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Abstract

Investigations show that millions of people all around the world die as the result of sudden cardiac death (SCD). These
deaths can be reduced by using medical equipment, such as defibrillators, after detection. We need to propose suitable
ways to assist doctors to predict sudden cardiac death with a high level of accuracy. To do this, Linear, Time-Frequency (TF)
and Nonlinear features have been extracted from HRV of ECG signal. Finally, healthy people and people at risk of SCD are
classified by k-Nearest Neighbor (k-NN) and Multilayer Perceptron Neural Network (MLP). To evaluate, we have compared
the classification rates for both separate and combined Nonlinear and TF features. The results show that HRV signals have
special features in the vicinity of the occurrence of SCD that have the ability to distinguish between patients prone to SCD
and normal people. We found that the combination of Time-Frequency and Nonlinear features have a better ability to
achieve higher accuracy. The experimental results show that the combination of features can predict SCD by the accuracy of
99.73%, 96.52%, 90.37% and 83.96% for the first, second, third and forth one-minute intervals, respectively, before SCD
occurrence.
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Introduction

Sudden cardiac death is natural death from cardiac causes,

heralded by abrupt loss of consciousness within one hour of the

onset of acute symptoms [1]. This is a very serious cardiac event

that can deprive patient’s life within several minutes [2]. Despite

the significant decline in coronary artery disease (CAD) mortality

in the second half of the 20th century [3], sudden cardiac death

(SCD) continues to claim 250 000 to 300 000 US lives annually

[4]. In North America and Europe the annual incidence of SCD

ranges between 50 to 100 per 100 000 in the general population

[5–8]. Because of the absence of emergency medical response

systems in most world regions, worldwide estimates are currently

not available [9]. However, even in the presence of advanced first

responder systems for resuscitation of out-of-hospital cardiac

arrest, the overall survival rate in a recent North American

analysis was 4.6% [10,11]. Astonishingly, the victim may not even

have been diagnosed with heart disease. Also, the time and mode

of death happen unexpectedly [12]. Most victims (w90%) have

previously known or unrecognized cardiac abnormality [13–17].

The most common cause of sudden cardiac death in adults over

the age of 30 is coronary artery atheroma. The most common

finding at postmortem examination is chronic high-grade stenosis

of at least one segment of a major coronary artery, the arteries

which supply the heart muscle with its blood supply. A significant

number of cases also have an identifiable thrombus (clot) in a

major coronary artery which causes transmural occlusion of that

vessel. Left ventricular hypertrophy is the second leading cause of

sudden cardiac death in the adult population. This is most

commonly the result of longstanding high blood pressure which

has caused secondary damage to the wall of the main pumping

chamber of the heart, the left ventricle. Hypertrophy, as well, is

associated with cardiac arrhythmias. The mechanism of death in

the majority of patients dying of sudden cardiac death is

ventricular fibrillation; as a consequence, there may be no

prodromal symptoms associated with the death. Patients may be

going about their daily business and suddenly collapse, without

any typical features of myocardial infarction (heart attack) like

chest pain or shortness of breath [18]. However, it may abruptly

strike any person if he or she possesses of high risk heart disease,

even young person, and athlete. Besides utilizing public access

defibrillation (PAD) procedure to rescue impending death patient

after collapse, the better way is to prevent onset SCD by adopting

medical aid prior to collapse. Thus, is it possible to make an early

warning, even before crisis presenting half an hour? [19] Ichimaru

et al. found that the respiratory peak of the heart rate variability

(HRV) in SCD patient was disappeared during the night time one-

week before death [20]. Van Hoogenhuyze, D., Martin, et al.

observed two HRV measurements, standard deviation of mean of

sinus R-R intervals (SDANN) and mean of SD (SD), from 24 hrs

HRV. They had evidenced to show that HRV is low in patients

who experience SCD, and is high in young healthy subjects [21].

In our early and encouraging experiments, we showed that the TF

method can classify normal and SCD subjects, more efficient than

the classical method [22]. Moreover, we evaluated both TF and

Classic methods by a MLP classifier for one minute ECG signal
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before SCD by an accuracy of 99.16% and 74.36%, respectively.

