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Abstract: The extracellular matrix can trigger cellular responses through its composition and structure.
Major extracellular matrix components are the proteoglycans, which are composed of a core protein
associated with glycosaminoglycans, among which the small leucine-rich proteoglycans (SLRPs) are
the largest family. This review highlights how the codon usage pattern can be used to modulate
cellular response and discusses the biological impact of post-translational events on SLRPs, including
the substitution of glycosaminoglycan moieties, glycosylation, and degradation. These modifications
are listed, and their impacts on the biological activities and structural properties of SLRPs are
described. We narrowed the topic to skeletal tissues undergoing dynamic remodeling.

Keywords: small leucine-rich proteoglycans; codon usage; post-translational event; glycosaminoglycan;
glycosylation; catabolism

1. Introduction

The extracellular matrix (ECM) is a three-dimensional network of extracellular macromolecules
that provides structural and biochemical support to surrounding cells. More than a physical support
tissue, the ECM is a dynamic structure that not only depends on but also regulates cell behavior and
functions. Any change in its composition may reflect a disease state or may initiate a disease [1–3].
Glycoproteins, collagens, and proteoglycans are the main components of the ECM, and they constitute
the “core matrisome” encompassing almost 300 proteins in mammals. This matrisome contains 35
proteoglycans including small leucine-rich proteoglycans (SLRPs). The majority of SLRPs control
ECM assembly by regulating collagen fibrillogenesis [4–6]. In addition, SLRPs are able to control and
interact with various cytokines in the extracellular space and bind to cellular receptors [7–10].

In this review, the SLRP family’s codon usage was investigated. The codon usage is commonly
associated to pathological or stress conditions. In many coding sequences, the usage patterns of rare
versus common synonymous codons are nonrandom and under selection pressure. Synonymous
rare codons can enhance co-translational protein folding, increasing the likelihood of forming the
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native protein structure and suppressing alternatively folded structures [11–14]. They increase the
time available for post-translational chemical reactions to occur on specific residues upstream in
the oriented sequence (N-terminal toward C-terminal), even before the protein translation is fully
completed, adding an extra layer to the dynamic translational control [15]. Here, the coding DNA
sequence (CDS) of 17 SLRP proteins, for which the human CDS is known, were data-mined for their
codon usage for seven amino acid residues deemed relevant to characterize the SLRP family.

Post-translational modifications are defined as the set of modifications that happen on the core
protein such as the addition of a chemical group or the cleavage of a sequence of amino acid residues.
The regulation of post-translational modifications was shown to play a role in the modulation of cell
biological functions [16]. There are more than 200 different types of post-translational modifications, the
most common within SLRPs being glycanation, glycosylation, and enzymatic or oxidative degradation.
Changes in SLRPs are associated with certain pathologies, and the pattern of these modifications could
be used as a biomarker to diagnose diseases and predict their progression [6,9].

This review describes the impact of the SLRP codon usage pattern and their post-translational
modifications on the homeostasis of skeletal tissues. These two regulatory pathways are key cellular
mechanisms for adaptation to stress and pathological conditions. Herein, the human skeletal system is
defined as all the bony, ligamentous, fibrous and cartilaginous elements that together make up the
skeleton and its attachment.

2. The SLRP Family: Classification and Structure

Proteoglycans are complex macromolecules composed of a core protein covalently decorated by
glycosaminoglycan (GAG) chains on serines or threonines. The small core protein has a molecular
weight between 36 kDa and 77 kDa and is characterized by a variable number of central leucine-rich
repeat (LRR) domains, each made of one α-helix and one β-strand. SLRPs are solenoid-like proteins
with a horseshoe shape. Their concave face is formed of β-sheets, while the convex surface is formed
of α-helices, where each LRR provides one β-sheet and one α-helix that correspond to one turn of the
solenoid-like structure, the hydrophobic residues of the LRR facing inside. This structure is favorable to
protein–protein interaction where the inner concave face is ideal to capture a ligand [17–19] (Figure 1A).
The consensus sequence of LRR is LXXLXLXXNXL, where L is a leucine, an isoleucine, a valine, or
another hydrophobic amino acid; N is an asparagine; and X is any amino acid. LRRs are composed of
variable amino acid sequences across the SLRP family, ranging in size from 20 to 29 residues, with 24
residues being the most representative [18,19]. The N and C-terminal regions of the protein flanking
the central LRR domain are rich in cysteine residues. The N-terminal domain contains four cysteines
spaced by a varying number of amino acids. This N-terminal domain shows variability within the
SLRP family. The cysteines present in this cluster form a disulfide bond between the first LRR and a
β-hairpin. The C-terminal domain generally contains two cysteines [20]. The C-terminal end includes
the two C-terminal LRRs with the penultimate one called the ear-repeat. The ear-repeat is the longest
LRR that is laterally extended from the main axis of the core protein to form the ear [18,19] (Figure 1B).
Ear-repeats are thought to be involved in ligand recognition and in the structural folding of the protein.
As an example, a truncated decorin lacking C-terminal end residues is associated with congenital
stromal corneal dystrophy. This mutated decorin is insoluble and retained in the cell, leading to an
endoplasmic reticulum stress and an unfolded protein response [21].
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Figure 1. (A). Osteomodulin in 3D view (PDB id: 5YQ5) with PyMol showing the horseshoe shape
with 13 β-sheets on the concave side and 13 α-helices on the convex side. (B). Osteomodulin in 3D
view (PDB id: 5YQ5) with PyMol showing cystein residues (in blue) of the protein near the N-terminal
(C66, C68–C78 on the left) and C-terminal end (C321–C353 on the right downstream of the ear-repeat).
The secondary structure’s graphical representations showing the small leucine-rich proteoglycans
(SLRPs) salient features were carried out with the PyMol software (PyMOLTM 2.3.1—Incentive Product
Copyright Schrodinger, LLC) and using home-made Python scripts to display relevant amino acids in
chosen colors.

