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Summary 86 

Resilience to emotional disorders is critical for adolescent mental health, especially 87 

following childhood abuse. Yet, brain signatures of resilience remain undetermined 88 

due to the differential susceptibility of the brain’s emotion processing system to 89 

environmental stresses. Analyzing brain’s responses to angry faces in a longitudinally 90 

large-scale adolescent cohort (IMAGEN), we identified two functional networks 91 

related to the orbitofrontal and occipital regions as candidate brain signatures of 92 

resilience. In girls, but not boys, higher activation in the orbitofrontal-related network 93 

was associated with fewer emotional symptoms following childhood abuse, but only 94 

when the polygenic burden for depression was high. This finding defined a 95 

genetic-dependent brain (GDB) signature of resilience. Notably, this GDB signature 96 

predicted subsequent emotional disorders in late adolescence, extending into early 97 

adulthood and generalizable to another independent prospective cohort (ABCD). Our 98 

findings underscore the genetic modulation of resilience-brain connections, laying the 99 

foundation for enhancing adolescent mental health through resilience promotion. 100 

 101 

Keywords: brain signatures of resilience, childhood abuse, genetic-dependent, 102 

emotional disorders, brain function, emotion processing 103 
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Introduction 180 

Resilience, which is crucial for mental health, refers to the capacity for positive 181 

adaptation in coping with stress1. Childhood abuse (e.g., emotional abuse, physical 182 

abuse and sexual abuse), affecting over a billion people globally2, heightens the risk 183 

of emotional disorders such as depression and anxiety3. These disorders have been 184 

linked to dysfunctions in the brain’s emotion processing system (e.g., brain regions 185 

activated during emotion perception and emotion regulation)4, which is influenced by 186 

genetics during adolescent brain development5,6. Advanced knowledge of the genetic 187 

influences on resilience-brain associations can enhance prediction of emotional 188 

disorders following childhood abuse and aid in accurately identifying vulnerable 189 

individuals to facilitate early intervention.  190 

 191 

In population-based neuroimaging studies, instead of categorizing resilient individuals 192 

from vulnerable ones, a neuroimaging marker (i.e., a brain signature) of resilience is 193 

often detected by an association where a higher level of this marker is associated with 194 

fewer emotional symptoms following childhood abuse1,7. This is highly relevant since 195 

there is an extensive literature showing that more emotional symptoms during 196 

childhood and adolescence are associated with higher risks (odds ratio = 1.85) of 197 

developing major depressive disorders during adulthood8. Previous studies of the 198 

brain’s signatures of resilience often focused on the fronto-limbic regions (e.g., the 199 

orbitofrontal cortex (OFC), medial prefrontal cortex, anterior cingulate cortex, 200 

amygdala, etc.)9. However, current findings in the literature are far from conclusive. 201 

For example, both hyper-10 and hypo-11 responses of the amygdala to negative 202 

emotional stimuli have been associated with fewer emotional symptoms following 203 

childhood abuse. Another example is that stronger spontaneous OFC activation has 204 

been associated with higher resilience as measured by the Connor-Davidson resilience 205 

scale in boys, but lower in girls 12. One source of these inconsistencies is that 206 

resilience can be built from optimized functions of various brain regions in different 207 

individuals as long as these optimizations can enhance the brain’s capability of 208 
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emotion processing13. Therefore, instead of individual brain regions, the brain’s 209 

signatures of resilience might be better identified by the brain’s functional networks 210 

for emotion processing. 211 

 212 

As hypothesized by the differential susceptibility theory 14, another source of these 213 

inconsistencies arises from the complex three-way interactions among childhood 214 

abuse, the brain’s emotion processing system, and genetic risk for depression. In the 215 

literature, various genetic variations in depression-related genes, such as 5HTTLPR15 216 

and FKBP516, interact with childhood maltreatment and alter the functional 217 

connectivity of the amygdala within the brain’s emotion circuit. A high polygenic risk 218 

score for major depressive disorder (PRSMDD) has been reported to interact with 219 

childhood trauma, increasing the susceptibility to developing more emotional 220 

symptoms17. Therefore, it is possible to detect a genetic-dependent brain signature of 221 

resilience (GBDSR) by a three-way interaction, where PRSMDD modulates the 222 

association between a higher level of this brain signature and fewer emotional 223 

symptoms following childhood abuse. However, previously the understanding of the 224 

three-way interaction was limited, mainly due to the lack of neuroimaging data with a 225 

sufficiently large sample size activating the brain’s emotion processing system. The 226 

IMAGEN study, a large-scale neuroimaging cohort 18, used the emotional face task in 227 

a functional magnetic resonance imaging experiment to probe the brain’s emotion 228 

processing system19. 229 

 230 

To address the above problems, we aim to answer the following four main questions 231 

regarding the brain signatures of resilience to developing more emotional symptoms 232 

following childhood abuse in the context of genetic predispositions for depression 233 

(Figure 1). (1) Can we isolate distinct functional networks in the brain’s emotion 234 

processing system as candidate signatures for resilience? (2) Can we identify the 235 