However, the relationship between short-term HRV and SCD is

unknown. In addition, repolarization alternans phenomena

provides a safe, noninvasive marker for the risk of SCD, and has

proven equally effective to an invasive and more expensive

procedure - invasive electrophysiological study (EPS), which is

commonly used by cardiac electrophysiologists [23,24]. Analysis of

heart rate variability (HRV) has provided a non invasive method

for assessing cardiac autonomic control [25]. HRV is accepted as a

strong and independent predictor of mortality after an acute

myocardial infarction [26], such that a reduced HRV is associated

with a higher risk for severe ventricular arrhythmia and sudden

cardiac death [27]. In this article, the common Linear and Time-

Frequency domain features, which have been extracted from heart

rate variability (HRV) signal, are used to detect and predict

sudden cardiac death (SCD). Although until now different Linear

methods have been used for analysis of HRV signal, recently

researches have shown that the Nonlinear processing methods

gave more information than Linear methods and it was a good

complement for them [28]. In addition, researches have shown

that classic Linear methods do not have enough ability to predict

the SCD [18,22]. So the Nonlinear analysis is also done. In other

words, in this research, we applied classic Linear, Time-Frequency

and Nonlinear analysis on HRV signal of healthy persons and

patients prone to SCD. Finally, by making use of a composition

feature vector and a neural network classifier, it is possible to

separate these two groups and predict the risk of SCD. Therefore,

at first, Linear features are obtained from HRV signal which is

extracted from ECG signal. Then, the Wigner Ville transform is

applied to the HRV signal and thereupon time-frequency and

Nonlinear features are extracted. At the next stage, feature

selection is applied to reduce the number of features and a new

combinational feature vector is proposed. Finally, K-Nearest

Neighbor (k-NN) and Multilayer Perceptron (MLP) neural

network are used to classify healthy persons and persons who

are susceptible to heart death. To evaluate the performance of the

proposed method in prediction of SCD, feature vectors are

extracted from different segments of the signals (at successive

intervals of 1 minutes) as below

1. The first interval before SCD.

2. The second interval before SCD.

3. The third interval before SCD.

4. The forth interval before SCD.

The capability of each one minute interval (i.e., the first one

minute, the second one minute, the third one minute and the forth

one minute before SCD) in prediction of SCD is evaluated

Figure 1. Block diagram of the proposed approach for
prediction of SCD.
doi:10.1371/journal.pone.0081896.g001

Figure 2. The ECG signal of SCD patient, from 2 minute before SCD event and several seconds after that.
doi:10.1371/journal.pone.0081896.g002
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through the computing of Separability factor. Based on the

explanations mentioned above, the block diagram of our approach

for prediction of SCD is shown in Figure 1.

Materials and Methods

The proposed method is evaluated on a database containing

ECG signals from 35 patients with sudden cardiac death

(including 16 female and 19 male, aged 18 to 89, and with a

sampling rate of 256 Hz) and 35 normal people (including 5 male,

aged 26 to 45, and 13 female, aged 20 to 50, and with a sampling

rate of 128 Hz). This open access database is prepared by MIT-

BIH database with the title of Sudden Cardiac Death Holter

database and Normal Sinus Rhythm database [29]. It is reminded

that there were some patients with two channels of ECG signal

where both of them were used as input observations, so the total

number of signals are 70 for normal and patients.

Preprocessing
The dataset consists of 24-hour ECG recordings (Holter) before

the event of heart death and several seconds afterwards. Patients

who showed signs of a previous heart attack or had the hard

tachyarrhythmia were susceptible to SCD, and finally circum to

SCD. The ECG signal (before SCD) of these patients is partitioned

into one minute intervals (i.e., the first one minute, the second one

minute, the third one minute and the forth one minute before

SCD). Figure 2 shows an Electrocardiogram signal of a 34 years

old patient that can lead to sudden cardiac death.

Before occurring of SCD, there is no significant difference

between the ECG signal for a person who is susceptible to heart

death and the ECG signals of normal persons. In Figure 3, a

sample of ECG signal of a person with SCD, several seconds

before occurrence of SCD and a few seconds after it, is shown.

The signal of the ECG of patient just one minute before the

occurrence of the sudden cardiac death was selected as ECG

Figure 3. ECG signal of a person on the moment of heart death.
doi:10.1371/journal.pone.0081896.g003

Figure 4. Noise reduction of a typical ECG signal.
doi:10.1371/journal.pone.0081896.g004
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Figure 5. Extraction of HRV from ECG signal. (a) One minute of the ECG signal of a healthy person. (b) Extraction of QRS-complexes. (c) The HRV
signal which was extracted from (a). (d) One minute the ECG signal of a patient just before occurrence of SCD. (e) Extraction of QRS-complexes. (f) The
HRV signal which was extracted from (d).
doi:10.1371/journal.pone.0081896.g005
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recordings for patients. For normal subjects one minute of the