The SLRP family is composed of 18 members that have been classified into five distinct classes
according to their structural and functional properties and their chromosomal organization. The five
classes are divided into canonical and non-canonical classes. The presence of the ear-repeat is a feature
of all the canonical SLRPs. The classes I–III (13 members) include the canonical SLRPs and the classes
IV–V (5 members) include the non-canonical SLRPs [9,19] (Table 1).

Glycosaminoglycans (GAGs) are long linear polysaccharides made of repeated dissacharide units
consisting of an amino sugar (N-acetylgalactosamine or N-acetylglucosamine) and an uronic acid
(glucuronic acid or iduronic acid), on the basis of which they can be classified. They are synthetized
through a complex enzymatic pathway starting from the addition of four monosaccharides (xylose,
galactose, galactose, and glucuronic acid) on the hydroxyl group of a serine, except for the keratan
sulfate (see below). This tetrasaccharide is the linker to which the different additional units are attached
to form the diverse GAGs; additional diversity is generated through epimerization, sulfation, and
deacetylation [22]. Keratan sulfate addition results either from an N or an O-glycosylation via three
different possible linkers, from which the chain elongation occurs. Interestingly, keratan sulfate might
be associated with a tyrosine sulfation pattern, as the two coincide in the same SLRPs each time. GAG
biosynthesis and modifications mainly take place in the Golgi apparatus [22,23]. GAGs are subject
to degradation within lysosomes where different enzymes such as exohydrolase and endoenzymes
catabolize them to oligosaccharides with further desulfation steps [24,25].

Many GAG side chains may be attached to SLRP core proteins, mainly to the N-terminal part.
These GAG modifications are often similar for an SLRP class and therefore can be used for their
characterization (Table 1). GAG chains are involved in the structure, the conformational stability,
Ref. [26] and the secretory process of SLRPs [27].
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Table 1. Classification of the SLRP family in five classes; BGN: Biglycan; DCN: Decorin; ASP: Asporin; ECM2: Extracellular Matrix Protein 2; ECMX: Extracellular
Matrix Protein X; LUM: Lumican; KTN: Keratocan; FMOD: Fibromodulin; OMD: Osteomodulin; PRELP: Proline/arginine-rich end leucine-rich repeat protein;
EPN: Epiphycan; OGN: Osteoglycin; OPTC: Opticin; CHAD: Chondroadherin; NYX: Nyctalopin; TSK: Tsukushi; PODN: Podocan; PODNL: Podocan-like protein.
The N-terminal cysteine cluster is a major feature for the classification of this family. The 3D representations are resolved by X-ray diffraction and are publicly
available on protein data base repositories such as Protein Data Bank (PDB: https://www.rcsb.org/). The 3D structures can be displayed and viewed with the PyMol
software (Schrödinger LCC, version 2.1.1), illustrating the horseshoe shape with lateral asparagines (N shown in red thanks to a home-made Python script). X-Ray
crystallographic analysis for the SLRP family members of class III and class IV are not yet available. The different post-translational modifications are listed by each
SLRP family member. All information was cross-checked with the UniProt database [28]. LRR: leucine-rich repeat.

Class N-End Cysteine Motif 3D Representation
and PDB ID Member GAG Type/Glycosylation Other Ref.

I CX3CXCX6C

ID: 1XKU

BGN

Chondroitin sulfate
Dermatan sulfate

N-linked oligosaccharide
O-linked oligosaccharide

[29–32]

ID: 2FT3

DCN

Chondroitin sulfate
Dermatan sulfate

N-linked oligosaccharide
O-linked oligosaccharide

[30–34]

ASP N-linked oligosaccharide
O-linked oligosaccharide [35]

ECM2 N-linked oligosaccharide
No data on potential GAG

ECM2 has a
peculiarity in its motif
with only 2 conserved

cysteines.

[19,31]

ECMX No data on potential GAG or
glycosylation [31]

https://www.rcsb.org/
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Table 1. Cont.

Class N-End Cysteine Motif 3D Representation
and PDB ID Member GAG Type/Glycosylation Other Ref.

II CX3CXCX9C

LUM Keratan sulfate
Poly-lactosamine

N-linked oligosaccharide

Tyrosine sulfation [36–38]

KTN [39]

ID: 5MX0

FMOD
Keratan sulfate

Poly-lactosamine
N-linked oligosaccharide

Tyrosine sulfation
Acidic patch

[38,40–42]

ID: 5YQ5

OMD Keratan sulfate
N-linked oligosaccharide [38,43–45]

PRELP N-linked oligosaccharide Basic patch [46,47]

III CX2CXCX6C

EPN

Chondroitin sulfate
Dermatan sulfate

N-linked oligosaccharide
O-linked oligosaccharide

LRRs with only seven
repeats

Tyrosine sulfation
Acidic patch

[30,31]

OGN

Keratan sulfate
Chondroitin sulfate

Dermatan sulfate
N-linked oligosaccharide

LRRs with only seven
repeats

Tyrosine sulfation

[31,48–52]

OPTC N-linked oligosaccharide
O-linked oligosaccharide [31,53,54]
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Table 1. Cont.

Class N-End Cysteine Motif 3D Representation
and PDB ID Member GAG Type/Glycosylation Other Ref.