GDBSR by detecting significant three-way interactions among these functional 236 

networks, childhood abuse and PRSMDD in relation to emotional symptoms? (3) To be 237 

clinically relevant, can these identified GDBSR predict subsequent emotional 238 
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disorders following childhood abuse? (4) Are these predictions generalizable to other 239 

developmental stages and independent datasets?  240 

 241 

 242 

Results 243 

Summary of experimental steps 244 

Using a large longitudinal sample of adolescents at ages 14.42±0.41 and 19.02±0.75 245 

years old (i.e., the IMAGEN cohort18, N=809, 430 girls), we first decomposed brain 246 

responses to angry faces into distinct functional networks as the candidate signatures 247 

for resilience by sparse non-negative matrix factorization (sNMF). We also 248 

characterized these networks in terms of neuroanatomy, function, development, and 249 

sex difference. Second, we examined the genetic modulation of the resilience-brain 250 

associations by testing the three-way interaction on emotional symptoms, involving 251 

the candidate networks, childhood abuse and polygenic risk score for depression 252 

(PRSMDD). The GDB signatures of resilience can be identified when the 253 

PRSMDD-by-network reduces the impact of childhood abuse on emotional symptoms. 254 

Third, we built prediction models using the identified GDB signature of resilience at 255 

age 14 to predict emotional disorders at age 19. Finally, we tested the generalizability 256 

of the prediction models using both the latest follow-up data at age 23 in the 257 

IMAGEN cohort and another independent cohort, namely the Adolescent Brain 258 

Cognitive Development (ABCD) cohort 20 (Figure 1).  259 

 260 

Identification of two functional networks as candidate signatures for resilience 261 

The brain’s emotion processing system was activated by an fMRI face task18. We 262 

analyzed the angry>neutral contrast map for activations responding to angry faces 263 

higher than those to neutral faces (Figure 1b). By applying the sNMF with optimal 264 

parameters to these brain activation data (Figure S2), we identified two distinct 265 

networks as the candidate signatures for resilience, including the orbitofrontal- and 266 

occipital-related networks (Figures 2b). The orbitofrontal-related network mainly 267 
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covered the lateral orbitofrontal cortex (OFC), ventromedial prefrontal cortex 268 

(vmPFC), medial superior prefrontal cortex, anterior cingulate cortex (ACC), 269 

precuneus, posterior cingulate cortex and dorsolateral prefrontal cortex (dlPFC). The 270 

occipital-related network was mainly located in visual cortical regions: the lingual 271 

gyrus, cuneus, part of the inferior occipital gyrus (including the occipital face area, 272 

OFA), fusiform gyrus (including the fusiform face area, FFA), insula, amygdala, and 273 

Heschl’s gyrus (Figure 2c, Table S1). Using a database of brain functions (i.e., the 274 

NeuroSynth), we found that the orbitofrontal-related network was mainly related to 275 

high-level cognitive terms, such as episodic memory, memory retrieval and 276 

self-reference, while the occipital-related network showed associations with 277 

perceptual terms, such as vision and perception (Figure 2d). Furthermore, by 278 

conducting gene set enrichment analysis, we found that the orbitofrontal-related 279 

network but not the occipital-related network was associated with the dopaminergic 280 

synapse pathway (Figure S4, S5). 281 

 282 

Sex differences in these networks 283 

Sex differences in neurodevelopmental patterns of the brain’s emotion processing 284 

system may yield distinct brain signatures of resilience for boys and girls 21. 285 

Therefore, we explored the sex differences of the candidate signatures for resilience 286 

and found significant sex differences in these two networks at age 19 years and in 287 

their developmental trajectories between ages 14 and 19 years. Compared with boys 288 

at age 19, we found that the network activation (i.e., the factor weight) of the 289 

occipital-related network was smaller in girls 290 

(� � �0.230, 95% CI � ��0.369, �0.090�, p � 0.001; Table S2). During the 5-year 291 

follow-up period, we found that the activation of the orbitofrontal-related network 292 

increased in both boys ( ��
� � 0.012, F � 4.509, p � 0.034 ) and girls ( ��

� �293 

0.010, F � 4.142, p � 0.042 ). Meanwhile, the activation of the occipital-related 294 

network significantly increased in boys (��
� � 0.012, F � 4.593, p � 0.033) but not 295 

in girls (p � 0.643; Tables S3-4). Our results highlighted the importance of exploring 296 

the brain signatures of resilience for boys and girls respectively. 297 
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 298 

Genetic-dependent brain signatures of resilience 299 

As expected, higher levels of childhood abuse were associated with more emotional 300 

symptoms at age 19 in both boys (�=0.205, 95% CI=[0.091, 0.319], p=0.0004, 301 

N=379) and girls (�=0.146, 95%CI=[0.059, 0.234], p=0.001, N=430). Indeed, we 302 

found significant three-way interactions among childhood abuse, PRSMDD, and both 303 

the activations of the orbitofrontal-related (W=0.989, p=0.159 in the Wilk-Shapiro 304 

test; � � �0.128,95% CI � ��0.224, �0.031�, p � 0.009 for the linear regression 305 

model) and the occipital-related networks (W=0.980, p=0.118 in the Wilk-Shapiro test; 306 

