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on reperfusion injury in myocardial infarction:  
a meta‑analysis of randomized controlled trials
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Abstract 

Reperfusion therapy is the most crucial strategy for rescuing ischemic myocardium and reducing infarction size. 
Cyclosporine A (CsA) can protect against reperfusion-induced myocardial necrosis. However, the clinical effects of CsA 
on myocardial infarction (MI) remain uncertain. This study investigated the effects of CsA on reperfusion injury (RI) 
in MI. We searched for and included articles regarding randomized controlled trials investigating the effect of CsA in 
patients with MI from PubMed, EMBASE, and Cochrane Library databases for an analysis. We then performed quality 
assessment, subgroup, sensitivity, and publication bias analyses. Of the 277 potentially relevant articles retrieved from 
the databases, only five were eligible for our meta-analysis. Compared with the placebos used in these studies, CsA 
did not reduce all-cause mortality [rate ratio (RR) 1.10, 95 % confidence interval (CI) 0.75–1.61; P = 0.533; I2 = 0 %) or 
adverse clinical events (RR 1.0, 95 % CI 0.89–1.13; P = 0.381; I2 = 6.5 %). In the CsA treatment groups, improvement in 
left ventricular ejection fraction (weighted mean difference = 1.91; 95 % CI 0.89, 2.92; P = 0.064) and reduction in MI 
size (standard mean difference = −0.41, 95 % CI −0.84 to 0.02; P = 0.519; I2 = 0.0 %) were minimal. The current meta-
analysis indicates that CsA treatment does not reduce all-cause mortality and adverse clinical events in MI and that 
CsA may not have significant clinical effects on RI in MI.
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Background
Myocardial infarction (MI) is a common disabling dis-
ease worldwide; in 2009, approximately 683,000 patients 
were discharged from US hospitals with a diagnosis of 
acute coronary syndrome. Over the past decade, com-
munity incidence rates of ST-elevation MI (STEMI) have 
decreased whereas those of non-STEMI have increased 
(O’Gara et  al. 2013). In addition, in-hospital (approxi-
mately 5–6 %) and 1-year (approximately 7–18 %) mor-
tality rates of STEMI have decreased significantly in 
association with a substantial increase in the frequency 
of care including guideline-directed medical therapy 
and interventions (defect-free care) (O’Gara et al. 2013). 
The rates of death, heart failure, and recurrent ischemic 

events occurring in the first year after MI remained 
excessively high in this high-risk population. Reperfusion 
therapy is the most crucial strategy for rescuing ischemic 
myocardium and reducing infarction size (Hausenloy and 
Yellon 2013). Although numerous advances have been 
made in developing methods for reopening implicated 
coronary arteries and preventing reocclusion, there is 
no specific treatment targeting myocardial reperfusion 
injury (RI), a paradoxical form of myocardial damage 
occurring because of the restoration of vessel patency 
(Heusch 2015).

Mitochondrial dysfunction is a major factor lead-
ing to the loss of cardiomyocyte function and viability 
(Gao et  al. 2015). The mitochondrial permeability tran-
sition pore (mPTP) is a key feature of cardiac cell death 
in ischemia–RI (I/R). Two molecular pathways, RISK 
[PI3K–pAkt–pERK–GSK3β cascade] and SAFE [JNK–
STAT3 cascade], inhibit mPTP opening, and strategies 
for activating these pathways can facilitate reducing RI 
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(Santos-Gallego et  al. 2016). The mPTP blocker cyclo-
sporine A (CsA) can protect against reperfusion-induced 
myocardial necrosis and acute coronary artery permea-
bilization-related complications (Monassier et  al. 2015). 
An animal study-based meta-analysis indicated that 
CsA may reduce MI size (Lim et al. 2012). However, the 
clinical effects of CsA on MI remain largely unknown. 
A small-scale pilot study reported that compared with 
a placebo, CsA administration at the time of reperfu-
sion is strongly associated with a smaller MI, according 
to some measures (Piot et  al. 2008). However, another 
small-scale study reported that CsA treatment does not 
have beneficial effects on either MI size or other clinical 
outcomes (Ghaffari et  al. 2013). The most clinically rel-
evant indicators of CsA treatment efficacy are reduced 
mortality and morbidity rates; however, these indicators 
generally require large samples and long follow-up peri-
ods. All randomized controlled trials (RCTs) for CsA 
have used smaller samples and shorter follow-up peri-
ods; thus they have not reported substantial differences 
in clinical events. Therefore, to clarify the efficacy of CsA 
therapy for MI, we performed a meta-analysis of relevant 
placebo-controlled RCTs for CsA treatment of RI in MI.