IV CX3CXCX6-17C

ID: 5MX1

CHAD Keratan sulfate
O-linked oligosaccharide [31,55]

NYX
TSK N-linked oligosaccharide [31]

V CX3-4CXCX9C
PODN N-linked oligosaccharide

High number of LRR
with 20 repeats

Acidic patch
[9,56,57]

PODNL High number of LRR
with 21 repeats [58]
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3. SLRP Codon Usage Patterns May Fine-Tune Selective Translation Pathways during Cellular
Stress Conditions

The SLRP family members share common structural features as described in the classification
and structure section and partially illustrated in Table 1. Here, we conducted a biostatistical and
bioinformatics exploratory analysis of the SLRP family members based on the codon usage of the genes
encoding 17 members of the family.

Biases in codon usage have been documented to play a role in the translational fine-tuning of
protein expression levels for cells undergoing stress conditions. This fine-tuning involves enzymatic
modifications (i.e., reprogramming) of specific t-RNAs on their U34 wobble-base [59]. These t-RNA
U34 wobble-base modifications affect the elongation rate during translation for transcripts that have a
specific pattern of codon usage, resulting in a selective increase in the translation of specific proteins
by the cytoplasmic pool of ribosomes. A well-known example [60] is the modified U34 wobble-base
called mcm5-s2-U34 (methoxy-carbonyl-methyl-5, thio-2 uridine 34), which is catalyzed by three
successive enzymes targeting the original uridine t-ribonucleobase (U34-t-RNA): acetyltransferase
elongator (Elp1-6), methyltransferase TRM9-like domain of alkylation repair homolog (ALKBH8), and
the cytosolic thiouridylase homolog 1 and 2 (Ctu1/2). This modified t-RNA mcm5-s2-U34 wobble-base
will eventually base pair to the transcript cognate codons whose third base ends preferentially with an
A instead of a G, thus resulting in a privileged base pairing with the rarely used codons for lysine,
glutamine, and glutamate.

In yeasts, this mechanism has been shown to enhance the translation of proteins involved in
hypoxic stress responses [61]. In melanoma cancer cells, it has been shown to enhance the expression
of HIF1-α and of other proteins enriched in the codon usage patterns that happen to be promoted in
tumor cells resistant to targeted therapy [62].

Even in the absence of enzymatic tRNA modifications, the usage of rare codons may be required
to slow down the translating ribosome to increase the available time for proper folding of the nascent
protein or to increase the likelihood of chemical additions (e.g., hypothetical glycanation tagging) on
specific residues located upstream in the sequence being translated for later post-translational purposes.

The coding DNA sequences (CDS) of 17 SLRP proteins (n = 17 observations) were data-mined
for their codon usage of seven amino acid residues deemed relevant to characterize the SLRP family:
cysteine (C:Cys), lysine (K:Lys), glutamine (Q:Gln), glutamate (E:Glu), asparagine (N:Asn), aspartate
(D:Asp), and of course leucine (L:Leu). The genetic code degeneracy associated to these amino
acid residues reads as follows: cysteine, two codons: UGC, UGU; lysine, two codons: AAA, AAG;
glutamine, two codons: CAA, CAG; glutamate, two codons: GAA, GAG; asparagine, two codons:
AAU, AAC; aspartate, two codons: GAU, GAC; and finally leucine, six codons: UUA, UUG, CUA,
CUC, CUG, and CUU. The subset of all these investigated codons contains 18 codons (p = 18 variables).

The coding DNA sequences (CDS) of 17 members of the SLRP family (all SLRP members except
the class I protein ECMX, whose CDS sequence was not found) were extracted from the Ensembl
human genome repository (GRCh38.p12 assembly) in FASTA format. The complete coding sequences
were collected with the longest possible open reading frame (ORF) starting from start codon AUG
and ending at the most downstream occurrence of one of the three possible stop codons (UAA, UAG,
UGA). We processed each sequence to count the total number of codons in the longest open reading
frame, to count the codon usage of the seven aforementioned amino acid residues and to compute
the codon usage frequencies of the corresponding 18 codons under investigation with a home-made
Python program using BioPython modules (importing SeqIo, IUPAC, codonTable and suffix trees).
The data were exported and then retrieved in R for further statistical analysis. The codon frequencies
revealed different bias patterns in codon usage between the SLRP family members, on which an
unsupervised statistical learning analysis was performed [63]. The results of the principal component
analysis (PCA) are presented below. The PCA was conducted with the prcomp function in R and
graphically represented with the biplot function in R (both functions in software package ‘stats’ in R
version 3.5.2. R Core Team, 2014. https://www.r-project.org/). Figure 2 displays the percentage of the

https://www.r-project.org/
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variance that is explained by the principal components (PCs). The first two PCs explain 60.08% and
10.53% of the variance, while together they explain more than 70.6% of the data variance.

Figure 2. Percentage of variance explained by the PCs. Left panel: The first two components explain
60.08% and 10.53% of the variance, respectively. Right panel: Cumulative percentage of the variance
explained. The first two components explain 60.08 + 10.53 = 70.6% of the variance in codon usage
between SLRP family members’ proteins.

In a graphical representation, orthogonal loading vectors tend to be less correlated with each other
than co-linear or almost co-linear loading vectors (vectors pointing in the same, or opposite direction),
which are interpreted as highly correlated variable features.