ECG signal was selected at random. First of all, Noise reduction in

ECG signals is done. Baseline wander due to respiration contains

low frequency components and power line interference contains

high frequency components. All ECG signals are filtered with

moving-average filter to remove the baseline wander. In the

moving-average filter [30], the first- and second-stage averaging

window lengths are set to be 1/3 and 2/3 of the length of the input

signal in samples, respectively. This filter is used to extract the

baseline drift and place the output signal on the isoelectric line of

the ECG recording. Then power-line frequency is removed from

the median filtered ECG with a notch filter [31]. Figure 4 shows

this process step by step. The filtered ECG signals are used in all

subsequent processing. Then, the Pan-Tompkins [32] algorithm

was used to detect the QRS-complexes in the ECG-signal from

which we could determine the RR-intervals and HRV signal (R is

a point corresponding to the peak of the QRS complex of the

ECG wave; and RR is the interval between successive Rs. The

term NN can be used in place of RR to emphasize the fact that the

processed beats are normal beats). The preprocessed HRV signal is

now ready to be extracted features from it. HRV and ECG signal

of a healthy subject and a SCD one are shown in Figure 5.

Classical Features Analysis

In this step some usual Linear features in time domain and

frequency domain are extracted. These features, include 5 features

in the time domain and 4 feature in the frequency domain.

Time-domain feature
Statistical time-domain measures were divided into two classes:

N Direct measurements of RR intervals (or NN intervals)

N Measurements from the differences between RR intervals

Direct measurements of RR intervals: . These features

include two simple time domain variables that can be calculated

by

1. Mean of all RR intervals (MNN).

RRm~
1

N

X
RR(i) ð1Þ

2. Standard deviation of all RR intervals (SDNN).

SDNN~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
(RR(i){RRm)2

r
ð2Þ

Measurements from the differences between RR

intervals: . The square root of the mean of the squares of

differences between adjacent RR Intervals (RMSSD).

Figure 6. Spatial distribution of mean and STD features.
doi:10.1371/journal.pone.0081896.g006

Figure 7. HRV signal and it’s power spectral density. (a) Extracted HRV signal. (b) PSD of HRV signal, power in each frequency band is
indicated.
doi:10.1371/journal.pone.0081896.g007
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RMSSD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
(RR(iz1){RR(i))2

r
ð3Þ

2. The standard deviation of differences between adjacent RR

intervals (SDSD).

SDSD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn

i~1

(RR(dif ){RR(dif ))
2

s
ð4Þ

RR(dif )~(RR(iz1){RR(i)) ð5Þ

RR(dif )~
1

N

X
(RR(iz1){RR(i)) ð6Þ

3. The proportion derived by dividing the number of interval

differences of RR intervals greater than 50 ms by the total number

of RR intervals (PNN50) [33].

Figure 8. Wigner Ville transform of the HRV signal. (a) 2D view of a subject(b) 3D view of another subject.
doi:10.1371/journal.pone.0081896.g008
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½(RR(iz1){RR(i))w50ms�
total(RR(dif ))

ð7Þ

Spatial scattering of two of these features is shown in Figure 6.

As seen in this Figure, theses features are suitable for discriminat-

ing between the two groups; healthy and SCD.2

Frequency domain features
Although the time domain parameters are computationally

effective but they lack the ability to discriminate between the

sympathetic and parasympathetic contents of the RR intervals. It

is generally accepted that the spectral power in the high frequency

(HF) band (0.15–0.4 Hz) of the RR intervals reflects the

respiratory sinus arrhythmia (RSA) and thus cardiac vagal activity.

On the other hand, the low frequency (LF) band (0.04–0.15 Hz), is

related to the baroreceptor control and is mediated by both vagal

and sympathetic systems [26]. In this work, the LF,HF, and VLF

(Very Low Frequency) bands PSD and ratio of the LF and HF

bands power spectral density (LF/HF) are used as the frequency

domain features of the RR interval signal [34]. The power spectral

density(PSD) which is shown in Figure 7, was computed by Burg

parametric method.