Methods
This meta-analysis was performed according to the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (Moher et al. 2009).

Literature search strategy
Two reviewers systematically searched for relevant stud-
ies in PubMed, EMBASE, and Cochrane Library data-
bases from any date until February 2016. The search was 
restricted to articles published in English. The search 
terms are listed in “Appendix”. We also performed back-
ward snowballing to obtain potentially relevant articles 
from the reference lists of retrieved RCTs and review 
articles.

Study selection
Titles and abstracts of all retrieved articles were inde-
pendently analyzed by two reviewers who excluded any 
obviously irrelevant studies. The eligibility of the remain-
ing articles was further assessed using full-text evalua-
tion by the same reviewers. Disagreements between the 
reviewers were resolved through discussion. Studies were 
included if they fulfilled the following criteria: (1) they 
were RCTs, (2) they involved patients with MI, and (3) 
they involved CsA treatment.

Data extraction and assessment of risk of bias
Two reviewers independently extracted relevant data 
from the included articles; a third reviewer repeatedly 

supervised the review process and resolved disagree-
ments through discussion. The following character-
istics of included studies were extracted: title, first 
author, publication year, journal, country, correspond-
ing address, study design, and inclusion and exclusion 
criteria. If several articles reported the same study, the 
one with the most complete data was included in our 
meta-analysis.

Risk of bias for the included RCTs was independently 
evaluated by two reviewers by using the Cochrane risk 
of bias tool (Higgins et  al. 2011). Disagreements were 
resolved through discussion. The quality evaluation was 
judged on random sequence generation, allocation con-
cealment, blinding of participants and personnel, blind-
ing of outcome assessment, incomplete outcome data, 
selective reporting, and other sources of bias.

Statistical analysis
All statistical analyses were completed using Stata 12.0 
(StataCorp. 2011. Stata Statistical Software: Release 12; 
StataCorp LP, College Station, TX, USA) and RevMan 
software (version 5.3; Cochrane Collaboration, Oxford, 
UK). Heterogeneity was evaluated using the Chi squared 
test (P ≤ 0.10 indicated significant heterogeneity) and I2 
test (I2  >  50  % indicated significant heterogeneity). For 
categorical variables, we calculated the rate ratio (RR) as 
well as the corresponding 95 % confidence intervals (CIs) 
for the outcome variables of interest. For continuous 
data, mean differences (MDs) with corresponding 95  % 
CIs were calculated. If there was no significant hetero-
geneity among the included studies, an inverse variance 
fixed-effect model was used; otherwise, a random-effects 
model was used. Sensitivity analysis was performed to 
identify the stability of statistical results through indi-
vidually excluding each study from the analysis. In addi-
tion, publication bias was evaluated using funnel plots 
and Egger’s test. Statistical significance was defined as 
P < 0.05.

Results
Eligible studies
In total, our database search yielded 277 potentially 
relevant articles, of which 215 remained after dupli-
cates were removed. After the titles and abstracts of the 
remaining articles were examined, 127 were excluded 
and the remaining 88 were screened further. After a 
full-text evaluation, 11 articles remained, six of which 
were excluded for the following reasons: four were 
duplicated publications, one was a review, and one did 
not involve humans. Finally, five studies were deemed 
eligible for our meta-analysis. The process of the litera-
ture search and reasons for exclusion are presented in 
Fig. 1.
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Characteristics of selected studies
The five included articles were double-blinded RCTs, in 
which CsA was administered as an intravenous bolus 
dose (2.5  mg/kg). The average patient age varied from 
58 to 67 years. The major characteristics of the selected 
studies are listed in Table 1.

Data quality
The quality scores of the trials varied from 3 to 5. All 
included RCTs were randomized, prospective, placebo-
controlled, and double-blinded (Figs. 2, 3).

