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Background: Due to the large variability in the prostate gland of different patient groups, manual 
segmentation is time-consuming and subject to inter-and intra-reader variations. Hence, we propose a U-Net 
model to automatically segment the prostate and its zones, including the peripheral zone (PZ), transitional 
zone (TZ), anterior fibromuscular stroma (AFMS), and urethra on the MRI [T2-weighted (T2W), diffusion-
weighted imaging (DWI), and apparent diffusion coefficient (ADC)], and multimodality image fusion.
Methods: A total of 91 eligible patients were retrospectively identified; 50 patients were considered for 
training process in a 10-fold cross-validation fashion and 41 ones for external test. Firstly, images were 
registered, and cropping was performed through a bounding box. In addition to T2W, DWI, and ADC 
separately, fused images were used. We considered three combinations, including T2W + DWI, T2W + 
ADC, and DWI + ADC, using wavelet transform. U-Net was applied to segment the prostate and its zones, 
AFMS, and urethra in a 10-fold cross-validation fashion. Eventually, dice score (DSC), intersection over 
union (IoU), precision, recall, and Hausdorff distance (HD) were used to evaluate the proposed model.
Results: Using T2W images alone on the external test images, higher DSC, IoU, precision, and recall was 
achieved than the individual DWI and ADC images. DSC of 95%, 94%,98%, 94%, and 88%, IoU of 88%, 
88.5%, 96%, 90%, and 79%, precision of 95.9%, 93.9%, 97.6%, 93.83%, and 87.82%, and recall of 94.2%, 
94.2%, 98.3%, 94%, 87.93% was achieved for the whole prostate, PZ, TZ, urethra, and AFMS, respectively. 
The results clearly show that the best segmentation was obtained when the model is trained using T2W + 
DWI images. DSC of 99.06%, 99,05%, 99.04%, 99.09%, and 98.08%, IoU of 97.09%, 97.02%, 98.12%, 
98.13%, and 96%, precision of 99.24%, 98.22%, 98.91%, 99.23%, and 98.9%, and recall of 98.3%, 99.8%, 
99.02%, 98.93%, and 97.51% was achieved for the whole prostate, PZ, TZ, urethra, and AFMS, respectively. 
The min of the HD in the testing set for three combinations was 0.29 for the T2W + ADC procedure in the 
whole prostate class.
Conclusions: Better performance was achieved using T2W + DWI images than T2W, DWI, and ADC 
separately or T2W + ADC and DWI + ADC in combination. 
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Introduction

Prostate cancer, which is the second most common 
malignancy among men, is known as the fifth cause of 
cancer mortality throughout the world (1), detecting 
prostate cancer in an earlier stage is of great significance 
to increase the probability of successful treatment. In the 
case of reasonable suspicion for prostate cancer based on 
abnormality on digital rectal examination (DRE) or elevated 
prostate-specific antigen (PSA) levels, the patients are likely 
to be referred to pre-biopsy MRI (2). 

Although imaging procedures are helpful to diagnose 
prostate cancer, their primary use is in the staging of the 
tumor. More than one imaging procedure is usually needed 
to help create an effective treatment plan. Due to its wide 
availability, transrectal ultrasound (TRUS) guided biopsy 
of the prostate is a diagnostic procedure for detecting and 
staging prostate cancer. 40% or greater of prostate cancers 
are isoechoic , hence, diagnostic accuracy has been limited 
for using TRUS in detecting and staging (3,4). A hypoechoic 
mass inside the peripheral zone (PZ) is not specific to 
prostate cancer and is present in benign prostatic hyperplasia 
(BPH) (3). In patients diagnosed with intermediate and 
high-risk prostate cancer, guidelines suggest disease staging 
using computed tomography (CT) scan or MRI (5,6). 
Unfortunately, these procedures understage tumors in most 
cases of metastases. Since anatomical imaging procedures 
such as CT or MRI depend on morphological features, 
lesion less than 8–10 mm in diameter are often missed (7).  
Hence, even with contrast enhancement, CT for local 
staging of prostate cancer may be of limited value (8). Also, 
CT does not have the soft tissue resolution required to 
detect prostate cancer (9). MRI is rapidly developing as a 
non-invasive procedure that can provide comprehensive 
information on the structure of prostate cancer (10). MRI 
scan demonstrates the zones of the prostate gland with 
excellent soft-tissue resolution and is useful for detection, 
staging, and follow-up after treatment (11). T2-weighted 
(T2W) fast spin-echo imaging is widely used for evaluating 
and depicting the prostate anatomy using MRI (12). The 
bulk of the prostate gland has relatively uniform signal 