� � �0.148,95% ����0.253, �0.043�, � � 0.005 for the linear regression model) in 307 

predicting emotional symptoms in girls at age 19 (Table S5). For illustration purposes, 308 

childhood abuse was binarized by clinical cut-offs to indicate exposure and 309 

non-exposure. High and low PRSMDD were determined by a median split, as were high 310 

and low network activation. Decomposing the interaction concerning the 311 

orbitofrontal-related network revealed that among the individuals carrying high 312 

PRSMDD, higher activation of this network was associated with fewer emotional 313 

symptoms following childhood abuse (Figure 3a). Therefore, among girls, high 314 

PRSMDD together with high activation of the orbitofrontal-related network defined a 315 

GDBSR. Similarly, we found that low PRSMDD together with low activation of the 316 

occipital-related network defined another GDBSR for girls (Figure 3b). No such 317 

genetic modulations were significant in boys, and therefore we focused on girls in the 318 

following analyses. 319 

 320 

Sensitivity analyses  321 

The three-way interactions identified above remained significant in the following 322 

sensitivity analyses. First, these interactions were confirmed when the childhood 323 

abuse was binarized by clinical cut-offs (Table S6). Second, these interactions 324 

remained significant after additionally controlling for the age, childhood neglect, IQ 325 
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and substance use (Table S7). Next, these interactions were specific to emotional 326 

symptoms only and were not significant for the other four types of behavioral 327 

problem scores in the SDQ. Finally, these interactions on the emotional symptoms 328 

were specific to PRSMDD and were not significant for either PRSADHD or PRSSCZ 329 

(Table S8). 330 

 331 

Prospective analyses of the genetic-dependent brain signature of resilience 332 

We used the cross-lagged panel model to delineate the directionality in the 333 

associations between network activations and emotional symptoms. After adjusting 334 

for both childhood abuse and PRSMDD, we found only one significant directionality in 335 

girls from the orbitofrontal-related network at age 14 to emotional symptoms at age 336 

19 (� � 0.015,95% CI � �0.002, 0.027�; Figure S6). This finding was confirmed by 337 

the prospective prediction model using this network at age 14 to predict the increase 338 

in emotional symptoms during the 5-year follow-up period (� � 0.128,95% �� �339 

�0.029, 0.227�; � � 0.010 by 1000 permutations), but not the other way around 340 

(Figure S7; Table S9). In summary, these results implied the potential predictability of 341 

the orbitofrontal-related network for emotional disorders following childhood abuse 342 

for individuals carrying high genetic risks for depression. 343 

 344 

Prediction of emotional disorders using the genetic-dependent brain signature of 345 

resilience 346 

We built machine learning models (i.e., the support vector machine) using data at age 347 

14 to predict emotional disorders at age 19 (See Methods for more details). The 348 

baseline model considered the following variables: childhood abuse, emotional 349 

symptom score, sites of data collection, handedness, pubertal status, socioeconomic 350 

status, and BMI. Based on the orbitofrontal-related GDBSR identified above, we also 351 

built a GDBSR model by adding the network activation and its interaction with 352 

childhood abuse into the baseline model. By the 5-fold cross-validation with 10 353 

repetitions, we found that among girls with high PRSMDD (� � 215, of whom 105 354 

were cases) using the GDBSR model outperformed the baseline model 355 
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(���: 0.757 ! 0.059, "��� � 0.016; #49� 3.462, � � 0.001;Table 2). As a control 356 

condition, the GDBSR model could not improve the prediction accuracy for the girls 357 

with low polygenic risks for depression (� � 215, of whom 85 were cases; Table 2).  358 

 359 

Prediction model was extended to early adulthood  360 

To test whether the predictability of the GDBSR for emotional disorders can be 361 

extended to early adulthood, we used the data at age 19 to predict emotional disorders 362 

age 23 in the IMAGEN cohort. We confirmed that the GDBSR model again 363 

outperformed the baseline model for girls with high PRSMDD (N=128, of whom 63 364 

were cases; ���: 0.748 ! 0.014, "��� � 0.011; #49� 8.563, � $ 0.001; Table 2).  365 

 366 

Prediction model was generalizable to the ABCD cohort 367 

To test the generalizability of the above finding to independent samples, we used the 368 

population-based ABCD cohort20. Applying the matrix factorization established above 369 

using the IMAGEN sample to the brain activations measured by the negative>neutral 370 

contrast of the EN-back task in the ABCD cohort22, we estimated the activations of 371 

the orbitofrontal- and occipital-related networks. Again, as compared with the 372 

baseline model, the GDBSR model using the orbitofrontal-related network at age 10 373 

improved the prediction of emotional disorders at age 11 among the girls with high 374 

polygenic risks for depression (N=739, of whom 118 were cases; ���: 0.856 !375 

0.035, "��� � 0.009; #49� 4.248, � $ 0.001; Table 2).  376 

 377 

 378 

Discussion 379 

Using a discovery sample, a validation sample and another independent test cohort, 380 

the current study revealed genetic-dependent brain signatures of resilience. To 381 

identify functional networks as candidates for brain signatures of resilience, we used 382 

the sNMF approach and decomposed the brain responses to angry faces into the 383 

activations of only two distinct networks, the orbitofrontal- and occipital-related 384 
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networks. These networks had different developmental patterns and significant sex 385 

differences. For girls, but not boys, we found two GDBSR, including one defined by 386 

high activations of the orbitofrontal-related network together with high polygenic 387 

burden for depression, and the other one defined by low activations of the 388 

occipital-related network together with low polygenic burden for depression. We 389 

found only the orbitofrontal-related signature had the prospective association with 390 

emotional symptoms, and this signature at age 14 predicted emotional disorders at age 391 