Time-frequency Domain Analysis

Another approach to analyze non stationary HRV signal, is

time-frequency (TF) method. This can be divided into three main

categories: nonparametric linear TF methods based on linear

filtering, including the short-time Fourier transform [35,36] and

the wavelet transform [37,38], nonparametric quadratic TF

representations, including the Wigner-Ville distribution and its

Figure 9. Poincaré plot.
doi:10.1371/journal.pone.0081896.g009

Figure 10. Poincaré plot. (a) Normal persons. (b) SCD Persons.
doi:10.1371/journal.pone.0081896.g010
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filtered versions [39–43], and parametric time-varying methods

based on autoregressive models with time-varying coefficients

[44,45]. In this paper the Smoothed Pseudo Wigner-Ville

distribution (SPWVD) is preferred, since it provides better time

frequency resolution than nonparametric linear methods, an

independent control of time and frequency filtering, and power

estimates at lower variance with parametric methods when rapid

changes occur [40]. The main drawback of the SPWVD is the

presence of cross-terms, which should be suppressed by the time

and frequency filtering. The SPWVD of the discrete signal x(n) is

defined by [41].

X (n,m)~2
XN{1

k~{Nz1

Dh(k)D2
XM{1

p~{Mz1

g(p)rx(nzp,k)e{j2pkm=N ð8Þ

where n and m are the discrete time and frequency indexes,

respectively, h(k) is the frequency smoothing symmetric normed

window of length 2N|1, g(p) is the time smoothing symmetric

normed window of length 2M|1 and rx(n,k) is the instantaneous

autocorrelation function, defined as

rx(n,k)~x(nzk):x�(n{k) ð9Þ

Figure 8 shows the result of applying Wigner Ville transform to the

HRV signal.

TF features extraction
Each HRV signal is divided into 5 segments of equal length,

each segment is approximately 15 seconds in time domain. The

average energy of each segment was computed. The features are:

MAX w: maximum amount of energy in each window.

MIN w: minimum amount of energy in each window.

DIF w: difference between maximum and minimum amount of

energy between windows.

STD w: standard deviation between energy of time windows.

The obtained signal in TF domain is also divided into three

frequency segments.

Evlf : the total energy of signal in very low frequency band

(0.003–0.04) Hz, divided by length of band (0.037).

Elf : the total energy of signal in low frequency band (0.04–0.15)

Hz, divided by length of band (0.11).

Ehf : the total energy of signal in high frequency band (0.15–0.4)

Hz, divided by length of band (0.25).

Fvlf : the average of energy signal in very low frequency band

(0.04–0.003) Hz.

Flf : the average of energy signal in low frequency band (0.04–

0.15) Hz.

Fhf : the average of energy signal in high frequency band (0.15–

0.4) Hz.

Also, we have defined the first order derivative as a feature to show

the difference between adjacent windows. This derivative is the

difference between the average energy in subsequent windows.

This derivative for the first window(first 15 S) was computed by the

difference between this window and the last 15 seconds in the

second minute. So the first order derivative feature is computed as

below

Wdif ~DW(n){W(n{1)D ð10Þ

The result of features survey in time span of 15 seconds

illustrates that in SCD person, the features changes from one

window to next window is much more dominant so that we define

the first order derivative.

Table 1. Comparison of the thirteen extracted HRV
parameters from control, and SCD dataset.

Parameters Normal dataset (n = 35)

SCD
dataset
(n = 34) p-Value

Mean±SD Mean±SD

Mean NN (ms) 8766134 7066147 ,0.001

SDNN (ms) 58.463.9 64.2 6 4.3 0.56

RMSSD (ms) 42.164.2 54.663.2 0.13

pNN50 (%) 10.4613.3 7.286 10.5 0.07

VLF (ms2) 20.6664.3 27.96 85.2 0.63

HF (ms2) 5706139 602 6 1019 0.79

LF/HF 0.7560.57 0.756 0.99 0.89

SD1 (ms) 24.5624.5 27.8626.7 0.53

SD1/SD2 0.3260.19 0.3660.22 0.31

a(DFA) 0.8360.15 1.1260.18 0.45

DIFw(TF) 19.6563.17 42.73612.76 0.29

STDw(TF) 8.0362.34 23.3767.08 0.33

Wdif(TF) 39.1464.15 80.03617.29 0.26

doi:10.1371/journal.pone.0081896.t001

Table 2. The accuracy of MLP and k-NN classifiers with the selected features subsets (individual and combinational) for Healthy
and patients prone to SCD.