intensity at T1-weighted (T1W) imaging, and zones of the 
prostate cannot be clearly identified on T1W images (13).  
T2W images allow anatomical visualization of the prostate 
and its zones. On T2W images, the normal PZ shows 
uniform high signal intensity due to the water content of 
glandular structures in the PZ. Tumors are commonly 
hypointense compared with the glandular PZ. However, 
hypointensity in the PZ is not a specific finding for prostate 
cancer in itself, and its differential diagnosis contains 
hemorrhage, prostatitis, and BPH (14). Dynamic contrast-
enhanced MRI (DCE-MRI) creates a minimally invasive 
visualization of tumor angiogenesis. The sequence comprises  
T1-weighted fast gradient-echo images of the prostate 
acquired before, during, and after intravenous injection 
of a low molecular-weight gadolinium chelate. A final 
limitation of DCE-MRI is the difficulty of reproducing 
results across centers. The potential of MRI for prostate 
imaging is increased by combining anatomical (T2W), and 
functional imaging techniques such as diffusion-weighted 
(DWI) images and apparent diffusion coefficient (ADC) 
maps generated from DW images (15). Compared to the 
other methodologies, DWI has the advantage of short 
acquisition time and no need for intravenous contrast. DWI 
estimates the restriction of water diffusion in biological 
tissues, corresponding to cellular density, membrane 
permeability, and space between cells (16). Due to the 
high cell densities in the cancer cells tend to have more 
restricted diffusion than normal tissues. Several studies 
have assessed the importance of DWI-derived ADC in 
characterization of prostate cancer aggressiveness (17-19).  
Low ADC values show the limited diffusion in an ADC 
map, while higher ADC values are generated from tissues 
with relatively free diffusion (20). It has been proved 
that combining ADC and T2W images with fusion 
algorithms significantly improves the performance of 
prostate cancer detection and its boundary compared 
with T2W images (21). Image fusion is considered as 
merging relevant information from a sequence of images 
into one more informative and complete image than any 
input image. More precisely, a fused image integrates 
information from multiple images to a single image 
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without the introduction of distortion. Therefore, fused 
images do not show artifacts or discrepancies that will (19).  
In summary, the purpose of image fusion is to acquire better 
contrast, fusion quality, and perceived experience. The result 
of the fused image should meet the following conditions, 
including the fused image should contain the information 
of the source images completely and bad states should be 
avoided, such as misregistration and noise. Accurate and 
reliable prostate zones segmentation has a fundamental role 
in image analysis tasks such as cancer detection, patient 
management, and radiotherapy treatment planning (22-25).  
Manual segmentation of the prostate achieved by 
radiologists is the principal procedure for generating ground 
truth. It is done almost entirely on visual inspection on a 
slice-by-slice basis. However, due to the large variability 
in the prostate gland of different patient groups, this 
approach is time-consuming and subject to inter-and intra-
reader variations (26). Becker et al. (27) have systematically 
investigated inter-reader variability in prostate and seminal 
vesicle (SV) segmentation due to reader expertise. Variability 
was highest in the apex, lower in the base, and lowest in the 
midgland. Chen et al. (28) aimed to assess the variation in 
the segmentation of prostate cancer among different users. 
Four consultant radiologists, four consultant urologists, 
four urology trainees, and four non-clinician segmentation 
scientists were requested to segment prostate tumors 
on MRI images. There was a high variance among the 
radiologists in segmentation. Less experienced participants 
appear to under-segment models and underestimate the 
size of prostate tumors. Hence, there is a need for a more 
accurate, reliable, and robust segmentation technique (27,29). 
Machine learning (ML), particularly deep learning (DL), 
models (30) have the potential to overcome the limitations 
of manual segmentation by implementing robust models 
for the automatic segmentation (29,31,32). Early attempts 
to perform automatic delineation on the prostate relied 
on the edge or region-based models. These methods are 
based on the incorporation of prior knowledge or atlas-
based segmentation (33,34) and use a procedure that fits 
chosen areas on a target image to selected reference images. 
However, these procedures rely on the atlas selection 
process and how well the area was selected (35). To improve 
performance and to develop an automated segmentation 
model, DL procedures have been used resulting in significant 
improvements, notably with the recent developments of 
convolutional neural networks (CNNs) (36,37). To perform 
a pixel-wise segmentation, DL procedures can learn rich 
features and present a computation advantage over atlas-

based strategies (36,38). In this study, we implemented 
a U-Net network (36) and analyzed its performance for 
the automatic segmentation of the prostate and its zones, 
including PZ, transitional zone (TZ), anterior fibromuscular 
stroma (AFMS), and urethra on the MRI (T2W, DWI, 
and ADC); multimodality image fusion procedures were 
also performed. While DL models have been used in 
previous studies (25,39-41) on the T2W, DWI, and ADC 
separately, our notable contributions are the comparison 
of performance when evaluating MRI separately and in 
combination with fusion algorithms. To our knowledge, 
this is the first study evaluating segmentation of the entire 
prostate gland and its zones using multimodality image 
fusion employing a U-Net-based network. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-115/rc).

Methods

Dataset

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). In this 
study, data were obtained from the publicly available 
PROSTATEx Zone Segmentations dataset (42-45). A total 
of 91 eligible patients were retrospectively identified from 
98 cases. Due to differences in the number of slices, seven 
cases were excluded in the three procedures including 
T2W, DWI, and ADC which were used in this study. The 
four-class segmentation encompasses the PZ, TZ, AFMS, 
and the urethra. As underlying images, transversal T2W 
scans were used. A medical student did 3D segmentations 
with experience in prostate segmentation, and an expert 
urologist instructed the student and double-checked the 
segmentations in the end. 50 patients were considered for 
training process in a 10-fold cross-validation fashion and 
41 ones for external test. The testing data are held out of 
the training process at all times. 90% out of 50 patients, 
45 patients, were employed for training the algorithms 
and 10%, 5 patients, were utilized to validate the training 
process. It is necessary to mention slices from one patient 
were not used in all three of training, validation, and 
testing. All MRI exams, including T2W, DWI, and ADC 
were acquired in axial orientation. To calculate the ADC 
map, three b-values were acquired (50, 400, and 800) and 
calculated by the scanner software. The MRI parameters are 
summarized in Table 1. In our study, the image masks were 

https://qims.amegroups.com/article/view/10.21037/qims-22-115/rc
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labeled into five classes: PZ, TZ, AFMS, urethra, and whole 
prostate. In all slices, the mentioned classes were annotated 
by hand, and distinguishing was done between the prostate 
zones as shown in Figure 1. 