19. Notably, this prediction was extendable into early adulthood and generalizable to 392 

another independent cohort. These findings highlighted the genetic modulation of the 393 

orbitofrontal function for resilience, laying the foundation for enhancing adolescent 394 

mental health through resilience promotion. 395 

 396 

Our findings discovered two separable and interacting networks processing the angry 397 

facial expressions in adolescents. Existing literature has hypothesized that there are 398 

multiple interconnected emotional circuits in the brain for facial emotion processing23, 399 

and these systems have hierarchically developmental trajectories during adolescence24. 400 

Here, combined a longitudinally functional neuroimaging sample of the emotional 401 

face task for adolescents with an advanced matrix factorization approach, we 402 

identified a two-network system underlying the angry face processing. Many key 403 

parts of the orbitofrontal-related network, including the vmPFC25, the ACC26 and the 404 

lateral OFC27, have long been implicated in the neural representations of negative 405 

emotion28. Notably, this network covering more than 80% of the lateral OFC but less 406 

than 23% of the medial OFC (Table S1) provided a strong evidence supporting the 407 

theory of the positive-to-negative gradient in the medial-to-lateral OFC29. Meanwhile, 408 

the occipital-related network is well supported by a 2022 meta-analysis of 141 fMRI 409 

studies showing the occipital cortex as a key part of the facial emotion processing 410 

system30. Longitudinally, the medial prefrontal activity in the orbitofrontal-related 411 

network implicated in emotion regulation grows throughout adolescence31, while the 412 

occipital activity including those in the face-selective regions (i.e., the fusiform gyrus) 413 

in the occipital-related network often shows substantial developmental changes before 414 
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adolescence32. These changes in the two-network facial emotion processing system 415 

may confer some adaptive advantages, such as greater flexibility in adjusting one’s 416 

intrinsic motivations and goal priorities amidst changing social contexts in 417 

adolescence.  418 

 419 

The current findings emphasize the key role of genetic modulations in the brain’s 420 

capability of resilience. Previous studies have reported inconsistent findings on the 421 

relationship between the brain’s facial emotion processing system and resilience 10,11. 422 

This inconsistency may be partially explained by our finding of the genetic 423 

modulation. Such modulation is not so surprising as the genetic risks for depression 424 

have already been associated with both structures and functions of the brain’s facial 425 

emotion processing system33. Our finding of the resilience-related advanced 426 

maturation of the orbitofrontal function provided strong evidence of the stress 427 

acceleration hypothesis for resilience34. The stronger function of the 428 

orbitofrontal-related network, including the dlPFC, OFC and hippocampus, may be 429 

linked to resilience through a better neurocognitive function of the top-down 430 

suppression of traumatic memories35. This link was further supported by a clinical 431 

rTMS study of patients with MDD, where depression symptoms were ameliorated 432 

through enhanced activations in both OFC and hippocampus36. This is also supported 433 

by the overlap between this network and the default mode network (DMN), 434 

particularly medial frontoparietal regions, which have been implicated in 435 

remembering the past and self-referencing 37. In an imaging genetic study, the 436 

alterations of the DMN have been associated with both childhood trauma and the gene 437 

expression of SLC6A438. Furthermore, our enrichment finding of the dopaminergic 438 

synapse pathway provided a neurobiological link between the orbitofrontal-related 439 

network and the dopaminergic signature of resilience39. Our finding of non-significant 440 

three-way interactions in boys may be due to the fact that boys have fewer emotional 441 

symptoms at age 19 when compared with girls (�=-0.668, 95%CI=[-0.798, -0.537], 442 

p<0.001 in the IMAGEN sample)40. 443 

 444 
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Our findings also have significant clinical implications for promoting adolescent 445 

mental health. One step beyond the association, the unidirectional cross-lagged 446 

association from the orbitofrontal-related network to emotional symptoms indicated 447 

the possibility of building resilience through enhancing the function of this network. 448 

Our findings using the validation sample and the independent sample further show 449 

that the time window for this intervention is open at least from preadolescence to late 450 

adolescence. Recently, neurofeedback trainings, such as the real-time fMRI feedback 451 

training of OFC41 and amygdala42, have been used to enhance emotion regulation 452 

skills and reduce emotional symptoms. However, the intervention results are mixed. 453 