The biplot on Figure 3 displays a 2D representation of the scores for the 17 protein members from
the SLRP family (in black) projected along the first two principal components and a representation
of the 18 loading vectors for the codon usage features (red arrowed vectors). It shows that the SLRP
family mainly clusters in two groups and that osteomodulin and nyctalopin appear as outlying
members of the SLRP family. There seems to be at least two clusters with different codon usage
patterns. In cluster 1 (left part of the biplot), the chondroadherin (CHAD), biglycan (BGN), Prelp
(PRELP), fibromodulin (FMOD), opticin (OPTC), tsukushi (TSK), podocan (PODN), podocan like
protein 1 (PDNL), and nyctalopin (NYX) mature mRNA transcripts all present a similarly biased codon
usage pattern represented in Table 2. Cluster 2 (right part of the biplot) is made of decorin (DCN),
lumican (LUM), epiphycan (EPN), asporin (ASP), ECM2, osteoglycin (OGN), keratocan (KTN) and
osteomodulin (OMD). Its codon usage pattern contrasts with that of cluster 1 and is represented in
Table 2.
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Figure 3. Biplot: scores of the 17 members of the SLRP family (in black) projected on the first two PCs
(bottom and left first two PC scores), and red arrows indicate the loading vectors in the space of the
codon usage frequency features (top and right axes first two PC loadings).

Table 2. Representation of the biased codon usage patterns of the mature mRNA transcripts among
Cluster 1 and Cluster 2 of the SLRP family. Over-represented codons are colored in green and marked
by a ‘+’; under-represented codons are colored in red and marked by a ‘–’.

Cluster 1 Cluster 2
Leucine CUG + −

CUC + −

CUU − +
CUA − +
UUG − +
UUA − +

Glutamate GAG + −

GAA − +
Glutamine CAG + −

CAA − +
Lysine AAG + −

AAA − +
Aspartate GAC + −

GAU − +
Asparagine AAC + −

AAU − +
Cysteine UGC + −

UGU − +

In Cluster 2, it is noted that osteomodulin appears to have a strong codon usage bias. Indeed,
leucine (L), in addition to CUU, is significantly encoded by the rare CUA, and the three K, Q, and E
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amino acid residues are mostly encoded by the unusual codons ending with the AA dinucleotide. Thus,
their codon usage is strongly biased toward the A-ending codons, which are known to preferentially
base pair with the modified mcm5s2–U34 tRNA. Therefore, we suspect that the osteomodulin protein
translation rate would be enhanced in cells undergoing hypoxic stress or mechanical stress via
enzymatic reprogramming of the wobble U34 in the cognate t-RNA decoding leucine, glutamine,
glutamate, and lysine residues. Supplementary Figures S1 and S2 show the codon usage biased
patterns contrasting osteomodulin with the other members of the SLRP family for leucine and for the
triplet glutamine, glutamate, and lysine amino acids residues.

Due to a similar though less extreme codon usage bias, it is hypothesized that asporin, osteoglycin,
keratocan, and ECM2 could also have their translation rate enhanced in cellular stress conditions. The
occurrence of re-programming of the wobble-base U34 tRNA under stress conditions has not yet been
checked experimentally in the context of skeletal or cartilaginous tissues. Experimental validation is
required to investigate whether this cascade of events results in differential levels of protein expression
in the SLRP family under cellular stress conditions.

4. Roles of SRLP GAG Moieties in Fibrillogenesis

A major feature of the SLRPs is their interaction with collagen fibrils in the ECM. Although they
bind through their core protein, their GAGs are also functional actors. GAG moieties were shown to
interact directly with collagen and to modulate their fibrillogenesis [64,65]. High-resolution scanning
electron microscopy indicates that these interactions are periodic and GAG chains bound to the collagen
surface can form interfibrillar elastic bridges and belts around fibrils. GAGs regulate the fibril diameter
and the interfibrillar spacing, and they also assemble the collagen fibrils, thus generating a network
that organizes the ECM [64,66–68]. In the interfibrillar space, a majority of GAGs is oriented spanning
adjacent fibrils, while also interacting together to form antiparallel structures called “shape modules”
and keeping collagen fibrils at defined distances [66,69–71].

Data from in vivo studies also suggest collagen fibril regulation through the presence of GAGs.
The glycanation of decorin plays a critical role in the early stages of fibrillogenesis and reduces the
collagen fibril diameter. In Ehlers–Danlos syndrome, the decrease of galactosyltransferase activity
impairs the glycanation of decorin and biglycan, and collagen fibrillogenesis is decreased [72–74]. In
contrast, decorin dermatan sulfate-deficient knock-in mice, where the site of GAG attachment was
mutated, fail to express any variation of the collagen fibril diameter. Although we cannot exclude
compensation by other SLRPs associated with dermatan sulfate in the mouse model or the lack of
functional conservation of GAGs between human and mouse [75], this discrepancy indicates that more
studies are required to clarify the role of SRLPs’ GAG chains.

A model has been proposed in which GAG bridges could manage mechanical stress, namely
occurring in tendons that are biological structures transmitting large forces between muscles and bones.
GAG bridges are supposed to play a role in force control through fibril-to-fibril interactions during
loading. In addition, decorin enhances mechanical properties by reducing fibrils aggregation during
polymerization [76]. Therefore, SLRPs could protect collagen fibrils against excessive mechanical
strains [77–80]. However, this model is subject to controversy. Indeed, several studies have found that
the enzymatic removal of GAGs did not affect the mechanical properties of collagen fibrils [71,81–83]
except for pathological post-injury tendons [84]. Controversially, another investigation of the collagen
mechanical response in both native and GAG-depleted tendons in mouse proposed a model where
GAGs promote the fibrils sliding under straining conditions by isolating individual fibrils to bear the
load [85]. This conflicting evidence leaves the question open about the complex functions of the GAG
and SLRP extrafibrillar network in ECM assembly.