Preprocessing

Since the images used in this work, including T2W, DWI, and 
ADC were obtained undergoing different conditions, there was 
a variation in image acquisition and reconstruction parameters 
in imaging modalities. Voxel size and acquisition matrix are 
two important MRI parameters that vary significantly from 
protocol to protocol and per institutional preferences. In 
our study, the acquisition matrix was varied from 320×320 to 
128×84 and voxel size from 0.5 to 2 mm across multimodality 
images. Hence, image registration, resampling, and other pre-
processing methods are necessary to work with datasets having 
different dimensions. Details on the pre-processing methods 
are given in the subsequent paragraphs.

Registration

Due to variations in MRI acquisition protocols, images 

had different matrices (ranging from 320×320 to 128×84), 
while DL architectures usually need to be of same-sized 
inputs. Hence, in the first preprocessing step, images were 
registered using rigid registration through an in-house-
developed code using the SimpleITK Python package. Masi 
et al. (46) aimed to examine the comparison of rigid and 
deformable registration between multiparametric magnetic 
resonance (mpMRI) and CT images for prostate cancer. 
Results show that rigid image coregistration is sufficiently 
accurate compared to deformable registration. The training 
parameters used for the registration algorithm were as 
follows: Similarity Metric = Mutual Information (MI), 
Interpolation = Linear, Optimizer = Stochastic Gradient 
Descent (SGD). For the used optimizer, the learning 
rate and the number of iterations were 0.01 and 100, 
respectively. Finally, MRI were resampled to a resolution of 
0.5×0.5×3 mm3.

Cropping

One of the significant challenges in prostate MRI 
segmentation is the presence of class imbalance, where 
prostate gland volume in the MRI is relatively small 

Table 1 MRI parameters

Sequence TR/TE (ms) Flip angle (°) Slice thickness (mm) Matrix size (pixels) Pixel bandwidth (Hz) Voxel size (mm)

T2W 6,840/104 160 3 320×320 200 0.5×0.5×3

DWI and ADC 2,700/63 90 3 128×84 1,500 2×2×3

T2W, T2-weighted image; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; TR/TE, repetition time/echo time.

T2W and label DWI ADC

Figure 1 Original images (T2-weighted, diffusion-weighted, and apparent diffusion coefficient) and manual segmentation of one of the test 
slices. Colors are yellow for peripheral zone, brown for transitional zone, pink for anterior fibromuscular stroma, and blue for urethra. T2W, 
T2-weighted image; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient.
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Original image Original mask

Cropped image Cropped mask

Figure 2 An example of the T2-weighted image and its mask after image cropping.

compared to the background, resulting in poor prostate 
segmentation. Hence, to tackle class imbalance, cropping 
is necessary to obtain an accurate segmentation from the 
prostate and prevent dominating background pixels over 
the prostate pixel. Therefore, the goal of this step was to 
get a bounding box of the prostate. Bounding box size was 
big enough to cover the size of the largest prostate gland 
and small enough to fit in the GPU memory for efficient 
processing. Therefore, image cropping was performed 
through a bounding box (equal to 160×160×160 mm3) with a 
developed Python code in the following link: https://github.
com/voreille/hecktor. Figure 2 shows an example of a cropped 
image and its corresponding mask before and after cropping.

Image fusion

For image segmentation, fused images were used in 

addition to T2W, DWI, and ADC separately. Hence, 
three combinations, including TW + DWI, T2W + ADC, 
and DWI + ADC were considered. For perfect diagnosis, 
medical image fusion is being widely used for capturing 
complementary information from images of different 
techniques. According to the studies and features such 
as perfect reconstruction, decomposing image data into 
the high-frequency portion, faster algorithm etc., image 
fusions with the wavelet analysis have received many better 
outcomes (47,48). Therefore, wavelet transform was done 
for image fusion using an in-house-developed Python code. 
Figure 3 shows three modes of fused images.

Architecture of the proposed model and image 
augmentation

We applied U-Net model on T2W, DWI, ADC, and fused 

https://github.com/voreille/hecktor
https://github.com/voreille/hecktor
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A B C

Figure 3 Image fusion results with wavelet transform. (A) T2W and DWI. (B) T2W and apparent diffusion coefficient. (C) DWI and ADC. 
T2W, T2-weighted image; DWI, diffusion-weighted image; ADC, apparent diffusion coefficient.

images for segmentation. The U-Net network model 
mainly comprises an encoder network and a decoder 
network. The main idea is that the image with a fixed size 
is dimensionally reduced to conform the size of the display 
area and generate thumbnails of the corresponding image 
to extract deeper image features (49). To concatenate the 
features of high and low levels together, skip-connection 
was added to the encoder-decoder network. In the encoder 
stage, from the input image, the features are extracted after 
convolution layers using the filters to learn low and high-
dimensional features as they iteratively get trained. Then, the 
segmentation mask can be obtained using up-sampling at the 
decoder side. Discovering features in the segmented image 
depends on the learning of weight filters, down-sampling/up-
sampling blocks, and skip connections. Also, the backbone 
is the main architectural component that determines how 
layers were arranged in the encoder process and built in 
the decoder process (50). In this study, ResNet34 was used 
as a backbone for U-Net (U-Net with ResNet34). The 
proposed network architecture is shown in Figure 4. Details 
of the proposed model are shown in the Table S1. During 
the training process, data augmentation was used to reduce 
overfitting (51). The flipud (flip up to down), fliplr (flip left 
to right), and rotation were performed to the input training 
slices. The results of the image augmentation performed on 
an image and its label are shown in Figure 5.