Our findings suggest that the OFC-targeted interventions might be particularly 454 

effective for those individuals carrying high genetic risks for depression. Therefore, 455 

the genetic-informed and neuroimaging-targeted approach might offer a promising 456 

way of promoting adolescent mental health.   457 

 458 

The current study is not without limitations. First, we focused only on the brain 459 

function of the facial emotion processing. Future studies are needed to test the 460 

generalizability of our findings to other types of emotional processing, which might 461 

lead to the discovery of additional brain signatures for resilience. Second, apart from 462 

the covariates considered in the current study, many other psychosocial and 463 

environmental factors (e.g., intervention program, school engagement, etc.) can also 464 

contribute to the recovery from the exposure to childhood abuse43. Future researches 465 

with comprehensively characterized information of these factors are needed to assess 466 

the effects of these factors on resilience. Third, the clinical value of building 467 

resilience through the genetic-informed and neuroimaging-targeted intervention 468 

strategy needs to be confirmed by randomized clinical trials. 469 

 470 

Taken together, our study uncovered genetic-dependent brain signatures of resilience. 471 

This work emphasizes that the brain mechanisms underlying resilience might be 472 

better understood in the context of environment-gene-brain interactions. 473 

 474 
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 475 

Figure legends 476 

 477 

Figure 1 Data analysis flowchart.  (a) The longitudinal cohorts used in this study. (b) 478 

We isolated distinct functional networks as candidate signatures for resilience in the 479 

IMAGEN cohort at age 19 on the basis of brain responses to angry faces using the 480 

sparse non-negative matrix factorization (sNMF). (c) We identified the 481 

genetic-dependent brain signature of resilience (GDBSR) by detecting the three-way 482 

interaction among the candidate networks in (b), childhood abuse and PRSMDD in 483 

relation to emotional symptoms. (d) We tested the predictability of the GDBSR using 484 

machine learning models. (e) We checked the generalizability of the GDBSR to 485 

another developmental stage and an independent dataset. 486 

 487 
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 490 

Figure 2 Identification of two networks as candidate signatures of resilience. (a) 491 

Brain responses to angry faces were decomposed into functional networks and 492 

corresponding network activation. (b) Brain maps represent the orbitofrontal-related 493 

network and the occipital-related network. The bright color indicates a high 494 

contribution at the spatial location of the network. (c) The voxel proportion of AAL2 495 

regions covered by these two networks. CING, cingulate cortex; INS, insula; SM, 496 

sensorimotor. (d) NeuroSynth decoding of the networks. The lollipop charts show the 497 

correlation coefficients for each network with the top 10 terms. 498 

 499 
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 500 

Figure 3 Identification of the GDBSR. Three-way interaction effects. For illustration 501 

purposes, childhood abuse was dichotomized into exposure and non-exposure based on 502 

clinical cut-offs (Methods). PRSMDD levels were categorized into high and low using a 503 

median split. In the bottom of each panel, network activation was also dichotomized 504 

into high and low using a median split. (a) The GDBSR was identified by high 505 

activations of the orbitofrontal-related network together with high PRSMDD. (b) The 506 

GDBSR was defined by low activations of the occipital-related network together with 507 

low PRSMDD. * represents p<0.05. 508 
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Tables  510 

Table 1 Demographic characteristics of the IMAGEN sample in this study 511 

Variables Age 14 (N=809) Age 19 (N=809) 

Age, Years 14.42 (±0.41) 19.02 (±0.75) 

Sex, Male, n (%) 379 (46.85%) 379 (46.85%) 

BMI 20.59 (±3.19) 22.76 (±3.97) 

Social Economic Status 2.61 (±2.39) 2.61 (±2.39) 

Hand, Right, n (%) 696 (86.03%) 696 (86.03%) 

Research Site (%)   

London 146 (18.05%) 146 (18.05%) 

Nottingham 107 (13.23%) 107 (13.23%) 

Dublin 51 (6.30%) 51 (6.30%) 

Berlin 73 (9.02%) 73 (9.02%) 

Hamburg 111 (13.72%) 111 (13.72%) 

Mannheim 97 (11.99%) 97 (11.99%) 

Paris 117 (14.46%) 117 (14.46%) 

Dresden 107 (13.23%) 107 (13.23%) 

Pubertal status 4.14 (±0.97)  

Childhood abuse 2.49 (±4.04) 2.49 (±4.04) 

PRSMDD -0.001(±8e-05) -0.001(±8e-05) 

Emotional symptoms 2.63 (±2.05) 2.82 (±2.31) 

BMI, body mass index; PRSMDD, Polygenic risk scores for major depression disorder. 512 

Numbers of subjects are presented as integers (percentage), and quantitative 513 

measurements are presented as mean values ± standard deviations.  514 

 515 

 516 

 517 

  518 
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Table 2 Comparison of model performance for the prediction of emotional disorders in girls.  519 