Average Classification Rate

Features Two-Minutes (120 S before SCD) Three-Minutes(180 S before SCD)

MLP k-NN MLP k-NN

Linear 71.08% 69.57% 68.82% 68.13%

Time-Frequency 80.16% 77.13% 76.41% 74.96%

Nonlinear 85.38% 84.33% 82.17% 83.58%

combinational 98.74% 96.42% 95.78% 93.63%

doi:10.1371/journal.pone.0081896.t002
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Nonlinear Analysis

Considering that cardiovascular system has Non-stationary

behaviors and also is more complex than a Linear system, two

Nonlinear analyses are used to illustrate chaotic dynamical

characteristics in HRV signal in addition to the time-frequency

features. In this way, four different Nonlinear parameters of the

RR intervals are extracted in this work, which are described as

below.

Poincaré plot
When in the RR intervals, each interval RR(nz1) is plotted as

a function of previous interval RR(n), the resulting plot is known

as the Poincaré plot. Poincaré plot can be seen as a graphical

representation of the correlation between the successive RR

intervals. This plot can be quantitatively analyzed by calculating

the standard deviations of the distances of the points RR(i) from

the lines y = x and y = 2x +2RRm, where RRm is the mean of all

RR(i) values. The computation procedure of Poincaré plot is

shown in Figure 9. These standard deviations are denoted by SD1

and SD2, respectively. In fact, SD 1represents the fast beat-to-beat

variability, while SD2 describes the relatively long-term variability

in the HRV signal [46]. The length (SD2) and the width (SD1) of

the long and short axes of Poincaré plot images represent short

and long-term variability of any Nonlinear dynamic system [47].

We developed mathematical formulations that relate each

measure derived from Poincaré plot geometry in order to well

understanding existing heart rate variability indexes [47]. A strong

correlation was found when comparing high frequency power of

heart rate signals (modulated by parasympathetic nervous system)

with SD1 [48]. SD2 was found to be well correlated with both low

and high frequency power (modulated by both the parasympa-

thetic and sympathetic nervous system) [48]. The ratio SD1/SD2

is usually used to describe the relation between the two

components [33,49,50]. Figure 10 shows the Poincaré plot of

normal person and SCD persons.

DFA analysis method
Detrended fluctuation analysis (DFA) is a method for quanti-

fying long-range correlations embedded in a seemingly non-

stationary time series, and also avoids the spurious detection of

apparent long range correlations that are artifacts of non

stationarity. This method is a modified root mean square analysis

of a random walk [33,51–56].

Feature Selection

Using the obtained features from Linear, Time-Frequency and

Nonlinear Processings and constituting a new combinational

feature vector brings a good separability between two classes (i.e.,

Healthy people and People at risk of SCD). But in any

classification task, there is a possibility that some of the extracted

features might be redundant. These features can increase the cost

and running time of the system, and decrease its generalization

performance. In this way, the selection of the best discriminative

features plays an important role when constructing classifiers. To

identify the best features (for classification) in feature space,

searching selection method is applied. In such way, first the

classification has been applied separately to each feature. The best

feature has been selected in accordance with the most value of

classification accuracy. This feature will be combined with the

other individual features and thus the best pair combination will

be produced. The optimal feature space is achieved when the

minimum number of features results in the highest classification

accuracy (i.e., when adding a new feature does not increase the

classification accuracy). So, this process is stopped when adding a

new feature decreases the classification accuracy or does not result

in an increase in it. It is reminded that in each step the training

process is done only using the train data and after performing the

feature selection and afterwards determining the best combination

of features, the session of testing is done using the remained

sample. Considering that there are 70 samples, this procedure is

repeated 70 times, in each step 69 samples are used as train data to

determine the best combination of features and the remained one

is considered as test data. In other words, each time this process is

Table 3. Run the program 16 times for First one minute by means of MLP classifier and composition feature vector.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Average

TP 35 35 35 34 35 35 34 35 35 35 35 35 35 35 35 35 34.875

TN 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 34 34.938

FP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.062

FN 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0.125

TP: True Positive, TN: True Negative, FP: False Positive, FN: False Negative.
doi:10.1371/journal.pone.0081896.t003

Table 4. Run the program 16 times for Second one minute by means of MLP classifier and composition feature vector.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Average

TP 34 35 35 34 35 32 34 34 33 34 33 34 35 33 33 34 33.875

TN 33 33 35 34 35 34 34 32 33 34 35 33 33 34 33 34 33.687

FP 2 2 0 1 0 1 1 3 2 1 0 2 2 1 2 1 1.312

FN 1 0 0 1 0 3 1 1 2 1 2 1 0 2 2 1 1.125

TP: True Positive, TN: True Negative, FP: False Positive, FN: False Negative.
doi:10.1371/journal.pone.0081896.t004

Sudden Cardiac Death Prediction Using HRV Signals
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run, a different optimal combination of features is obtained using a

different train and test data. The obtained best features for a

sample step of this process are listed in Table 1.