Efficacy outcomes
Three RCTs (Cung et al. 2015; Ghaffari et al. 2013; Ottani 
et al. 2016) reported the effects of CsA on all-cause mor-
tality compared with those of a placebo. In addition to 

the in-hospital period, follow-up was performed at 6 and 
12  months. The combined data from all RCTs did not 
show a significant association between CsA treatment 
and reduced all-cause mortality compared with the pla-
cebo (RR 1.10, 95  % CI 0.75–1.61; P =  0.533; I2 =  0  %; 
Fig. 4).

Four RCTs (Cung et  al. 2015; Ghaffari et  al. 2013; 
Ottani et  al. 2016; Piot et  al. 2008) have reported the 
effects of CsA on adverse clinical events including ven-
tricular fibrillation, heart failure, recurrent, ischemia, and 
bleeding (Table 2). Overall, CsA did not reduce the fre-
quency of adverse clinical events (RR 1.0, 95 % CI 0.89–
1.13; P = 0.381; I2 = 6.5 %; Fig. 5).

Left ventricular ejection fraction (LVEF) was meas-
ured at various stages after MI in four studies (Ghaffari 
et  al. 2013; Mewton et  al. 2010; Ottani et  al. 2016; Piot 
et al. 2008): (1) at 5 days and 6 months following MI, (2) 
at the first day of admission and after hospital discharge, 
(3) during hospital discharge, and (4) at 4 days after MI. 
The improvement in the LVEF of the CsA treatment 
group was minimal compared with that of the placebo 
group [weighted MD (WMD) = 1.91, 95 % CI 0.89–2.92], 
with significant heterogeneity (P =  0.064; I2 =  52.1  %). 
Subgroup analyses were performed for the short-term 
(<3months) and long-term (>3  months) efficacy of CsA 
treatment on LVEF. Although no significant improvement 
was observed in the LVEF of the CsA treatment group 
compared with that of the placebo group in the short 
term (WMD =  0.15, 95 % CI −1.46 to 1.75; P =  0.464; 
I2 = 0.0 %), an increase was noted in the LVEF of the CsA 
treatment group in the long term (WMD = 3.06, 95 % CI 
1.76–4.36; P = 0.608; I2 = 0.0 %; Fig. 6).

MI size was measured through magnetic resonance 
imaging in one study, twice at 5  days (Piot et  al. 2008) 
and 6  months (Mewton et  al. 2010) after MI. A signifi-
cant reduction in MI size was defined as signal intensity 
more than 2 standard deviations above that in the refer-
ence region of remote noninfarcted myocardium within 
the same slice. The CsA treatment group appeared to 
exhibit a smaller reduction in MI size than the placebo 
group did; however, the difference was nonsignificant 
(standard MD = −0.41, 95 % CI −0.84 to 0.02; P = 0.519; 
I2 = 0.0 %; Fig. 7).

Publication bias
Funnel plots for all-cause mortality rates in the included 
RCTs for CsA versus a placebo were visually asymmet-
ric (Fig. 8); however, the statistical analysis of these plots 
suggested an absence of publication bias (P  =  0.489, 
Egger’s test). Significant publication biases influenced 
the effects of CsA on adverse clinical events and LVEF 
(P = 0.022 and 0.004, respectively, Egger’s test).

Fig. 1  PRISMA flowchart of the study selection process
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Sensitivity analysis
The results of our sensitivity analysis, in which each study 
was individually excluded from the analysis to evaluate 
the stability of our estimates, showed no effect on our 
conclusions.

Discussion
In our meta-analysis of RCTs involving 1359 patients, 
CsA did not reduce all-cause mortality or adverse clinical 
events compared with the placebos used in the investi-
gated studies. However, minimal LVEF improvement and 
MI size reduction were observed after CsA treatment. In 
contrast to the positive effects noted in animal models, 
our results show that CsA administration might not pro-
tect the heart from RI in clinical MI patients.

Acute MI (AMI) with early restoration of myocardial 
perfusion can limit the MI size and improve clinical out-
comes. However, reperfusion can result in myocardial 
damage and limit the benefits of early reperfusion ther-
apies, such as thrombolysis or percutaneous coronary 
intervention (PCI) after AMI. This phenomenon, termed 
myocardial RI, may be mediated by a combination of oxi-
dative stress, intracellular Ca2+ overload, physiological 
pH restoration, and neutrophil aggregation (Hausenloy 
and Yellon 2013).

