horizontal arrow
indicates direction of transcription. Exons are depicted by boxes: filled-in regions indicate translated portions of the gene and untranslated regions
are depicted by open boxes; introns are indicated as solid lines between boxes. LD: Linkage disequlibrium.
doi:10.1371/journal.pone.0017652.g001
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Non-radioactive competitor DNAs, either identical, of the

opposite allelic variant or of non-specific origin, were added to

the labelled DNA.

Bioinformatic sequence evaluation
Genetic variants affecting potential regulatory regions were

identified using RAVEN, a web-based application [20]. RAVEN

combines phylogenetic footprinting with scanning of all sequence

variants for transcription factor binding sites that may be

differentially affected by the variation. The GenomatixH package

(ElDoradoH, Gene2PromoterH and MatInspectorH, http://www.

genomatix.de/) was used to identify in silico potential transcription

factor binding sites that were lost or generated due to a SNP in

TNFSF4. Transcription factor binding sites altered by variants in the

TNFSF4 gene were also evaluated by browsing the TRANSFAC

public database 7.0 (http://www.gene-regulation.com/pub/databases.

html#transfac) with the web-based softwares TESS (http://www.

cbil.upenn.edu/tess) and PATCH (http://www.gene-regulation.

com/cgi-bin/pub/programs/patch/bin/patch.cgi).

The ENCODE[21] regions were extracted from the UCSC

Genome Browser database. The human NCBI36 (hg18, March

2006) assembly was used (http://genome.ucsc.edu/cgi-bin/

hgTracks?db=hg18).

Statistical analysis
Statistical analyses in SCARF were performed using the

StatView software version 5.0 (SAS, Cary, NC, USA). Allele

frequencies were estimated by gene counting and tested for

deviation from Hardy-Weinberg equilibrium. The chi-square test

was used to compare the distribution of genotypes between cases

and controls. Differences in continuous variables between groups

were tested by analysis of variance (ANOVA) with the Scheffe F-

test as a post-hoc test. Pairwise linkage disequilibrium coefficients

(D9 and r2) for polymorphisms within the TNFSF4 locus were

calculated with the EMLD program developed by Qiqing Huang

(http://epi.mdanderson.org/,qhuang/Software/pub.htm) and vi-

sualized with the Haploview program (version 3.0) developed by

Barret & Maller (http://www.broad.mit.edu/mpg/haploview/)

using both our own data and data available from the HapMap

Project (http://www.hapmap.org/). Haplotype frequencies were

estimated using the PHASE� program (version 2.1) [22].

Results

Identification of a novel TNFSF4 promoter polymorphism
associated with risk of MI in women

To identify the physiological variant(s) responsible for the

previously reported associations between TNFSF4 genotype/

haplotype and MI [5] and to further define linkage disequilibrium

blocks, additional SNPs were selected from public databases and

verified by DNA sequencing. Sequencing of 2449 base pairs (bp)

upstream and 374 bp downstream of the TNFSF4 transcrip-

tion start site (2823 bp in total) in 20 healthy subjects verified

the presence of three variants (ID: rs1234315, rs10489266 and

rs1234314) previously reported in the Ensembl Human Genome

Browser. In addition, a genetic variant previously described in

Japanese individuals [23] consisting of a C-to-T substitution

located 921 bp upstream of the transcription start site was detected

(submitted to and registered in NCBI dbSNP with Reference

number rs45454293). In contrast, the rs4531318, rs12027059,

rs12045464 and rs12144295 SNPs were not detected. Sequencing

of relevant parts of intron 1 confirmed the presence of five SNPs

(rs5778749, rs4916314, rs10912564, rs10489267 and rs10912558)

while the rs3861951, rs35446169, rs7529929 and rs4113833 SNPs

were not detected.

Since one of the aims was to refine linkage disequilibrium blocks

described earlier [5], validated alternative SNPs were selected that

Table 1. Allele frequencies and pairwise linkage disequilibrium coefficients for the SNPs harboured in the TNFSF4 gene.