Classification

To discriminate between ECG of normal person and a person

who is prone to sudden cardiac death, the Multilayer perceptron

(MLP) neural network and K-Nearest Neighbor (k-NN) classifier

have been used. Features extracted from HRVs of one minute

intervals (i.e., the first one minute, the second one minute, the

third one minute and the forth one minute before SCD) were

compared with normal HRVs of one minute.

Multilayer perceptron neural network
The classifier using a three-layer MLP with error back

propagation algorithm and variable learning rate. The input layer

has a number of nodes equal to the input vector length (13 node).

The output layer consists of one node, accounting for a possibility

of only 2 classes to be classified. Also, All the possible combinations

of the selected numbers of neurons in the hidden layer were

selected and trained and finally the optimized number was equal

to 5. The output nodes had Linear transfer functions, and the

hidden layer used a sigmoid function. Network training continued

until the mean square error became less than 0.01 or the number

of training iterations reached to 1000. Due to the limited input

data set, Leave One Out cross-validation method was done for

training [56]. At each stage one of observations was selected as test

data and 69 as train data, and this process repeated 70 times.

Network error in each step was computed, and finally the average

was calculated. This process was done for 16 times to reach the

average accuracy. One advantage of this approach is that all the

input data set are represented in both processes (train and test).

k-Nearest neighbor
The k-nearest neighbor algorithm (k-NN) is a non-parametric

method for classifying objects based on closest training examples in

the feature space [57]. k-NN is a type of instance-based learning

where the function is only approximated locally and all

computation is deferred until classification. The k-nearest neigh-

bor algorithm is amongst the simplest of all machine learning

algorithms: an object is classified by a majority vote of its

neighbors, with the object being assigned to the class most

common amongst its k nearest neighbors (k is a positive integer,

typically small). Over several distance measures that might be used

in this algorithm, Euclidean distance is commonly preferred as the

distance measure. If k = 1, then the object is simply assigned to the

class of its nearest neighbor. The selected feature set is then used to

determine the best value of k for the classifier. Therefore, different

numbers of nearest neighbors (k = 1, 3, 5, 7, 9) are tested in the k-

NN classifier to obtain the best performance for the classifier [58].

Performances of all classifiers are calculated based on their

accuracy. The maximum performance is provided by a 7-nearest

neighbor classifier.

Evaluation

The ability of the proposed method for prediction of sudden

cardiac death is evaluated using accuracy (AC), sensitivity (SN),

specifity (SP) and precision (P). In the following Equations (4)(10),

TP refers to true positives (correctly predicted SCD), TN refers to

true negatives (correctly predicted non-SCD), FN refers to false

negatives (incorrectly predicted non-SCD) and FP refers to false

positives (incorrectly predicted SCD).

Accuracy (AC): proportion of correct predictions to the total

predictions

AC~
TPzTN

TPzTNzFNzFP
ð11Þ

Sensitivity (SN): proportion of true positives to the total

positives

Table 5. Run the program 16 times for Third one minute by means of MLP classifier and composition feature vector.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Average

TP 32 31 32 33 31 32 33 33 31 32 30 28 31 31 32 30 31.375

TN 33 33 32 30 32 31 31 32 32 31 32 33 31 32 32 33 31.875

FP 2 2 3 5 3 4 4 3 3 4 3 2 4 3 3 2 3.125

FN 3 4 3 2 4 3 2 2 4 3 5 7 4 4 3 5 3.625

TP: True Positive, TN: True Negative, FP: False Positive, FN: False Negative.
doi:10.1371/journal.pone.0081896.t005

Table 6. Run the program 16 times for Forth one minute by means of MLP classifier and composition feature vector.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Average

TP 31 31 28 30 29 30 30 29 29 31 25 28 27 30 32 29 29.313

TN 28 30 30 30 30 31 28 29 27 27 32 31 31 29 28 30 29.437

FP 7 5 5 5 5 4 7 6 8 8 3 4 4 6 7 5 5.563

FN 4 4 7 5 6 5 5 6 6 4 10 7 8 5 3 6 5.687

TP: True Positive, TN: True Negative, FP: False Positive, FN: False Negative.
doi:10.1371/journal.pone.0081896.t006
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SN~
TP

FNzTP
ð12Þ

Specificity (SP): proportion of true negatives to the total

negatives

SP~
TN

TNzFP
ð13Þ

Precision (P): proportion of predicted positive cases that were

correct

P~
TP

FPzTP
ð14Þ

To evaluate the proposed method, AC, SN, SP and P are

computed for MLP classifier for one, two, three and four minutes

before SCD (to evaluate the robustness of the system, this

procedure is repeated for 16 times).