Training, loss function, and evaluation metric

The selected optimization algorithm is Adam (52) with 
a learning rate α=0.0008 and decay with the following 
parameters: init alpha =0.0008, factor =0.9, drop every=30. 

The optimal learning rate value was selected by the trial-
and-error method. Step decay was calculated as follows:

( ) ( )/  epoch drop everyLearning rate scheduler step decay init alpha factor= × [1]

The training was performed for 100 epochs with a batch 
size of 8 and an early stop mechanism. The loss function is 
formulated as a mixed loss, including contributions from 
dice loss and focal loss as follows (31,53).
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TP, FP, and FN show the number of true positive, 
false positive, and false negative, respectively. ( )nP c  is the 
predicted probability, ( )ng c  is the ground truth, C is the 
number of anatomies plus one, λ is the trade-off between 
dice loss and focal loss, α and β are the trade-offs of 
penalties for FNs and FPs which are set as 0.5 here, N is 
the total number of voxels in the MRI, and λ is set to be 0.5 s.

For training, we performed ten-fold cross-validation. 
Ten-fold cross-validation split the data into ten parts and 

https://cdn.amegroups.cn/static/public/QIMS-22-115-Supplementary.pdf
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Softmax

BatchNormalization

add
Decoder Stage 0

Decoder Stage 1

Decoder Stage 2

Decoder Stage 3

Decoder Stage 4

add

add

add

Figure 4 The architecture of U-Net for the segmentation of the prostate, its zones, anterior fibromuscular stroma, and urethra.

then alternately used nine parts for training and the rest 
for testing. All experiments, were performed on the on the 
Google Cloud computing service “Google Colab” with 
Tesla K80 GPU (16 GB memory) using framework Tensor 
Flow version 2.4.1. For evaluating the proposed model 
performance, dice score (DSC), intersection over union 
(IoU), precision, recall, and Hausdorff Distance (HD) were 
used as follows:

2 100%
2

= ×
+ +

TPDSC
TP FP FN  

[6]

100%= ×
+ +

TPIoU
TP FP FN  [7]

   
TPPrecision

TP FP
=
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Augmentation

Flipud Fliplr Rotation

Figure 5 Images obtained from an original image using the image augmentation techniques.
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Figure 6 U-Net accuracy and loss on the T2-weighted, diffusion-weighted, and apparent diffusion coefficient images separately and fusion 
of images.
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As indicated in Eq. [9], X and Y are the set of all points 
within the manual and automatic segmentation using the 
U-Net model, respectively, and d is the Euclidean distance. 
The HD is a positive real number, and smaller numbers 
represent better matching segmentations.

Data was analyzed using the GraphPad Prism software 
(GraphPad, USA). D’Agostino test was used to assess the 
normality of data. One-way analysis of variance (ANOVA) 
was performed to investigate the signal intensity between 
the used sequences and the fusion of images. P<0.05 was 
considered statistically significant.

Results

T2W, DWI, and ADC images

In total, axial T2W, DWI, and ADC images and fusion of 
images, including T2W + DWI, T2W + ADC, and DWI 
+ ADC of 91 patients, were processed. The signal intensity 

between the used sequences were significantly different (P 
value <0.05). The values of accuracy and loss for the U-Net 
model on three images and their fusion images are given 
in Figure 6. The training and validation step have been 
carried out to the 100 epochs. An early stopping strategy 
was applied to the training process so that if validation 
accuracy reached the value of one, learning was stopped. 
In the testing set, it can be seen that the highest accuracy 
was obtained for the combination T2W + DWI and T2W 
alone using the U-Net model. Tables 2,3 show calculated 
metrics, including DSC, IoU precision, recall, and HD for 
three images T2W, DWI, and ADC for prostate, PZ, TZ, 
urethra, and AFMS for the validation and testing sets. The 
range of the DSC in the testing set was between 88% and 
95% for prostate, 92.5% and 94% for PZ, 96.6% and 98% 
for TZ, 80% and 94% for urethra, and 78% and 88% for 
AFMS across the three images. Using T2W images alone 
on the external test images, higher DSC, IoU, precision, 
and recall was achieved than the individual DWI and 
ADC images. DSC of 95%, 94%,98%, 94%, and 88%, 
IoU of 88%, 88.5%, 96%, 90%, and 79%, precision of 
95.9%, 93.9%, 97.6%, 93.83%, and 87.82%, and recall 
of 94.2%, 94.2%, 98.3%, 94%, 87.93% was achieved for 
the whole prostate, PZ, TZ, urethra, and AFMS (Table 3). 
The min of the HD in the testing set was 0.013 for the 
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Table 2 Performance results on the validation set using the U-Net method for the whole prostate, PZ, TZ, AFMS, and urethra on the T2W, 
DWI, and ADC images