Besides direct interaction and fibril organization, GAGs have a protective role. When SLRPs are
bound to collagen fibrils, their GAGs protect collagen fibrils in acidic conditions against cathepsin K,
conferring on them putative functions during bone resorption [86].
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5. SLRP GAG Moieties: Fingerprints of the Tissue Status and Active Players

The diversity of SLRP’s GAG moieties is a characteristic of the tissue and can serve to track its
status. Furthermore, the same SLRP displays different forms via the absence or presence and diversity
of its GAGs.

In articular cartilage, intervertebral disc, and dental tissue, biglycan and decorin may be represented
under a proteoglycan or a non-proteoglycan form [87–89]. Immunoblots before and after the removal
of glycanation have revealed two forms of biglycan lacking GAG whose abundance is low in juveniles
in the articular cartilage and in the intervertebral disc but increases in adults until they become
predominant. The abundance of the biglycan proteoglycan form appears to be stable through
life [87,88]. However, for decorin, its non-proteoglycan form is always a minor component, even
though there is also an increase related to age [88]. In cortical bone, the level of decorin glycanation
decreases with age [90]. Finally, the decorin GAG length is reduced in the tendon fascicle of old
mice [91].

The glycanation of fibromodulin is modified by aging, similar to decorin and biglycan. The
proteoglycan form is present in juvenile human articular cartilage, and the GAG chains are shortened
through the aging process until they are mostly represented by the non-proteoglycan form in mature
cartilage. However, fibromodulin continues to be substituted with N-linked oligosaccharide [92].

It appears that lumican, a keratan sulfated SLRP, goes through the same age-related mechanism in
human articular cartilage. The increased representation of the non-glycanated form of lumican is due
to a lack of keratan sulfate synthesis by mature chondrocytes. It is interesting to point out that aggrecan
conserves its keratan sulfate chains in mature cartilage, demonstrating that chondrocytes are still able
to synthesize [93,94]. In human cultured chondrocytes, it was shown that growth factors/cytokines
were able to modulate the GAG chain length and sulfation of lumican by regulating the cell metabolism.
IL-1β induces the production of a non-glycanated lumican, whereas the length of GAG chains in
glycanated forms is modulated by basic fibroblast growth factor (bFGF), insulin growth factor (IGF)-1,
and transforming growth factor (TGF)β [95].

Osteomodulin presents a different pattern of changing glycosylation profiles among keratan
sulfated SLRPs, in that it varies through endochondral bone formation and its biomineralization process.
In non-mineralized ECM, osteomodulin is non-glycanated and N-glycosylated, whereas in mineralized
ECM, the keratan sulfate modification of osteomodulin increases with bone maturation [96].

It was suggested that the changes in growth factor/cytokine synthesis with aging could be one
mechanism explaining the post-translational GAG modifications of SLRPs [95]. Non-glycanated SLRPs
can also result from the degradation of a glycanated precursor, as demonstrated by the N-terminal
sequence analysis of SLRPs coming from intervertebral disc tissue [87].

In addition to the presence or absence of glycanation, the nature of the GAG chains substituted
to the SLRP core is also changing during bone development, and therefore could be associated with
different functions. In cultured alveolar bone cells, biglycan is conjugated mainly with dermatan
sulfate during the cell proliferation phase and switches to only chondroitin sulfate chains during
the mineralization phase. Similarly, decorin carries many dermatan sulfate chains during early bone
matrix formation but later associates only with chondroitin sulfate during mineralization [97]. The
same changing profiles occur in dental tissue, where in the predentine, biglycan and decorin are mostly
associated with dermatan sulfate, whereas in the predentine/dentine interface, the chondroitin sulfate
becomes predominant, and in the dentine itself, it is the only GAG chain identifiable [89], while keratan
sulfate distribution in the predentine forms a gradient with a maximum toward the mineralization
front [98]. Moreover, the position of the sulfate within the GAG also varies within these tissues,
and the GAG length is longer in the dentine than in the predentine and in the dentine/predentine
interface [89]. Interestingly, GAG components are active players in the mechanical properties of the
dental tissues such as stiffness and ductility due to their physicochemical properties, their location,
and also by modulating the collagen structure through interfibrillar bridges. GAGs are key factors
in the dentin’s ability to recover under strain and deformation events in a time-dependent manner
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and contribute to the dental tissues’ longevity and conservation of their mechanical integrity. GAGs
are also thought to play a role in the mineralization; in dentine, chondroitin sulfate may allow the
mineralization process through sequestering calcium ions. These mechanisms might be displayed in
other mineralized tissues [99–103].

The nature of the GAG can also help to discriminate a tissue, e.g., decorin and biglycan are
mostly associated with dermatan sulfate in the annulus fibrosus, but with chondroitin sulfate in the
cartilage end-plate [87]. Moreover, the modifications occurring on SLRPs could be used to assess
the differentiation stage of cells. In C2C12 mouse cells treated with the bone morphogenetic protein
(BMP)-2, modifications to the decorin GAG chains’ length take place during the differentiation from
myoblast to osteoblast. In addition to being upregulated, decorin has longer GAG chains in induced
cells [104].

Defective glycanation is correlated with pathological states, for instance in gerodermia
osteodysplastica. In the organism model corresponding to this pathology characterized by the early
onset of osteoporosis, decorin and biglycan are glycanated to a lesser extent, and it is suggested that this
defect is involved in the abnormal gain of periosteum thickness [90]. Equine degenerative suspensory
ligament desmitis (DSLD), which affects tendons, ligaments, and other connective tissues and resembles
Ehlers–Danlos syndrome, correlates with the accumulation of decorin carrying abnormally glycosylated
GAG chains [105]. In this case, chondroitin sulfate replaces the normal dermatan sulfate, and this
modification leads to a reduced TGF-β1 binding affinity and the production of antibodies against
decorin. There is no change in the level of dermatan sulfate epimerase, the enzyme in charge of the
dermatan sulfate synthesis; however, in DSLD, the tendon is associated with high levels of BMP-2,
which may enhance proteoglycan production [106,107].