Prediction Girls with high PRSMDD Girls with low PRSMDD 

 GDBSR model Baseline model t p GDBSR model Baseline model t p 

IMAGEN 
Age 14 

↓ 
Age 19 

0.757±0.059 0.741±0.059 3.462 0.001 0.605±0.092 0.601±0.096 0.209 0.835 

IMAGEN 
Age 19 

↓ 
Age 23 

0.748±0.014 0.737±0.013 8.563 <0.001 0.582±0.016 0.583±0.014 -0.410 0.684 

ABCD 
Age 10 

↓ 
Age 11 

0.856±0.035 0.847±0.031 4.248 <0.001 0.850±0.035 0.849±0.035 1.235 0.223 

PRSMDD, polygenic risk score for major depressive disorder. GDBSR, genetic-dependent brain signature of resilience. AUC, area under the curve. 520 

The mean and the standard deviation established by repeating a 5-fold cross validation 10 times were reported before and after the ‘±’, 521 

respectively. The paired t-test was used to test the significance of the difference in AUC between the GDBSR models and the baseline models 522 

and both the t-value and p-value were reported.523 
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STAR Methods  524 

Participants 525 

Participants were drawn from the IMAGEN project, a multicenter longitudinal study 526 

of adolescent brain development and mental health that recruited 2000 participants in 527 

Europe and the UK18. This study involves the data of each participant at ages 14 and 528 

19. After quality control, 809 adolescents (430 girls) with complete neuroimaging 529 

data and behavioral scores at both ages 14.42±0.41 and 19.02±0.75 years old were 530 

included in this study (Table 1; Figure S1). The local research ethics committees 531 

approved this study, and written consent was obtained from each participant and a 532 

parent or guardian.  533 

 534 

Measurements 535 

Behavioral and emotional problems 536 

The Strengths and Difficulties Questionnaire (SDQ) is a valid and reliable assessment 537 

and is often used to measure the emotional and behavioral problems in adolescents, 538 

including emotional symptoms, conduct problems, hyperactivity/inattention, peer 539 

relationship problems, and prosocial behavior44. SDQ questionnaires gathered directly 540 

from adolescents themselves are more reliable than those from their parents, 541 

especially for the emotional symptom subscale 45. Therefore, the self-reported 542 

versions of the SDQ at ages 14 and 19 were used in this study.  543 

 544 

Childhood abuse measurements 545 

The Childhood Trauma Questionnaire (CTQ46) is a 28-item self-report inventory used 546 

to assess the history of abuse and neglect before the age of 19 years. Since the 547 

IMAGEN study focused on a population-based cohort, the severity of each type of 548 

abuse may be underestimated. Therefore, three abuse subscales (i.e., emotional abuse, 549 

physical abuse and sexual abuse) were summed to generate a composite measure of 550 

childhood abuse47. The higher the abuse score, the greater the severity of childhood 551 
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abuse.  552 

 553 

Polygenic risk scores 554 

Since emotional disorders are not single-gene diseases, it is promising to use PRS to 555 

reflect the complex genetic architecture in the context of environment-gene-brain  556 

interactions 7. We used the GWAS summary data provided by the Psychiatric 557 

Genomics Consortium as the discovery sample. 493,592 single nucleotide 558 

polymorphisms (SNPs) were shared by the discovery sample and the IMAGEN cohort. 559 

After the quality control measures (Method S1), a total of 123,481 SNPs were 560 

selected to compute the PRSMDD in our sample using the genetic analysis tool PLINK. 561 

The means of the PRSs at 7 p-value thresholds (i.e., 0.001, 0.05, 0.10, 0.20, 0.30, 0.40, 562 

and 0.50) were used in the current study in keeping with a previous study 48.  563 

 564 

Nuisance covariates 565 

Pubertal status was assessed using the Pubertal Development Scale. A total neglect 566 

score was generated from the summation of two types of neglect (i.e., emotional 567 

neglect and physical neglect) in the CTQ. Socioeconomic status was rated according 568 

to the total score of the family stress subsection of the Development and Well-being 569 

Assessment. The IQ score of each participant was calculated as the total score derived 570 

from the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV). 571 

Substance use was measured using the European School Survey Project on Alcohol 572 

and Drugs (ESPAD) as ever/never smoking cigarettes, drinking alcohol, or using 573 

illicit drugs.  574 

 575 

The face task and fMRI preprocessing 576 

The face task paradigm was used to elicit strong activation in the facial emotion 577 

processing system. In this task, participants passively watched 18-second blocks of 578 

either a face movie (presenting faces with angry, happy or neutral expressions) or a 579 
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control stimulus (concentric circles). Details can be found in the initial report on this 580 

paradigm19. In this study, we explored the neural reactivity associated with angry 581 

expressions, as neuroimaging data on these expressions was available at both ages 14 582 

and 19. After the fMRI pre-processing (Method S2), the contrast map of angry vs. 583 

neutral faces was obtained for each participant. The angry>neutral (i.e., the 584 

activations responding to angry faces were higher than those to neutral faces) 585 

activations were used to measure the activation of the facial emotion processing 586 

system in the brain responding to angry faces. Although the mechanisms underlying 587 

the neutral>angry activations remained unclear, we still examined such activations in 588 

the supplementary materials to enhance the comprehensiveness of our study. The 589 

voxels within the automated anatomical labeling (AAL2) template49 for grey matter 590 

were considered in the following analyses (47,640 voxels). 591 

 592 

Matrix decomposition  593 

We constructed an activation matrix for the angry>neutral activations. The activation 594 

matrix has a number of rows equal to the voxel count (m=47,640) and a number of 595 

columns corresponding to the number of subjects (n=809). Sparse non-negative 596 

matrix factorization (sNMF) was employed to decompose the activation matrix at age 597 