Class Modality Precision (%) Recall (%) DSC (%) IoU (%) HD

PZ T2W 94.8±1.1 95±0.9 95±1.51 91±2.51 0.035±0.047

DWI 94.5±1.3 93.5±1.2 94±0.5 92.5±0.57 0.025±0.01

ADC 96.1±0.2 94.4±0.6 95±0.51 91.3±1.1 0.19±0.29

TZ T2W 99.22±0.01 97.9±0.6 99.12±0.02 97±0.02 0.035±0.041

DWI 97.1±0.3 96.97±0.1 97±0.57 95±1.1 0.01±0.004

ADC 97.8±0.4 97.5±1.2 98±0.2 96±0.9 0.14±0.26

Urethra T2W 94.2±1 95.1±1.5 95.21±1.45 93±1.8 0.016±0.04

DWI 93±1.1 92.9±3.9 93±2.6 90.3±5.2 0.015±0.01

ADC 82.2±6.3 79.4±5.56 81±7 72±9 0.05±0.1

AFMS T2W 90.1±2.9 88.4±1.7 89±2.1 82±2.8 0.016±0.039

DWI 81.1±3 78.1±2.5 79±2.4 72.3±2.5 0.031±0.02

ADC 84.1±0.5 83.8±0.3 84±1.1 74±1 0.032±0.05

Prostate T2W 96.12±0.5 95.5±0.9 96±0.9 92.5±0.7 0.010±0.022

DWI 91.2±1.2 90.6±1.54 91±1.7 86±1.2 0.011±0.021

ADC 90±1.3 90±1.5 90±1.2 84±0.7 0.11±0.15

PZ, peripheral zone; TZ, transitional zone; AFMS, anterior fibromuscular stroma; T2W, T2-weighted image; DWI, diffusion-weighted image; 
ADC, apparent diffusion coefficient; DSC, dice score; IoU, intersection over union; HD, Hausdorff Distance.

Table 3 Performance results on the testing set using the U-Net method for the whole prostate, PZ, TZ, AFMS, and urethra on the T2W, DWI, 
and ADC images

Class Modality Precision (%) Recall (%) DSC (%) IoU (%) HD

PZ T2W 93.9 94.2 94 88.5 0.030

DWI 93.2 91.4 92.5 86.5 0.022

ADC 93.1 93.4 93.5 88 0.17

TZ T2W 97.6 98.3 98 96 0.013

DWI 97.2 95.9 96.6 94.3 0.030

ADC 97.2 96.7 97 95 0.13

Urethra T2W 93.83 94 94 90 0.014

DWI 91.1 90.8 91 84.3 0.015

ADC 80.3 79.7 80 67 0.052

AFMS T2W 87.82 87.93 88 79 0.015

DWI 78.1 77.9 78 63.6 0.031

ADC 82.7 83 83 71 0.052

Prostate T2W 95.9 94.2 95 88 0.017

DWI 92.3 89.5 90 82 0.018

ADC 88.1 87.96 88 80 0.031

PZ, peripheral zone; TZ, transitional zone; AFMS, anterior fibromuscular stroma; T2W, T2-weighted image; DWI, diffusion-weighted image; 
ADC, apparent diffusion coefficient; DSC, dice score; IoU, intersection over union; HD, Hausdorff Distance.
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T2W procedure in the TZ class, and its max was 0.17 for 
the ADC procedure in the PZ class. By comparing three 
images separately, DWI had the lowest DSC, IoU, and 
recall, compared to both T2W and ADC images for three-
zone: DSC of 92.5%, 96.6%, and 78%, IoU of 86.5%, 
94.3%, and 63.6%, recall of 91.4%, 95.9%, and 77.9% was 
achieved for the PZ, TZ, and AFMS. Figure 7 shows the 
axial slice for DSC obtained for the prostate and its zones 
of a randomly selected case in the T2W, DWI, and ADC 
images. The prostate is subdivided into the base, mid gland, 
and apex from superior to inferior. We presented DSC for 
the base, mid gland, and apex of the prostate. As shown in 
Figure 7, the prostate base had failed segmentations than 
the mid gland and apex.

Fusion images

Tables 4,5 show calculated metrics for three combinations 
in the validation and testing sets. Across the three 
combinations T2W + DWI, T2W + ADC, and DWI + 
ADC, the range of the DSC in the testing set was between 
97% and 99.06% for prostate, 98.05% and 99.05% for PZ, 
98% and 99.04% for TZ, 97% and 99.09% for urethra, 
96.1% and 98.08% for AFMS. In this study, the results 
clearly show that the best segmentation was obtained when 
the model is trained using T2W + DWI images. DSC of 
99.06%, 99.05%, 99.04%, 99.09%, and 98.08%, IoU of 
97.09%, 97.02%, 98.12%, 98.13%, and 96%, precision of 
99.24%, 98.22%, 98.91%, 99.23%, and 98.9%, and recall 
of 98.3%, 99.8%, 99.02%, 98.93%, and 97.51% for the 
whole prostate, PZ, TZ, urethra, and AFMS (Table 5). The 
min of the HD in the testing set for three combinations was 
0.29 for the T2W + ADC procedure in the whole prostate 
class, and its max was 1.32 for the DWI + ADC procedure 
in the TZ class. In total, all fused images presented accurate 
segmentation of the prostate gland and its zones, with 
some examples shown in Figure 8. It is notable that the 
newly generated mask is closely similar in shape and size 
to the ground truth mask. As for qualitative analysis, visual 
comparison between three combinations shows that more 
accurate segmentation can be achieved at the mid gland 
level.