Normalized linkage disequilibrium coefficient r2 (|D9|)

Polymorphism
Minor allele
frequencies{ rs1234315 rs10489266 rs45454293 rs3850641 rs10912564 rs1234313 rs10912558 rs3861950

rs1234315* 46.1/43.6

rs10489266 9.2/8.7 0.12 (1)

rs45454293 7.6/6.1 0.09 (1) 0.17 (1)

rs3850641* 15.4/12.0 0.19 (0.99) 0.22 (0.83) 0.70 (0.81)

rs10912564 32.4/32.6 0.001 (0.01) 0.05 (0.78) 0.02 (0.26) 0.04 (0.53)

rs1234313* 29.4/32.9 0.06 (0.86) 0.06 (0.93) 0.06 (0.91) 0.73 (0.93) 0.21 (0.98)

rs10912558 20.3/20.3 0.01 (0.21) 0.06 (0.80) 1 (1) 0.02 (0.28) 0.50 (0.98) 0.10 (0.94)

rs3861950* 33.4/30.1 0.003 (0.04) 0.06 (0.83) 0.02 (0.25) 0.04 (0.56) 0.89 (0.95) 0.20 (0.98) 0.47 (0.94)

rs1234312* 5.6/5.2 0.02 (0.31) 0.52 (1) 0.001 (0.01) 0.02 (0.31) 0.01 (1) 0.01 (1) 0.007 (1) 0.013 (1)

Results obtained in the combined male and female groups. *Polymorphisms that have been reported previously [5].
{patients/controls. The two haplotype blocks identified across the gene are underlined and polymorphisms within each block having a high value for both D9 and r2 are
indicated either in italics or bold, respectively.

doi:10.1371/journal.pone.0017652.t001

Table 2. Distribution of TNFSF4M haplotypes in female
patients and control subjects (131 individuals/262 alleles).

Haplotype Controls (%) Patients (%) P value Females/Total (%)*

00 120 (88.0) 98 (77.8) 0.02 218/1302 (17)

01 7 (5.1) 9 (7.1) ns 16/120 (13)

10 2 (1.5) 1 (0.8) ns 3/16 (19)

11 7 (5.1) 18 (14.3) 0.01 25/90 (28)

P values were calculated using the chi-square test for genotype distribution. 0 =
ancestral allele, 1 = minor allele.
*Proportion of females among carriers of each haplotype in the overall
population (Total).

doi:10.1371/journal.pone.0017652.t002
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were positioned in between the five previously genotyped variants

[5]. For each set of alternative variants within the same region, the

polymorphism having the highest minor allele frequency was

considered. Three SNPs (rs10489266, rs10912564 and rs10912558)

were selected along with the promoter variant rs45454293 and

genotyped in 387 post-infarction patients and 387 age- and sex-

matched controls (Fig. 1, Table 1). Of note, the rs1234315,

rs3850641, rs1234313, rs3861950 and rs1234312 SNPs have been

genotyped previously in the same sample [5].

The genotype distributions of all SNPs tested were found to be

in Hardy-Weinberg equilibrium in both cases and controls (Table

S4). When evaluated together with the previously genotyped SNPs

[5], a high degree of linkage disequilibrium was found between

rs1234315, rs10489266, rs45454293 and rs3850641 and between

rs10912564, rs1234313, rs10912558, rs3861950 and rs1234312,

using the EMLD program (Table 1 and Fig. S1); however when r-

squared (r2) values were calculated, the two blocks appeared to be

smaller, linkage disequilibrium being maintained only between

rs45454293 and rs3850641 within the first block, and between

rs10912564, rs10912558 and rs3861950 within the second one

(Table 1). There was no difference in genotype distribution between

all cases and controls for the four new SNPs tested. However, similar

to findings for the intron 1 rs3850641 polymorphism [5], the minor

T-allele of the rs45454293 substitution was significantly more

frequent in female patients than in female controls (C/T allele

frequencies: 0.89/0.11 vs 0.96/0.04, n = 262, P = 0.02). Minor

allele frequencies encountered in patients and controls are reported

in Table 1. Of note, among the four SNPs included in the smaller

block spanning the transcription start site, only rs45454293 and

rs3850641 showed an association with MI in women. The minor

allele frequencies of rs1234315 and rs10489266 (Table 1) suggest

that the lack of association with MI, despite strong linkage

disequilibrium with the rs45454293 and rs3850641 SNPs, is real

rather than due to rarity of these variants. In addition, in the female

group the haplotype containing the minor T-allele for rs45454293

and the minor G-allele for rs3850641 was significantly more

common in patients than in controls (P = 0.01) (Table 2). Con-

versely, the complementary CA haplotype carrying both major

alleles was more common in controls than in patients (P = 0.02).