Results

After selecting the classifier, in order to evaluate the separability

of features, the extracted features are compared with each other in

both individual (Linear, Nonlinear and Time-Frequency) and

optimal combinational mode. The separability of Linear, Nonlin-

ear and Time-Frequency features and also combinational mode

for three minutes (180 s) and two minutes(120 s) before SCD are

shown in Table 2.

As can be seen in Table 2, combinational features have more

capability in classification of people (i.e., Normal and SCD). So

that’s why combinational features have been used in this study as

input features vector to predict SCD. For this goal, HRV signals

(before SCD) have been partitioned into one minute intervals.

Then, the separability of each one minute interval (i.e., the first

one minute, the second one minute, the third one minute and the

forth one minute before SCD) in prediction of SCD is evaluated

by computing the accuracy. The obtained results show that the

combinational feature vector can predict SCD by the accuracy of

99.73%, 96.52%, 90.37% and 83.96% for the first, second, third

and forth one minute intervals, respectively. The results show that

the two minutes interval before SCD contains more information

related to the SCD which can be used for prediction. In addition,

the first one minute interval before SCD contains much more

precious information for prediction of SCD in comparison with

other intervals (i.e., the second, third and forth intervals), which is

expectable from the medical perspective. To have a reasonable

comparison with different intervals, the performance of MLP

classifier is computed using AC, SN, SP, and P measures for all

intervals (this process is repeated for sixteen times). The obtained

results are reported in Tables 3 to 7. Also, the ability of

combinational features vector in predicting of SCD is evaluated

through the k-NN classifier by the accuracy of 98.32%, 95.04%,

88.93% and 81.49%. Table 8 shows average separating percent,4

minutes before incident. To give more understanding, ECG

recording of a patient who experienced SCD during the recording

and the percentages of SCD prediction through the proposed

method are shown in Figure 11.

Although there is not a significant difference between normal

ECG and those patients which prone to SCD, by using the

proposed combinational feature vector, symptoms of SCD can be

observed even 4 minutes before SCD. In other words, in spite of

that Cardiology and Electrocardiography Experts cannot distin-

guish between normal ECG and patients which prone to SCD, the

proposed extracted features can be used to predict SCD. It is

reminded that those intervals which are closer to SCD have more

capability for prediction of SCD.

Discussion

In this paper a new approach, for prediction of sudden cardiac

death, is proposed. After extraction of the HRV signal from ECG

signal, some Linear, Time-Frequency (TF) and Nonlinear features

have been extracted from HRV signal. Then, the dimension of

features space is reduced by applying feature selection and finally,

healthy people and people at risk of SCD, are classified by k-NN (k

Nearest Neighbor) and MLP (Multilayer Perceptron) neural

network.

To evaluate the capabilities of analytical methods in classifica-

tion, we have compared the classification rates for both separate

and combined Nonlinear and TF features. These results are

compared with the previous results, reported by other researcher

such as Shen et al. [18] which used similar methods of evaluation.

Table 7. Accuracy, Sensitivity, Specificity, and Precision
measures for all intervals before SCD.

Method Accuracy Sensitivity Specificity Precision

One minute before
SCD

99.73% 99.64% 0.001% 99.82%

Two minutes before
SCD

96.52% 96.78% 0.037% 96.27%

Three minutes before
SCD

90.36% 89.64% 0.089% 90.94%

Four minutes before
SCD

83.93% 83.75% 0.159% 84.04%

doi:10.1371/journal.pone.0081896.t007

Table 8. Average of separating percent between healthy person and patients prone to SCD, 4minute before incident, by means of
composition vector motion method.

Average Classification Rate with composition feature vector

Classifier Forth one minute Third one minute Second one minute First one minute

MLP 83.96% 90.37% 96.52% 99.73%

k-NN 81.49% 88.93% 95.04% 98.32%

doi:10.1371/journal.pone.0081896.t008
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Shen et al. [18] developed a personal cardiac homecare system by

sensing Lead-I ECG signals for detecting and predicting SCD

events. The wavelet analysis was applied to detect SCD and the

overall performance was 87.5% correct detection rate. In addition,

artificial neural networks (ANN) were used to predict SCD events.