Furthermore, ECM assembly may be influenced by post-translational modifications affecting
molecular interactions. These interactions in turn may regulate signaling pathways. The GAG chains
of biglycan enhance the binding of calvarial osteoblastic cells from mouse to BMP-4. Consequently, the
signaling pathway is more strongly activated, with an increased phosphorylation of Smad 1/5/8 and
upregulation of a set of osteoblastic markers such as Cbfa1 (Runx2), osteopontin, bone sialoprotein (BSP)
and osteocalcin. Therefore, biglycan plays a role in osteoblast differentiation as a cytokine reservoir
thanks to its GAG chains [108]. Biglycan GAGs also play a crucial role on the Erk pathway promoting
osteoblast differentiation, as no phosphorylation of Erk is observed when murine pre-osteoblasts are
treated with biglycan lacking GAGs [109]. It is conceivable that the age-related evolution of SLRP
GAGs is correlated with their balancing function on growth factors as, in juveniles, the osteoblast
differentiation process needs to be active and fully functional [108]. Surprisingly, a study showed
that although all forms of biglycan positively affect BMP-2 signaling in C2C12 myogenic cells, even
if non-glycanated forms are more efficient, only the biglycan lacking GAG induces osteogenesis in
a rat mandible-deficient model. The studies concluded that the biglycan positive effect on BMP-2 is
inhibited by its GAG moieties. However, it is important to highlight that the cells in these studies are
not at the same differentiation stages nor the same cell lines, but a role of GAGs dependent on the type
of BMP cannot be excluded [108,110,111].

6. Other SLRP Post-Translational Events in Skeletal Tissues

6.1. Sulfation

Sulfated tyrosines were identified in fibromodulin, osteomodulin, lumican, and opticin [38,112].
The tyrosine sulfate domain of SLRPs is interacting with proteins, mimicking heparin via the highly
negative charge produced in combination with acidic amino acids. Fibromodulin and osteomodulin
were shown to bind heparin-binding protein through this specific domain, and the affinity varies
via the sulfated tyrosine residues number and their position. When present on the fibromodulin
N-terminal domain, it attracts the MMP-13 protease and guides the cleavage of the domain [113,114].
This specific domain is involved in the fibrillogenesis process. Fibromodulin can bind to collagen type I
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by both its LRR and its N-terminal tyrosine sulfated domain, which allows it to interact simultaneously
with two collagen molecules. That feature may be useful in the assembly and networking of the ECM.
The sulfated domain affects the collagen fibril formation and induces a shortened lag phase, thus
affecting the arrangement of collagen molecules into highly organized fibrils structures [115].

6.2. SLRP Degradation and Cleavage in Skeletal Tissues

In addition to their glycosylation and glycanation, SLRPs degradation interferes with their
biological functions and adds a level of complexity to their network. In this part, we will discuss the
degradation mechanisms of SLRPs and the impact on their biological functions.

Several MMPs have been recognized to cleave SLRP members in vitro. MMP-2, MMP-3, and
MMP-7 can cleave the human recombinant decorin. Interestingly, MMP-2 and MMP-3 show decreased
efficiency when decorin is lacking its GAG. The consequences of substrate affinity variation with
respect to post-translational modification combined with the increase of non-glycanated forms through
aging remains unclear [116]. Membrane-type matrix metalloproteinase-1 (MT1-MMP) can induce
cleavage of the human recombinant lumican [117]. Fibromodulin is cleaved in the N-terminal region
containing sulfated tyrosine when cartilage degradation is induced. MMP-13 can cleave fibromodulin
in the region interacting with collagen fibrils [113,118]. MMP-13 is also able to cleave biglycan, opticin,
and to a lesser extent, lumican and decorin. In the latter cases, the degradation products are of low
abundance despite proven direct interaction between MMP-13 and decorin [119–121]. In human
cartilage, MMP-1-2-3-7-8-9 were shown to be part of opticin catabolism with different proteolytic
efficiencies, with MMP-2 and MMP-7 being the most efficient [122]. MMP-9 and MMP-12 can cleave
biglycan, and the fragments produced appear to be relevant neo-epitopes associated with dysregulated
ECM remodeling pathogenesis. Indeed, the biglycan fragments were increased in ex vivo degraded
cartilage explants and in the serum of a rheumatoid arthritis (RA) rat model [123]. In addition to the
MMPs, ADAMTS-4, ADAMTS-5, and granzyme B can be mentioned as efficient enzymes that cleave
some SLRPs, as it was proven for biglycan, decorin, and opticin [122,124–126]. Chondroadherin can be
digested by the serine protease HTRA1 in degenerated human intervertebral discs [127].

The various locations of the cleavage sites lead to numerous possibilities of SLRP fragments to
be produced (Table 3). For instance, biglycan is processed in its N-terminal region [88,128] within its
core, namely in its fifth LRR by ADAMTS-4 and ADAMTS-5 [124] and in its C-terminal region by
MMPs [119]. The biological importance of this large variety of fragments remains an under-examined
field and needs further research.

Table 3. Specific cleavage sites among the SLRP family in the skeletal tissues.

SLRP Species Cleavage
Site Protease Technique In Vivo Data Ref

Decorin Human

S241-L242 MMP2 N-terminal
sequencing -

[116]
S241-L242 MMP3 N-terminal

sequencing -

D31-A32 MMP7 N-terminal
sequencing -

E274-L273 MMP7 N-terminal
sequencing -

S240-L241 MMP-13 N-terminal
sequencing Comparison with WB on cartilage [119]

Bovine
M200-K201 - N-terminal

sequencing
Extracted from fresh matrix tendon [129]A209-D210 -

Q218-G219 - Extracted from medium of cultured tendon
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Table 3. Cont.