There were no associations between haplotypes and risk of MI in

the combined male and female group (Table S5).

The rs45454293T and rs3850641G alleles are associated
with lower loading of active polymerase II

The haploChIP method was used to analyze allele-specific

promoter activity, i.e. the loading status of phosphorylated active

Pol II to the TNFSF4 gene associated with the rs45454293 and

rs3850641 polymorphisms was analyzed in cells which were

heterozygous for the two markers. The phosphorylated Ser5

residue of the c-terminal domain of Pol II was used as a marker for

phosphorylated active Pol II loading, and the relative concentra-

tion of phosphorylated Pol II binding to the two alleles was

analyzed by pyrosequencing. A panel of nine different human B

cell lines transformed with EBV and the monocytic cell line U937

were screened for the rs45454293 and rs3850641 SNPs. Only one

B cell line was found to be C/T for rs45454293 and A/G for

rs3850641 while the other cell lines were either heterozygous for

one SNP or the other (i.e. C/C, A/G or C/T, A/A), or

homozygous for both SNPs (C/C, A/A).

Messenger RNA measurements confirmed that the TNFSF4

gene was expressed in these cells (Fig. S2), in agreement with a

previous report [24]. Considering that both cell types express

TNFSF4, B cells were used because heterozygous with respect to

both polymorphisms unlike the monocytic cell lines we used for

Figure 3. Transcriptional regulatory activity on TNFSF4 poly-
morphisms in HEK293T cells. Relative activity was calculated by
taking the relative luciferase activity of the empty vector to be 1. Data
show the relative activity (mean 6 s.e.m) from three experiments done
in duplicate. *P = 0.0005.
doi:10.1371/journal.pone.0017652.g003

Figure 2. Allele-specific loading of phosphorylated Pol II in vivo at rs45454293 (A-D) and rs3850641 (F-I) sites. To quantify the relative
levels of abundance of allele-specific fragments, pyrosequencing was used to analyze input chromatin used in ChIP reactions (A, F); products of ChIP
using specific antibodies to total Pol II as positive control (B, G); to phosphorylated serine residues of Pol II CTD (C, H); or to SV40 T antigen as mock
antibody control (D, I). Graphs show input nucleotide sequence along the x axis and intensity of signal along the y axis. (E/L) The ratios between the
C and T alleles of SNP rs45454293 (E) and the A and G alleles of SNP rs3850641 (L) of phosphorylated Pol II loading compared with input chromatin
used in ChIP reactions are shown. Data are expressed as mean (95% c.i.) of two independent immunoprecipitation reactions, with each
immunoprecipitation analyzed by PCR in up to three replicates.
doi:10.1371/journal.pone.0017652.g002
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EMSAs (see below). There was an allele-specific difference in

loading of phosphorylated Pol II to the TNFSF4 gene (Fig. 2A–E).

The mean C:T ratio was 1.13 (95% confidence interval

(c.i.) = 0.77–1.49) after immunoprecipitation compared with 1

(95% c.i. = 0.56–1.44) in the starting material (total input

chromatin), however the difference was not significant (P = 0.46).

Fragments bound to phosphorylated Pol II contained predomi-

nantly the rs3850641 A-allele (P = 0.02), with an A:G ratio of 1.38

(95% c.i. = 1.10–1.66) compared with 1 (95% c.i. = 0.74–1.26) for

the input chromatin (Fig. 2F–L). The corollary of these findings is

that in vivo the haplotype containing the rs45454293T and the

rs3850641G alleles is associated with lower transcriptional activity.

The rs45454293T allele reduces gene expression
To clarify which of the two polymorphisms included in the TG

haplotype had a functional role, cells from the HEK293T line

were transiently transfected with sequences carrying either allelic

variant for both SNPs. A clone containing the rs45454293T allele

showed a reduction in transcriptional activity of almost 50%

compared with the rs45454293C allele (0.73 vs 1.29, P = 0.0005;

Fig. 3); in contrast, there was no significant difference when cells

were transfected with the rs45454293C allele or the empty vector

(1.29 vs 1, P = 0.08; Fig. 3). No difference was observed when cells

were transfected with clones containing either allelic variant for

rs3850641 (P = 0.42), values being comparable also to cells

transfected with the empty vector alone (P = 0.24).