The correct prediction rates by applying least mean square (LMS),

decision based on neural network (DBNN), and back propagation

(BP) neural network were 67.44%, 58.14% and 55.81%,

respectively. For the SCD detection, their own database with 20

normal sinus rhythms and the MIT/BIH SCD database with 20

subjects without ventricular failure (VF) onset were combined as

detection training data set. For the SCD prediction, again, their

own database with 20 normal sinus rhythms and total of 23 SCD

samples built their prediction training data set. The 23 SCD

samples were obtained as follows: Two-minute ECG signals before

VF onset times were kept in their SCD database in order to

simulate two-minute right before SCD. For the testing dataset,

forty randomly selected subjects from campus were studied.

To compare our approach with the method proposed by Shen

et al., we simulated and evaluated their method with MIT/BIH

SCD database. Therefore comparison of our method with their

method is reasonable. This comparison is done in Table 9. As it is

seen, the predictive accuracy has been improved from 67.44% to

98.74%.

According to the results reported by Shen et al. and our

findings, It’s obvious that Nonlinear and Time-Frequency

processing methods excels at classic processing methods. More-

over, in comparison with our former study [22], it has been

investigated that an optimal combination of these processing

methods (i.e., TF and Linear and Nonlinear) improves the

separability in a dramatic way.

Finally, experimental results show that there are significant

information in HRV signal which can be extracted by the

proposed method and used for prediction of SCD although there is

Table 9. Predictive accuracy for the proposed method and
Shen’s method [18] (2-minute analysis).

Classifier Method

Shen et al.

Proposed
method Proposed method

(Classic features)
(Combinational feature
space)

MLP 67.44% 71.08% 98.74%

doi:10.1371/journal.pone.0081896.t009

Figure 11. Prediction of SCD by classification accuracy 4 minutes before ventricular failure (VF). (a) ECG signal of a patient prone to SCD.
(b) Prediction of SCD by computing the percentage of event probability.
doi:10.1371/journal.pone.0081896.g011
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no significant difference between normal ECG and those ones

which are prone to SCD. We investigated that the 2 minutes

interval before SCD can be used to distinguish between a person

who is prone to SCD and a normal ECG. Also, the third minute

interval before SCD possesses information indicating high risk of

SCD that can be estimated through the proposed method.

Moreover, as the time approaches to SCD, the risk of SCD

increases which is expectable from the medical perspective. In

reviewing the forth minute before SCD, the risk of SCD exists yet

although it has been decreased in comparison with the previous

intervals which are closer to the SCD. Generally, healthy and

unhealthy persons can be classified by detecting heart attack and

tachyarrhythmia before SCD, because patients who show signs of

a previous heart attack or having the hard tachyarrhythmia are

susceptible for SCD, and finally they catch SCD. It is noticeable

that by getting closer to the SCD from the forth interval, the

percentage of correct detection of SCD rise dramatically and then

climb sharply for the closer intervals to the SCD. Moreover,

considering the obtained results, it could be seen that MLP

classifier has better performance in detection of SCD than k-NN

classifier. Finally, our findings about detection of SCD can help

doctors and Treatment centers to be aware of SCD even 4 minutes

before happening to prevent incident and do something that save

the life of unhealthy person. Since features of the Wigner-Ville

transformed HRVs are a comprehensive form of frequency

features which Time-Domain Information has been added to

them, it seems simultaneous use of Time and Frequency

information through TF analysis includes useful information

which can’t be available using Classic (i.e., Time or Frequency)

methods. Also, it seems the usage of Nonlinear methods can bring

some more information in comparison with the common Linear

methods due to the Nonlinear nature of HRV signal. So,

Nonlinear methods can be considered as supplementary to

improve classic (i.e., Time or Frequency) methods.

Finally, it is reminded that to investigate the dependence of

samples, we did all experiments two times: 1) using all channels

and 2) using only one channel per patient. The obtained results

revealed no significant difference between them. In other words,

the classification performance (Accuracy) of classifiers were really

close to each other. On the other hand, the accuracy of k-NN

classifier (as a non-parametric classifier) was close to MLP, which

indicates the reliability of results. It is noticeable that we could

never claim that channels from same patients are independent,

and having a small number of observations compared to the total

number of features was the main reason to use whole channels as

input data, and then apply leave-one-out method to train

classifiers.

In future studies, we intend to apply Nonlinear and Chaotic

processings to ECG signals to extract new features, and also use

other classifiers to improve the accuracy of prediction in much

more time before SCD.
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