RI encompasses several distinct pathophysiologi-
cal components including reversible impaired myocar-
dial contractility (stunning), arrhythmias, no-reflow, 
and death of cardiomyocytes (lethal RI). Experimental 
data implicate several factors contributing to lethal RI, 
independent of no-reflow; such factors include mPTP 

Table 1  Characteristics of the study population

Study Design Participants Cyclosporine 
method

Cyclosporine 
dosage (mg/kg)

Follow-up Age, year Number 
of subjects

Ottani2016 Prospective, multicenter, 
randomized, controlled, 
double-blind

ST-segment eleva-
tion MI

Intravenous 
bolus

2.5 4 days
6 months

62.5 ± 12.4 207

Cung2015 Prospective,multicenter, 
randomized, controlled, 
double-blind

Patients with acute
Anterior STEMI
Accepting PCI

Intravenous 
bolus

2.5 12 months 60.4 ± 13.1 474

Ghaffari2013 Randomized,placebo-con-
trolled, double-blinded

Patients with acute
Anterior STEMI
Receiving TLT

Intravenous 
bolus

2.5 1 day
6 months

64.0 ± 11.2 50

Mewton 2010 Prospective, multicenter, 
randomized, controlled, 
single-blind

Patients with AMI
Accepting PCI

Intravenous 
bolus

2.5 5 days
6 months

60 ± 10 15

Piot2008 Prospective, multicenter, 
randomized, controlled, 
single-blind

Patients with AMI
Accepting PCI

Intravenous 
bolus

2.5 2 days
3 months

58 ± 2 30

Fig. 2  Risk of bias summary
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opening, rapid pH normalization, intracellular calcium 
overload, and reactive oxygen species generation (Lon-
borg 2015). A recent  meta-analysis (Song et  al. 2015) 
evaluated the effects of CsA for RI on clinical outcomes, 
including MI size, LVEF, and creatine kinase-MB iso-
enzyme levels. The results suggested no significant dif-
ference between cardiac function and injury with and 
without CsA treatment; however, the mortality and 

adverse clinical event data were not reported. In addition, 
Song et  al. (2015) studied the effects of CsA on injury 
derived both from AMI (primary PCI or thrombolysis) 
and cardiac surgery (CABG and valve surgery); by con-
trast, our meta-analysis was specifically focused on AMI. 
Two relatively larger RCTs regarding the effects of CsA 
on AMI have been published recently (Cung et al. 2015; 
Ottani et al. 2016); thus, we conducted this meta-analysis.

Fig. 3  Risk of bias graph

Fig. 4  Forest plot depicting the effects of cyclosporine A versus placebo on all-cause mortality rates. RR rate ratio, CI confidence interval
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Table 2  Death and adverse clinical event in studies

Study-time Death or adverse clinical event Event CsA group event\total Control group event\total

Piot 2008-2 days Heart failure 2\30 7\28

Piot 2008-3 months Heart failure 1\30 3\28

Ghaffari 2012-6 months Death 9\50 10\51

Ghaffari 2012-7 days Death 4\50 6\51

Ghaffari 2013-2 days Major arrhythmia 9\50 12\51

Ghaffari 2013-2 days Heart failure 18\50 19\51

Cung 2015-12 months Death 28\475 26\485

Cung 2015-12 months Heart failure 90\395 90\396

Cung 2015-12 months Left ventricular remodeling 169\395 161\396

Cung 2015-12 months Cardiogenic shock 26\395 14\396

Cung 2015-12 months Recurrent myocardial infarction 9\395 15\396

Cung 2015-12 months Stroke 7\395 12\396

Cung 2015-12 months Major bleeding 7\395 9\396

Ottani 2016-6 months Death 12\207 6\203

Ottani 2016-6 months Heart failure 21\207 23\203

Ottani 2016-6 months Cardiogenic shock 6\207 3\203

Ottani 2016-6 months Re-hospitalization 28\207 30\203

Fig. 5  Forest plot depicting the effects of cyclosporine A versus placebo on adverse clinical events. RR rate ratio, CI confidence interval
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Fig. 6  Forest plot depicting the effect of cyclosporine A versus placebo on left ventricular ejection fraction. WMD weighted mean difference, CI 
confidence interval

Fig. 7  Forest plot depicting the effects of cyclosporine A versus placebo on myocardial infarction size. SMD standard mean difference, CI confi-
dence interval
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CsA is believed to mediate its effect by inhibiting 
mPTP opening, a major determinant of cell death after 
ischemic reperfusion. The mPTP is a nonselective pore, 
the opening of which results in equilibrium between the 
mitochondria matrix and cytosol, leading to mitochon-
drial swelling, ATP depletion, and necrotic cell death.