19 into a factor matrix and a weight matrix (Figure 2a). To facilitate meaningful 598 

sparse representation, we explicitly incorporated ℓ�-sparseness constraints50 on the 599 

columns of the factor matrix. Meanwhile, each row of the factor matrix can have only 600 

one non-zero value to ensure that no overlapping voxels among the latent factors are 601 

obtained by the decomposition (Method S3). To determine the optimal parameter for 602 

sparsity (� � �/�, L is the maximal number of non-zeros voxels in each factor, m is 603 

the total number of voxels) and the optimal number of factors (K), we tested both the 604 

reconstruction error and the reproducibility of the obtained decompositions by a 605 

random half split for 80 times (Method S4). 606 

 607 
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Characterization analysis of the functional networks 608 

Neuroanatomical characterization  609 

We identified the respective positions of the non-zero values in each column of the 610 

factor matrix (i.e., each latent factor) within 47,640 voxels in the AAL2 template.  611 

 612 

Functional characterization 613 

As recommended by the previous work 51, we compared the spatial pattern of the 614 

networks (i.e., factors) to the functional anatomy of the human brain using 615 

NeuroSynth (http://www.neurosynth.org/)52, an online platform for meta-analysis of 616 

functional neuroimaging literature. Specifically, we sorted all correlation coefficients 617 

for each network in descending order and adopted the top ten terms to characterize 618 

each network. Similar terms (e.g., “percept” and “perception”) were merged into a 619 

base form to avoid selecting repetitive terms. 620 

 621 

Gene set enrichment analyses 622 

To examine the neurobiological links between the identified networks and the 623 

dopaminergic signature of resilience reported in the literature39, we used the 624 

transcriptomic data from six neurotypical adult brains in the Allen Human Brain Atlas 625 

(AHBA) ( http://human.brain-map.org)53. Following a preprocessing pipeline 626 

recommended by previous work (Method S5) 54, we obtained a 1531 (number of 627 

tissue samples from the cerebral cortex) � 15,408 (number of genes) matrix. Genes 628 

were considered significant if their expression levels differed between tissue samples 629 

inside and outside the functional networks, with a significance threshold of p 630 

<3.25� 10-6 (0.05/15408). Next, we used the R packages “BiocManager” and 631 

“clusterProfiler” to identify sets of genes associated with Gene Ontology terms of 632 

biological processes and Kyoto Encyclopedia of Genes and Genomes pathway. Gene 633 

sets were considered significantly enriched with FDR q values � 0.05. 634 

 635 

Sex difference 636 
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We built a linear regression model between the activation of each network (i.e., the 637 

weights of each factor) at age 19 and sex. Research sites, socioeconomic status, BMI 638 

at age 19 55 and handedness48 were regressed out as basic covariates in this analysis 639 

and the following analyses. 640 

 641 

Developmental trajectory  642 

We applied the NMF back-reconstruction algorithm to compute the activation of each 643 

network of each participant at age 14 (Method S6). Next, for boys and girls separately, 644 

we carried out repeated measures analyses of variance (ANOVAs) to investigate the 645 

developmental trajectories of the network activations. The age 14 and age 19 network 646 

activations were the within-subject variables. In addition to the basic covariates, we 647 

incorporated pubertal status as an additional covariate, considering the relationship 648 

between pubertal maturation and the reactivity of facial emotion processing systems 649 

during early adolescence56. 650 

 651 

Modulation analysis 652 

For boys and girls separately, associations were assessed by a linear regression model 653 

between emotional symptoms at age 19 and childhood abuse before age 19. Next, to 654 

identify the GDBSR, we examined the three-way interaction among PRSMDD, the 655 

activations of the above identified functional networks, and childhood abuse, in 656 

relation to emotional symptoms at age 19. The coefficient (standardized 	) of the 657 

linear regression models and its 95% confidence interval (CI) are reported. The 658 

applicability of linear model in this case was confirmed by the Shapiro-Wilk 659 

normality test for model residuals 57. A significant three-way interaction indicates that 660 

PRSMDD modulates the association between a higher level of this brain signature and 661 

fewer emotional symptoms following childhood abuse. 662 

 663 

Sensitivity analyses 664 
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We tested whether the three-way interaction remained significant when the childhood 665 

abuse score was binarized using the following cut-offs as recommended in the 666 

literature58, including a cut-off of 8 for emotional abuse, 7 for physical abuse, and 5 667 

for sexual abuse. If any type of the above abuse occurred, childhood exposure to 668 

abuse was scored as “1”; if not, a score of “0” was recorded. We also included age, 669 

childhood neglect, IQ or substance use as an additional covariate in the modulation 670 

models to examine their potential confounding effects. To investigate the specificity 671 

of the modulation effects, we reran the models while 1) replacing the emotional 672 

symptom scores with behavioral problem scores from the other four dimensions in the 673 