SLRP Species Cleavage
Site Protease Technique In Vivo Data Ref

Biglycan Human

G177-V178 MMP-13 N-terminal
sequencing Comparison with WB on cartilage [119]

Bovine

N187-C188 ADAMTS-4
ADAMTS-5

N-terminal
sequencing Comparison with WB on cartilage [124]

Fibromodulin Human
Y63-T64 MMP-13 Data not shown Data not shown [113]

Bovine
Y63-A64 MMP-13 Mass spectrometry Extracted from cartilage explant [113]

Opticin Human

T87-S88 MMP-2
MMP-7

N-terminal
sequencing

Comparison with WB on cartilage [122]E443-L444 MMP-2
MMP-7

G114-L115 MMP-2
MMP-7 Prediction from [120]

A20-S21 MMP-7 N-terminal
sequencingE32-Q33 MMP-7

Bovine
G104-L105 MMP-13 N-terminal

sequencing
Comparison with WB on human cartilage; IHC on

human cartilage and synovial membrane [120]
P109-A110 MMP-13

Chondroadherin Human
I80-Y81 HTRA1 Mass spectrometry Comparison with WB on discs tissue [127]

Corroborating the in vitro data, there is evidence that SLRPs are degraded in vivo. During the
aging process, decorin and biglycan undergo degradation in bovine tendons [130]. Degraded biglycan,
lumican, keratocan, and opticin fragments were found in human articular cartilage, while decorin
and fibromodulin fragments were found in remodeling tissues from ovine intervertebral discs after a
lesion [119,120,131]. The team of Zhen et al. (2008) [132] characterized several MMPs and ADAMTS
that carry out the proteolysis of SLRPs; among them were biglycan, decorin, fibromodulin, osteoglycin,
and PRELP. They showed that in human cartilage, biglycan, fibromodulin, and PRELP are cleaved
by MMP-2, MMP-3, MMP-8, MMP-9, MMP-12, MMP-13, ADAMTS-4, and ADAMTS-5. Decorin can
be digested by the same proteases except for MMP-9, lumican by MMP-12 and ADAMTS-4, and
osteoglycin by MMP-2, MMP-8, and ADAMTS-4 [132]. The processing of SLRPs occurs in human knee,
hip articular cartilage, and meniscus, as it was shown for decorin, biglycan, lumican, and keratocan.
This fragmentation process is increased in tissues undergoing degradation, and there is a slight increase
related with the aging process but not in every tissue. However, fewer fragments were found in tissues
for fibromodulin. Interestingly, but not unexpectedly, fragments observed after in vitro cleavage of
biglycan and decorin by MMP-13 correspond to the fragments characterized in vivo, in contrast to the
fibromodulin fragments. Yet, it must be highlighted that a majority of the in vivo, so-called naturally
occurring fragments do not correlate with fragments generated in vitro. This suggests that besides all
the enzymes already identified to cleave the SLRPs, additional unknown enzymes may be involved in
their degradation [119,133,134].

This phenomenon may lead to the alteration of ECM homeostasis and its biomechanical properties,
and hence damage skeletal tissues over time [119,124,133,135,136]. An increased proteolysis of
chondroadherin has also been observed in the scoliotic disc of some adolescent patients and in adult
degenerative discs when compared to normal discs. The fragmentation of chondroadherin is also
characteristic of the disease, the cleavage site-specific for disc degeneration is represented in Table 2,
making the chondroadherin fragment an efficient biomarker [127,137]. In addition, other SLRPs present
enhanced fragmentation patterns in pathological human and canine intervertebral discs [138–140].

Interestingly, the SLRP fragment pattern has been characterized in serum of osteoarthritic (OA)
and RA patients and in the serum of animals with experimentally induced OA. This observation
indicates a relationship between these pathologies and the SLRP degradation. The fragmentation
pattern is more than a global OA feature; it is also specific to the SLRP member and the joint localization.
For example, more cleavage products are detected in OA hip than in OA knee articular cartilage
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for decorin, biglycan, lumican, and keratocan [133,136,141]. The extent of fibromodulin and opticin
degradation by MMP-13 is correlated with the severity of the cartilage damage [113,119,120,142].
Knowing that almost all the members of the SLRP family are involved in collagen interaction as
previously reviewed by Chen and Birk, 2013 [6], and that they have a protective function on collagen
fibrils, their degradation could lead to the exposure of the MMP-13 cleavage site on the collagen,
indicating a predisposition for the initiation of cartilage damage [113,118–120]. Consolidating this
hypothesis, it was demonstrated that the maximal biglycan processing in the medial meniscus outer
zone is concomitant with collagenolysis [126,143]. Moreover, treatment with RS 110–2481, an MMP-13
inhibitor, prevents not only SLRP degradation but also collagenolysis [119,144]. The loss of SLRPs
weakens the cartilage’s mechanical properties [119,136].

It appears that SLRP fragments are of interest to unravel the mechanism of OA, and some could be
specifically beneficial to study. High levels of biglycan were found in synovial fluid, which is located
in the joint cavities of OA and RA patients [145,146]. Treatments with soluble biglycan were reported
to induce an inflammatory response in human chondrocytes through TLR-4 and NF-κB activation,
enhancing the catabolic response in cartilage explants depending on their OA stage [146,147]. It was
also demonstrated that cartilage neo-angiogenesis associated with inflammation [148] is related to
the degradation of opticin, which is an inhibitor of angiogenesis, by regulating the adhesiveness
of endothelial cells. In OA cartilage, opticin is a substrate for several proteases, and particularly
MMP-7 [120,122,149].