Allele-specific binding of nuclear proteins to the
polymorphic sites

Phylogenetic footprinting analysis using the RAVEN software

showed that the rs45454293 and rs3850641 polymorphisms are

located in regions that are highly conserved between mouse and

man, indicating that these regions may be of functional

importance (Fig. 4A).

A thorough analysis of the region that harbours both polymor-

phisms of interest to look for regulatory elements (histone

modifications, presence of transcription factor binding sites,

evidence of open chromatin and existence of DNaseI hypersensitive

sites) within the ENCODE project was performed in cell lines

relevant to TNFSF4 pattern of expression i.e. lymphoblastoid lines

(including Jurkat), B and T lymphocytes and HUVEC. It revealed

that potential regulatory elements are located mostly elsewhere

upstream of the TSS in the large intron 2. Though, intronic SNP

rs3850641, located at position 173175832, co-localises with a region

associated with histone modifications (H3K36me3: Histone H3 (tri-

methyl K36)) between 173175736 and 173175930 bp, while

promoter SNP rs45454293, located at position 173177236, is

located just a few base pairs away from two regions also associated

with histone modifications (CTCF zinc finger transcription factor)

between 173177077 and 173177207 bp, and 173177297 and

173177323 bp. In addition to these locations several other regions

were found that are predicted to include transcription factor binding

sites and DNaseI hypersensitive sites, which map approximately 100

to 1000 bp away from the rs45454293 and rs3850641, but it is not

clear to what extent the two SNPs can affect binding of these

regulatory factors.

The possibility that the rs45454293 and/or rs3850641 SNPs

affect the binding of nuclear proteins was analyzed by EMSAs.

Allele-specific binding of nuclear proteins was observed when

nuclear extracts derived from U937 cells were incubated with

oligonucleotide probes spanning the rs45454293 polymorphism

(Fig. 5A,B). The rs45454293T-allele induced a protein-DNA

complex that was not present with the rs45454293C-allele

(Fig. 5A,B). A similar allele-specific binding pattern was obtained

using nuclear extract derived from human THP-1 cells (data not

shown). In contrast, there was no allele-specific binding to the

rs3850641 polymorphism using nuclear extracts derived from

U937 cells (Fig. 5C).

In silico analysis using the TRANSFAC database indicated that

the rs45454293T-allele induces a binding site for the transcription

factor AML1a, a protein affecting granulocyte differentiation and

proliferation (Fig. 4B). In addition, the rs45454293T-allele creates

a binding site for the transcription factor PAX-2, a factor involved

in development of renal epithelium by induction of tumor

suppressor genes [25] as well as in cell proliferation and

carcinogenesis [26]. However, EMSAs including antibodies

against these transcription factors did not demonstrate a supershift

of the T-specific complex (data not shown).

Discussion

The TNFSF4/TNFRSF4 system, along with several other

receptor-ligand pairs, has been suggested to be involved in the

recruitment and activation of T-cells and is therefore tentatively

implicated in atherosclerosis and acute coronary syndromes such

as MI. We have previously demonstrated that a TNFSF4

haplotype is associated with risk of MI in women and that genetic

variants in the human TNFSF4 gene are associated with similar

intermediate phenotypes to the ones associated with the Ath1 locus

in mice [5]. In the present study, we searched for functional SNPs

and haplotypes contained in the TNFSF4 gene. The rs45454293

promoter polymorphism was shown to conceivably influence gene

regulation and to account for the previously described association

between a TNFSF4 haplotype and MI.

In order to dissect the mechanism behind the observed

association between TNFSF4 haplotypes and MI, and to identify

the polymorphism(s) responsible for the perturbation of gene

expression/activity, we used the haploChIP method to investigate

whether the putative regulatory rs3850641 and rs45454293 SNPs

influence Pol II loading, an indirect measure of allele-specific gene

expression in vivo in the presence of a natural chromatin structure.

We selected these two specific SNPs for functional analyses

because they were the only ones found to be associated with MI.

Differences between the two alleles were observed for both SNPs

(ratio of 1.13 and 1.38), indicating that the functional significance

resides in the haplotype defined by these polymorphisms.