Most studies have investigated specific upstream tar-
gets of CsA. However, a pilot study by (Piot et  al. 2008) 
was the first to identify a downstream target of CsA; this 
can explain the overall neutral results reported in previ-
ous studies. Nevertheless, in a large multicenter CIRCUS 
trial (Cung et al. 2015), intravenous cyclosporine adminis-
tered to patients with anterior STEMI who were referred 
for primary PCI attained outcomes similar to those of a 
placebo, and it did not prevent adverse left ventricular 
remodeling at 1 year. The CYCLE trial (Ottani et al. 2016) 
also showed that a single intravenous CsA bolus immedi-
ately before primary percutaneous coronary intervention 
does not affect ST-segment resolution or hs-cTnT, nor 
does it improve the clinical outcomes or prevent left ven-
tricular remodeling up to 6 months. In our meta-analysis, 
three studies reported that CsA treatment did not reduce 
all-cause mortality compared with placebos. In addition, 
CsA did not prevent adverse clinical events, including 
ventricular fibrillation, heart failure, recurrent, ischemia, 
and bleeding. Thus, the results confirmed that CsA does 
not improve clinical outcomes in reperfused AMI.

MI size is a key indicator for postischemic heart injury 
and cell death (Burns et  al. 2002). Our meta-analysis 
demonstrates that the MI size of CsA treatment groups 
does not differ significantly from that of placebo groups, 
similar to the results reported by a previous meta-anal-
ysis (Song et  al. 2015). Furthermore, compared with 

the placebo groups, the CsA treatment groups showed 
no significant improvement in LVEF during the short-
term follow-up, whereas LVEF increased in the placebo 
groups during long-term follow-up. CsA cardioprotec-
tion against RI is effective only when cardiomyocyte 
apoptosis is highly prevalent (typically during the initial 
3–4 h), after which cardiomyocyte necrosis becomes the 
predominant cardiomyocyte death mechanism; necrosis 
cannot be prevented by CsA because it is effective only 
against apoptosis. Moreover, CsA is effective against 
I/R only when applied during the initial 2–3  h after MI 
(Lonborg et al. 2012; Santos-Gallego and Badimon 2016). 
However, the time of CsA administration was inconsist-
ent among the five RCTs in this meta-analysis, extend-
ing up to 12 h after chest pain in the study by Cung et al.; 
therefore, we cannot conclude whether CsA adminis-
tered in the first 3 h after MI is clinically beneficial.

Study limitations
Our study has some limitations. First, only five RCTs 
were included in our meta-analysis. Second, these RCTs 
had enrolled heterogeneous populations, had different 
study protocols and endpoint definitions, and had vary-
ing follow-up times; these factors might have subjected 
the results to bias. Finally, significant publication bias for 
the effect of CsA on adverse clinical events and LVEF was 
noted; the source of this bias may have been that the indi-
ces were drawn from the same study.

Conclusions
This meta-analysis confirms that CsA may not protect the 
heart from RI in clinical MI patients. Further research is 
required to gain additional insight into the nature of RI as 
a potential therapeutic target.
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Appendix
Search strategy for EMBASE
“reperfusion”/exp OR reperfusion AND (“cyclosporine”/
exp OR cyclosporine) AND  myocardial AND (“infarc-
tion”/exp OR infarction).

Search strategy for PubMed
((“reperfusion” [MeSH Terms] OR “reperfusion” [All 
Fields]) AND (“cyclosporins” [MeSH Terms] OR “cyclo-
sporins” [All Fields] OR “cyclosporine” [All Fields] OR 
“cyclosporine” [MeSH Terms])) AND (“myocardial 
infarction” [MeSH Terms] OR (“myocardial” [All Fields] 
AND “infarction” [All Fields]) OR “myocardial infarction” 
[All Fields]).
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