SDQ; 2) replacing the PRSMDD with the PRSADHD or the PRSSCZ. 674 

 675 

Prediction models 676 

Prospective associations  677 

For significant modulation effects, we employed a two-wave cross-lagged panel 678 

model (CLPM) using the network activations and emotional symptoms at ages 14 and 679 

19 years. In addition to the basic covariates, we incorporated BMI at age 14, pubertal 680 

status, childhood abuse and PRSMDD as additional covariates, considering the 681 

potential association between emotional symptoms and both childhood abuse and 682 

PRSMDD. We established the 95% CI of the statistics by 1000 bootstraps. We also used 683 

linear regression models to verify such directionality (Method S7).  684 

 685 

Building prediction models for late-adolescence emotional disorders  686 

Using the networks that have significant prospective associations with subsequent 687 

emotional symptoms, we built prediction models for emotional disorders at age 19. 688 

The emotional disorders were indicated by an emotional symptom score above a 689 

clinical cut-off of 4, which has been recommended to favor the instrument’s (i.e., 690 

SDQ) sensitivity in identifying depression and generalized anxiety59. The high-risk 691 

group was identified as participants with above-median genetic risk for depression 692 
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(i.e., PRSMDD>median PRSMDD); otherwise, the low-risk group was defined. We built 693 

the following prediction models for each group. The baseline model was a support 694 

vector machine with a linear kernel using the measurements at age 14 years, including 695 

childhood abuse, emotional symptom score, sites of data collection, handedness, 696 

pubertal status, socioeconomic status, and BMI. Next, based on the GDBSR identified 697 

above, we built the GDBSR models by adding the network activation and its 698 

interaction with childhood abuse into the baseline model. To evaluate model 699 

performance, we repeated a 5-fold cross-validation 10 times to obtain the mean area 700 

under the curve (AUC). The paired t-test was used to test the significance of the 701 

difference in AUC between the GDBSR models and the baseline models. 702 

 703 

Generalizability of the prediction models 704 

Generalizability in early adulthood 705 

Using the latest follow-up data at age 23 in the IMAGEN study, we tested the model 706 

performance among 256 girls. We applied the aforementioned trained models, without 707 

retraining (i.e., fixed weights), to see whether emotional disorders at age 23 can be 708 

predicted by the model using measurements at age 19. 709 

 710 

Generalizability in an independent dataset 711 

To test whether the GDBSR models could be generalized to an independent dataset, 712 

we used the data from the ABCD cohort (the ABCD data used in this study came from 713 

Data Release 5.0, http://dx.doi.org/10.15154/8873-zj65) to rerun the prediction 714 

models. This independent dataset recruited 11,875 children between 9 and 10 years of 715 

age from 21 sites across the United States20. The negative>neutral activations during 0 716 

back in the EN-back task22 were used. We applied the NMF back-reconstruction 717 

algorithm again to compute the activations of the functional networks for each 718 

participant in the ABCD cohort. After quality control (the same as the IMAGEN 719 

cohort), 1478 participants with complete neuroimaging data, PRSMDD, adverse 720 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2024. ; https://doi.org/10.1101/2024.09.16.612982doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.16.612982
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30

childhood experiences (ACEs)60, and the basic covariates at baseline, as well as the 721 

internalizing symptoms of the Child Behavior Checklist 61 at both baseline and the 722 

1-year follow-up were analyzed . The emotional disorders were indicated by an 723 

internalizing symptom t score above a cut-off of 6062. Similarly, we first built the 724 

baseline model using the baseline measurements to predict emotional disorders at the 725 

1-year follow-up for both the high and low genetic risk groups. Next, we added the 726 

network activation and its interaction with ACEs into the baseline model to form the 727 

GDBSR model. 728 

 729 

 730 

Data availability 731 

The IMAGEN data are available by application to the consortium coordinator Dr. 732 

Schumann (http://imagen-europe.com) after evaluation according to an established 733 

procedure. The ABCD data are publicly released on an annual basis through the 734 

National Institute of Mental Health (NIMH) data archive (NDA, 735 

https://nda.nih.gov/abcd). The ABCD study data are openly available to qualified 736 

researchers for free. Access can be requested at 737 

https://nda.nih.gov/abcd/request-access. An NDA study has been created for the data 738 

used in this report under the doi: 10.15154/agv5-7v56. 739 

 740 

Code availability 741 

The code used by the current study is made available at the following webpage: 742 

https://github.com/hanluyt/modulation_emotionalBrain.  743 

 744 

 745 

 746 

  747 
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b Q1: Identification of brain networks as the candidate signatures for resilience 
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c Q2: Identification of genetic-dependent brain signatures of resilience (GDBSR)

The GDBSR can be defined through the above three-way interaction where PRSMDD

modulates the association between a higher level of this brain signature and fewer 

emotional symptoms following childhood abuse. 

d Q3: Prediction of subsequent emotional disorders 
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