Specifically, the haplotype carrying the T-allele of the

rs45454293 SNP and the G-allele of the rs3850641 SNP was

associated with decreased loading of activated polymerase II, i.e.

with lower transcriptional activity. Needless to say, the effect is

small and this result is only based on EBV transformed B-cells and

should therefore be interpreted with caution. However, the results

of the transient transfection studies in HEK293T cells provide

Figure 4. (A) TNFSF4 region across the transcription start site. Conservation profile between human and mouse obtained using the RAVEN
software. Area above the gray area indicates a degree of homology .70%; arrows represent tested SNPs. The TNFSF4 gene was retrieved from the
NCBI database (GenBank accession number D90224). (B) Sequence of the TNFSF4 promoter between positions –931 and –911 (upper) and
of intron 1 between positions +474 and +494 (lower), indicating the polymorphic sites. Potential binding sites for different transcription
factors are indicated for both alleles. Allelic variants for each polymorphism are indicated in bold, mismatches between TNFSF4 sequence and
transcription factor binding sites are indicated in lower case italic.
doi:10.1371/journal.pone.0017652.g004
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further support for a functional role of the rs45454293

polymorphism. It should be emphasized in this context that the

lack of endogenous promoter elements for rs3850641 may

influence the results for this SNP, as transcription might be

affected by interaction of transcription factors binding at various

sites of the promoter. Nevertheless, the results obtained allow us to

determine which of the two minor alleles (rs45454293T or

rs3850641G) indicated by the haploChIP experiment to be

associated with lower transcriptional activity, has a functional

effect on transcription.

An important question is whether the apparently small variation

in gene activity, ranging between 10% and 40%, can have a

physiologically significant effect. Importantly, the extent of this

effect can be more substantial considering that measurements were

performed under basal conditions, i.e. in cells that were not

stimulated. Indeed, the gender-specific effect observed suggests

that there might be environmental effects, including sex hormones,

amplifying the allele/haplotype-specific differences in transcrip-

tional activity. In fact, the importance of such small variation is

indicated by the transfection studies which confirm that the risk T-

allele of the rs45454293 polymorphism negatively affects tran-

scriptional regulation, providing a mechanistic insight for the

observed allele-specific decrease in TNFSF4 expression.

The rs45454293T-allele was shown to be associated with MI in

women, thus suggesting that lowered TNFSF4 expression is

associated with increased risk of MI. The role of this SNP in

inflammation and thromboembolic disease was suggested by a

study of Malarstig et al. [27] where the rs45454293T-allele was

associated with an increased risk of venous thromboembolism in

women but not in men, reinforcing the hypothesis that carriers of

this allele have increased systemic inflammation and therefore

might be particularly prone to plaque rupture. The rs45454293

polymorphism, along with the previously described rs3850641

SNP [5], was also demonstrated to be part of a haplotype

significantly associated with MI in the female subset of the cohort.

Our experimental evidence suggests that the minor allele of

rs45454293 rather than the rs3850641 polymorphism is respon-

sible for the haplotype-MI association. Both these findings are in

line with the original results that genetic variation in TNFSF4 is

associated with inflammatory markers and MI in women in two

independent cohorts [5], suggesting a gender-specific effect on

gene regulation. Of note, the gender-specific effect of TNFSF4 is

also present in mice, female mice being more susceptible to

atherosclerosis than male mice [4]. Nevertheless, further molecular

and large-scale association studies are needed to confirm the

gender-specific effect, also in relation to TNFSF4 genetic variation.

It is notable that the rs3850641 SNP did not influence the

binding of nuclear proteins as shown by our EMSA studies. In

contrast, these experiments suggested that the rs45454293

polymorphism affects the binding of nuclear factors, protein

complexes showing differential binding to the rs45454293T-allele.

Taken together, the results of the haploChIP, transient transfec-

tions and EMSA studies suggest that rs45454293 is the functional

polymorphism and that the lower transcriptional activity associ-

ated with the rs45454293T-allele is due to binding of one or more

transcriptional repressor(s) to the T-allele.

Since the two TNFSF4 SNPs examined in the present study

have not come up as genome-wide significant in the hitherto

published genome-wide association studies (GWAS) for MI, it is

likely that TNFSF4 does not belong to the group of major coronary

artery disease susceptibility genes that survive the fairly conserva-

tive adjustments for multiple-testing applied on the hypothesis-

free, high-density, high-coverage SNP genotyping in GWAS.