Discussion

Accurate segmentation of the prostatic zones from 
surrounding tissues is helpful and sometimes even necessary 
in various clinical settings, such as volume delineation and 

MRI-Ultrasound-guided biopsies approaches. Also, the 
behavior of intraprostatic dose painting plans for prostate 
cancer strongly correlates with its zonal location. In this 
study, automatic segmentation of the prostate and the zonal 
anatomy on T2W, DWI, ADC, and fusion images were 
presented using the U-Net network with ResNet34 as a 
backbone. The images were fused using the wavelet analysis, 
and three combinations, including TW + DWI, T2W + 
ADC, and DWI + ADC, were generated. For the proposed 
architecture, DSC, IoU, precision, recall, and HD were 
used as the overall metrics to evaluate the segmentation 
performance. We hypothesized that the fused images would 
have superior DSC than the single image.

One possible approach to enhance the anatomic 
localization of findings identified on DW images is to 
perform a fusion of these images with T2W images. Indeed, 
higher accuracy has been shown for detecting pelvic and 
abdominal malignancies by using the fusion of T2W and 
DWI in comparison with the images separately (40,54). 
Rosenkrantz et al. (55) assessed the utility of T2W + DWI 
fusion images for prostate cancer detection and localization. 
Their results showed that the fusion of two modalities 
improved sensitivity and accuracy for tumor detection on 
a sextant-basis, with similar specificity. In another study 
by Selnæs et al. (56), any combination of T2W, DWI, and 
DCE-MRI was significantly better than T2W alone in 
separating cancer from noncancer segments. In the present 
study, the results clearly showed that the U-Net, compared 
to manual segmentation, was able to accurately segment the 
entire prostate and its zones using fused images of T2W 
+ DWI. The better performance of the U-Net and its 
accurate segmentation can be attributed to its architecture 
that uses the ResNet34 model as the backbone and 
performs the preprocessing steps. The U-Net performance 
is summarized in Table 6 considering the DSC values of 
some studies. Our results show the superior performance of 
the algorithm than other studies, it will be able to reliably 
segment the structures. However, variability was found 
in the base of the gland, which is affected by changes in 
prostate morphology. But, the difference in agreement 
between base, midgland, and apex was fairly small. Chilali 
et al. (58) propose an automatic segmentation technique 
using the T2W images to segment the prostate, PZ, and 
TZ. The segmentation was acquired by the application of 
a Fuzzy c-means clustering algorithm. The mean values of 
DSC were 0.81, 0.62, and 0.7 for the prostate, PZ, and TZ, 
respectively. Our results showed the higher DSC on the 
T2W images, so that was 95% for prostate, 94% for PZ, 
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Ground truth U-net-T2W U-net-DWI U-net-ADC

Apex

Midgland

Base

3D Visualization

DSC (%):  
Prostate =94 
PZ =95 
TZ =98 
Urethra =93 
AFMS =90

DSC (%):  
Prostate =91 
PZ =93 
TZ =97 
Urethra =93 
AFMS =80

DSC (%):  
Prostate =87 
PZ =94 
TZ =97 
Urethra =72 
AFMS =84

Figure 7 From left to right: ground truth, segmentation results of U-Net on T2W, DWI, and ADC images. Colors: yellow for PZ, brown 
for TZ, pink for AFMS, and blue for urethra. 3D visualization of the segmentation (bottom). The arrows show that the prostate base had 
failed segmentations than the mid gland and apex. T2W, T2-weighted image; DWI, diffusion-weighted image; ADC, apparent diffusion 
coefficient; DSC, dice score; PZ, peripheral zone; TZ, transitional zone; AFMS, anterior fibromuscular stroma.
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Table 4 Performance results on the validation set using the U-Net method for the whole prostate, PZ, TZ, AFMS, and urethra on the fused 
images

Class Combinations Precision (%) Recall (%) DSC (%) IoU (%) HD

PZ T2W + DWI 99.15±0.5 99.0±0.3 99.2±0.7 97.3±0.12 1.25±0.09

T2W + ADC 98.5±0.3 98.4±0.6 98.3±0.4 97±0.42 0.96±0.57

DWI + ADC 97.4±0.25 98±0.4 97.6±0.3 96.9±0.38 1.36±0.08

TZ T2W + DWI 99.4±1.3 98.5±1.9 99.1±1.5 98.4±0.8 1.35±0.09

T2W + ADC 99.16±0.9 97.5±1 98.5±1.1 97.32±0.5 1±0.59

DWI + ADC 98.14±0.8 97.1±0.2 97.6±0.5 97±0.1 1.48±0.07

Urethra T2W + DWI 99.2±0.2 99.4±0.15 99.2±0.1 98.5±0.2 0.3±0.08

T2W + ADC 98±0.25 96.7±0.15 97.3±0.2 96.5±0.52 1.02±1.26

DWI + ADC 97.3±0.45 99.12±0.6 98.6±0.5 97±0.6 0.43±0.07

AFMS T2W + DWI 98.22±0.2 98.6±0.3 98.7±0.1 97±0.4 0.34±0.03

T2W + ADC 98±0.6 97.9±0.5 98±0.42 97.23±0.12 0.26±0.15

DWI + ADC 96.9±0.53 97±0.7 97±0.21 95±0.32 0.4±0.035

Prostate T2W + DWI 99.13±0.2 99.1±0.15 99.1±0.1 97±0.25 0.32±0.08

T2W + ADC 98.5±0.5 98.10±0.2 98.32±0.2 98±0.1 0.24±0.11

DWI + ADC 97.2±0.3 97.4±0.42 97.6±0.23 96±0.31 0.45±0.09

PZ, peripheral zone; TZ, transitional zone; AFMS, anterior fibromuscular stroma; T2W, T2-weighted image; DWI, diffusion-weighted image; 
ADC, apparent diffusion coefficient; DSC, dice score; IoU, intersection over union; HD, Hausdorff Distance.