However, the region containing the TNFSF4 gene has been found

Figure 5. Representative EMSAs of nuclear extract derived
from U937 cells bound to the rs45454293 region and the
rs3850641 region. (A) EMSA of a 25 bp DNA fragment containing
either the rs45454293C (lanes 1-4) or the rs45454293T site (lanes 5-8).
Lanes 1 and 5, no extract; lanes 2 and 6, 0.5 mg of extract; lanes 3 and 7,
1 mg of extract; lanes 4 and 8, 2 mg of extract. Arrow denotes the
specific DNA-protein complexes associated with the polymorphic sites.
(B) Competition experiment demonstrating specific binding to the
rs45454293T allele: lanes 1 and 5, without competitors; lanes 2 and 6,
rs45454293C and rs45454293T probe, respectively, with a 100-fold
excess of rs45454293C probe as competitor; lanes 3 and 7, rs45454293C
and rs45454293T probe, respectively, with a 100-fold excess of
rs45454293T probe as competitor; lanes 4 and 8, rs45454293C and
rs45454293T probe, respectively, with a 100-fold excess of non-specific
(X) competitor. (C) EMSA of a 25 bp DNA fragment containing either
the rs3850641A (lanes 1–4) or the rs3850641G site (lanes 5-8).
doi:10.1371/journal.pone.0017652.g005
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to be associated with celiac disease, a chronic inflammatory disease

with a strong immune component [28] and systemic lupus

erythematosus, an autoimmune disease [29], which are likely to

share common inflammatory pathways with atherosclerosis, the

main underlying cause of MI.

We have previously shown that Tnfsf4 contributes to atheroma

formation using both knockout and transgenic mice [5], and it is

notable in this context that lesions in these strains are similar to

early fatty streaks in humans, consisting primarily of foam cells

without smooth muscle cells (SMCs) and fibrous cap formation

[30]. Furthermore, the mouse strains carried genetic variations in

the Tnfsf4 promoter region that affected gene activity [5], as shown

here for humans. However, unlike human plaques, the plaques

found in the atherosclerosis-susceptible mice are not prone to

rupture. Thus, it appears that harbouring this specific genetic

variation in TNFSF4 promotes a pro-inflammatory state in

humans that destabilizes the atherosclerotic plaque, making it

particularly prone to rupture. For as yet unknown reasons, this

effect seems to be gender-specific, being confined to women.

The fact that TNFSF4 is expressed by several cell types suggests

that TNFSF4 has more functions than the originally reported

involvement in T-cell activation [1,31]. Of cells present in the

atherosclerotic lesion, both endothelial cells, macrophages, mast

cells and SMCs express TNFSF4 [3]. Therefore, the observed

genotype-phenotype associations could reflect the net effect of

TNFSF4 actions in different cell types. Expression of TNFSF4 on

different types of antigen-presenting cells (macrophages, dendritic

cells, B cells and SMCs) might influence T-cell recognition of

antigens, such as altered epitopes on oxidatively modified LDL

particles. In addition, TNFSF4 expressed on mast cells may

interact with TNFRSF4 on T-cells and stimulate their prolifera-

tion [32]. The cross-talk between the two cell types might exert an

effect also in the opposite direction, regulating mast cells and their

role in inflammation, as has been observed for other members of

the TNF/TNF receptor (TNFR) superfamily. In fact, mast cells

can be activated by T-cell-dependent co-stimulatory signals

transduced by ligation of lymphotoxin-b [33] and 4-1BBL [34].

Finally, TNFSF4 expressed on endothelial cells was reported to

mediate the adhesion of TNFRSF4-expressing T-cells to vascular

endothelial cells and the subsequent migration to distant

inflammatory sites [35], suggesting an involvement of TNFSF4

in lymphocyte recruitment as well. Unstable plaques are

particularly rich in activated lymphocytes [36]; therefore all these

events, possibly triggered by TNFSF4, may favor destabilization

and rupture of the plaque.

In conclusion, the present work suggests that lowered TNFSF4

expression is associated with an increased risk of MI. Further

analyses are now needed to precisely determine the function of the

TNFSF4 protein in MI. Specifically, the gender difference needs

to be evaluated on a molecular level.
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