Table 5 Performance results on the testing set using the U-Net method for the whole prostate, PZ, TZ, AFMS, and urethra on the fused images

Class Combinations Precision (%) Recall (%) DSC (%) IoU (%) HD

PZ T2W + DWI 98.22 99.8 99.05 97.02 1.2

T2W + ADC 97.64 99.09 98.1 96.1 0.98

DWI + ADC 97.6 99.1 98.05 97 1.22

TZ T2W + DWI 98.91 99.02 99.04 98.12 1.1

T2W + ADC 98 97.95 98 96.06 0.99

DWI + ADC 98.5 97.8 98 98 1.32

Urethra T2W + DWI 99.23 98.93 99.09 98.13 0.5

T2W + ADC 98 96.5 97 96 1.1

DWI + ADC 99.10 97.7 98.04 97.05 0.45

AFMS T2W + DWI 98.9 97.51 98.08 96 0.30

T2W + ADC 98.4 96.2 97 96 0.36

DWI + ADC 97 95 96.1 93 0.45

Prostate T2W + DWI 99.24 98.3 99.06 97.09 0.30

T2W + ADC 99.12 97.1 98.1 97 0.29

DWI + ADC 98 96.2 97 95 0.55

PZ, peripheral zone; TZ, transitional zone; AFMS, anterior fibromuscular stroma; T2W, T2-weighted image; DWI, diffusion-weighted image; 
ADC, apparent diffusion coefficient; DSC, dice score; IoU, intersection over union; HD, Hausdorff Distance.
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Ground truth U-net-T2W + DWI U-net-T2W + ADC U-net-DWI + ADC

Apex

Midgland

Base

3D Visualization

DSC (%):  
Prostate =98 
PZ =98 
TZ =99
Urethra =98 
AFMS =97

DSC (%):  
Prostate =98 
PZ =98 
TZ =97 
Urethra =99 
AFMS =95

DSC (%):  
Prostate =97 
PZ =99 
TZ =98 
Urethra =97 
AFMS =94

Figure 8 From left to right: ground truth, segmentation results of U-Net on T2W + DWI, T2W + ADC, and DWI + ADC images. Colors: 
yellow for PZ, brown for TZ, pink for AFMS, and blue for urethra. 3D visualization of the segmentation (bottom). T2W, T2-weighted 
image; DWI, diffusion-weighted image; ADC, apparent diffusion coefficient; DSC, dice score; PZ, peripheral zone; TZ, transitional zone; 
AFMS, anterior fibromuscular stroma.
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Table 6 Comparison of DSC values of the proposed method with other ones developed using MRI

Study Type of image Network Segmented area DSC (%)

Zavala-Romero (41) T2W A 3D multistream architecture Prostate 0.893±0.036

PZ 0.811±0.079

Zhu (53) T2W U-Net Prostate 92.7±4.2

PZ 79.3±10.4

Khan (31) T2W DeepLabV3+ Prostate 92.8

Makni (57) T2W C-means PZ 80

CZ 89

Clark (45) DWI Fully Convolutional Neural network Prostate 93

TZ 88

Chilali (58) T2W C-means Prostate 81

PZ 70

TZ 62

Ghavami (59) T2W UNet Prostate 0.84±0.07

VNet Prostate 0.88±0.03

HighRes3dNet Prostate 0.89±0.03

HolisticNet Prostate 0.88±0.12

Dense VNet Prostate 0.88±0.03

Adapted UNet Prostate 0.87±0.03

Zabihollahy (25) T2W U-Net Prostate 95.33±7.77

PZ 86.78±3.72

CZ 93.75±8.91

ADC U-Net Prostate 92.09±8.89

PZ 86.1±9.56

CZ 89.89±10.69

Aldoj (60) T2W Dense-2 U-net Prostate 92.1±0.8

PZ 78.1±2.5

CZ 89.5±2

U-Net Prostate 90.7±2

PZ 75±3

CZ 89.1±2.2

Tao (61) T2W 3D U-Net Prostate 91.6

Bardis (62) mpMRI 3D U-Net Prostate 94

PZ 77.4

TZ 91

Our work T2W + DWI U-Net with ResNet-34 as a Backbone Prostate 99.1±0.1

PZ 99.2±0.7

TZ 99.1±1.5

AFMS 98.7±0.1

Urethra 99.2±0.1

DSC, dice score; T2W, T2-weighted image; DWI, diffusion-weighted image; mpMRI, multiparametric MRI; ADC, apparent diffusion 
coefficient; PZ, peripheral zone; CZ, central zone; TZ, transitional zone; AFMS, anterior fibromuscular stroma.
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and 98% for TZ. The TZ showed higher DSC compared 
to PZ, which was expected due to the low PZ segmentation 
performance. Singh et al. (63) propose a semi-automated 
model that segments the prostate gland and its zones using 
DW-MRI. Segmentation of PZ and TZ was performed 
based on an in-house probabilistic atlas with a partial 
volume correction algorithm. The proposed segmentation 
had obtained DSC of 90.76%±3.68% for the prostate 
gland, DSC of 77.73%±2.76% for the PZ, and DSC of 
86.05%±1.50% for the TZ. Similarly, we obtained a DSC 
of 90% for the prostate on the DW images. However, 
T2W, DWI, ADC, and fusion images were used in the 
present study. We obtained better results than the study of 
Singh et al. (63) (DSC = 99.06% by T2W + DWI images). 
Zabihollahy et al. (25) performed a methodology to segment 
prostate, central gland (CG), and PZ from T2W and ADC 
images. They designed two similar models, each made 
up of two U-Nets, to segment the prostate, CG, and PZ 
from T2W and ADC images, separately. They trained and 
tested their model on 225 patients, and achieved a DSC of 
95.33%±7.77%, 93.75%±8.91%, and 86.78%±3.72% for 
prostate, CG, and PZ, respectively. Compared to our study, 
they achieved higher DSC on the T2W and ADC images. 
However, in the current study, different performance 
metrics were presented, and better results were achieved 
for the DSC that the fusion model obtained a max value of 
99.06%. It was noticed that prostate, urethra, and AFMS 
have a higher bias between images than PZ and TZ. 
Cem Birbiri et al. (64) evaluated the performance of the 
conditional GAN (cGAN), CycleGAN, and U-Net models 
for the detection and segmentation of prostate tissue 
in mp-MRIs. For each MR modality (T2W, DWI, and 
ADC), original images were combined with the augmented 
images using three approaches, including Super-Pixel (SP), 
Gaussian Noise Addition (GNA), and Moving Mean (MM). 
To obtain a better validation of the experiments, 4-fold 
cross-validation was performed, and each trained model 
was evaluated only on the original test images. The best 
results for the T2W and ADC images were achieved when 
the model was trained on the combination of original and 
GNA images with DSC values of 78.9%±12% for T2W 
images and DSC values of 80.2%±3% for ADC images. 
The main advantage of our study is that we investigated 
the segmentation of prostate and prostate zones and DSC 
values obtained in the multimodality images. However, 
there is some similarity between their work and ours, our 
developed methodology segments the prostate and its zones 
on the fused images with a higher DSC. This feature has 

not been reported previously. Overall, the results indicate 
that the U-Net-based segmentation method can produce 
intra-patient reproducible and reliable masks for T2W and 
T2W + DWI images of the prostate. Good reproducibility 
gives the potential for picking up changes in the prostate, 
an essential step towards the clinical implementation of 
prostate computer-aided design and drafting (CADD) 
systems, based on multimodality and fusion images.

 In this study, according to prevailing guidelines, a public 
dataset for patients with prostate cancer was used. Hence, 
the results illustrate the reproducibility of the U-Net-based 
segmentation method in the actual clinical setting. Deep-
learning models always require a large amount of annotated 
data. This biases vision researchers to work on tasks where 
the annotation is easy instead of important tasks. Also, many 
modern segmentation models require a significant amount 
of memory even during the inference stage. Similarly, in 
this study, we were faced with limited memory for training 
3D-U Net. Although the sample size was relatively large 
in this study, all images were from a retrospective cohort, 
and this makes the potential selection biased. Thus, 
training a multi-center study in the future can give an 
additional understanding of the reproducibility of DL-
based segmentation across institutions. Therefore, future 
studies with a large sample size are suggested. In the manual 
delineation of the prostate on CT, large inter-and intra-
observer variation in delineating has been reported because 
of differences in the level of expertise of the physicians. 
Observer variability reflects the uncertainty to determine 
boundaries and is most pronounced around tumor 
boundaries. Computer-aided segmentation procedures 
have been designed to improve prostate contouring 
accuracy. However, the accuracy of these procedures is 
limited by the inherent low soft-tissue contrast of CT 
images, which usually yields an overestimation of prostate 
volume. However, the superior soft-tissue contrast in MRI 
offers a more accurate delineation of the prostate with 
some geometric uncertainty. It is helpful to have MRI 
alongside the CT for improved segmentation, especially 
for radiotherapy planning. Herein, for future works, we 
propose to use synthetic image generation methods such 
as a Cycle Generative Adversarial Network (CycleGAN) 
to produce MRI from the provided CT scans in prostate 
cancer patients. We should also point out the lack of a 
multi-reader, which would have been interesting as it 
was discussed by Becker et al. (27) to evaluate inter-rater 
reliability (39,65-68) for four-zone prostate segmentation 
and assess the radiologist’s level of expertise. Also, we 
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propose expanding the scope of the study even further by: 
(I) not providing bounding boxes. Using the entire MRI for 
fully automatic algorithms, (II) to address the challenge of 
different numbers of slices in within-modality images.

Conclusions

We presented a fully automated U-Net-based technique to 
segment prostate, PZ, TZ, urethra, and AFMS using T2W, 
DWI, ADC, and fusion images, including T2W + DWI, 
T2W + ADC, and DWI + ADC as input. Better performance 
was achieved using T2W + DWI images than T2W, DWI, 
and ADC separately or T2W + ADC and DWI + ADC in 
combination. We only used the U-Net model this time; 
comparing it with other networks, such as U-Net, Mask 
R-CNN, CycleGAN, etc. is needed. As well, for better 
generalization, deep adversarial domain adaptation using 
transfer learning with GANs is also suggested.
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