The cleavage of SLRPs also impacts the accumulation of growth factors in the ECM. SLRPs
are known to bind several growth factors, such as TGF-β, FGF, and BMP, and block their biological
activity [150]. Direct evidence of active TGF-β1 being released from decorin and biglycan upon
cleavage by granzyme B, a protease that accumulates in the extracellular space during inflammation,
was demonstrated. TGF-β1 was also released from decorin after proteolysis by MMP-2, MMP-3, or
MM-7. Biglycan, asporin, and fibromodulin were also found to bind TGF-β, giving them the possibility
to release it when cleaved [151,152]. Moreover, in SLRP knockout mice, there is an excessive activation
of TGF-β1 signaling, leading to an impaired control on osteoprogenitor cells and chondrogenesis.
These data suggest a mechanism by which the modulation of the bioavailability of cytokines such as
TGF-β1 can correlate to the development or even the initiation of OA [8,116,125,153].

6.3. SLRP Intracellular Degradation Pathways

The intracellular catabolism requires the lysosomal system, and SLRPs can accumulate within
cells when lysosomes are inhibited [129,154–158]. This mechanism appears to be partially competitive
between SLRPs. The internalizing process is receptor-mediated, and the core protein involving the
LRR structure is the ligand for the putative 51kDa and 26 kDa human receptors of endocytosis located
at the plasma membrane and in the endosomal compartment. Furthermore, the presence of GAG
modification adds a supplemental layer of control, as its presence negatively affects the uptake [159–163].
Interactions between SLRPs and other ECM proteins also interfere with the endocytosis, as only free
SLRPs are degraded through the internal pathway [164]. Additional human receptors possibly involved
in endocytosis were later characterized in a different cell type for decorin or biglycan, suggesting
redundancy in receptors involved in SLRP endocytosis. The putative receptors encompass the first
discovered 51 kDa and 26 kDa [159]; a 110 kDa receptor [165]; the IGFR [166], and the class A scavenger
receptor [167]. In addition, for decorin, it was suggested that several endocytic pathways can be used
such as the clathrin-dependant pathway and the Tfr/recycling pathway. It also appears that endocytosis
is dependent on the signaling role of EGFR, the PI-3 kinase signaling, and the lipid rafts [168].

7. Conclusions

There is a great variability in codon usage among the SLRP coding sequences. This may impact the
structure and stability of these proteoglycans. According to their codon usage, it appears that SLRPs
split into two main clusters. However, it is currently unclear whether this variability in codon usage
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plays a functional role at all. Further investigations are required to shed light on the causal mechanisms
or chain of events by which codon usage may affect the differential SLRP translation rate and how codon
usage is associated with pathological conditions. In summary, current assumptions, which are not
necessarily mutually exclusive, are that rare codon usage clusters in the SLRP sequences are required
to increase the time available to allow for proper folding or for adequate in vivo co-translational
chemical tagging on specific amino acid residues for post-translational purposes, or to cause differential
sensitivity to enzymatic tRNA modifications that occur under stressed conditions.

Similarly, there is great variability of glycosylation, GAG, and sulfotyrosine patterns, as well
in the SLRP fragments detected. All are subject to changes according to the related tissue, age, and
pathological conditions. These heterogeneous post-translational events can contribute to various
structural and biological functions of SLRPs. Accordingly, one can define SLRPs as highly versatile
components of the ECM. The presence of GAGs and sulfated tyrosine domain conditions their
interactions with collagens and ECM proteins, and it can be considered as a factor in ECM assembly
and integrity. They are also modulating cytokine activity and availability by sequestering them and
are bringing a higher level of subtlety to the cellular response (Figure 4). Moreover, the presence of
distinct and precise GAG motifs is involved in specific functions in different cellular contexts [169].

Figure 4. Schematic representation of the biological functions of post-translational modifications
impacted by aging and pathology development. On the left panel, GAG side chains and the tyrosine
sulfate-rich domain of SLRPs help to maintain the ECM biomechanical properties and the fibrillogenesis
and organize the collagen fibrils. They regulate the cell response and their homeostasis through their
interaction with cytokines and modulate their accessibility. On the right panel, following an imbalanced
control of the post-translational events and MMP-driven degradation, the ECM biological properties
are disturbed, which impedes the bioavaibility of cytokines that are free to leave the ECM. This latter
case can be prompted by a disease condition or the aging process.

Concerning the SLRP catabolism, it plays a role in cell responses as well by regulating the
bioavailability of the molecules under the control of SLRPs. SLRPs themselves can lose their functions
and properties under this process. The catabolism can be affected by aging and impaired by pathologies
such as Ehlers–Danlos syndrome, OA, RA, or Kashin–Beck disease [170]. SLRPs form a protective
coat protecting the ECM from collagenolysis induced by MMPs. Interestingly, alteration of the ECM
content appears to be an early step in the progression of a pathology disrupting the ECM properties
and functions and later deregulates the cell homeostasis (Figure 4). SLRP fragments can be soluble and
circulate in biological fluid, where they might trigger a biological response in other tissues. This means
that SLRPs could be actors in aging-related musculoskeletal and rheumatic diseases and could be
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therapeutic targets. They could also be potential soluble biomarkers that are useful for the diagnosis and
prognosis of disease progression as well as predictive of therapeutic response. Indeed, numerous SLRP
fragments were identified through mass spectrometry to have the potential to be unique neopeptides
characterizing pathologic conditions such as cartilage degradation and OA onset [132,171–175]. In
particular, a biglycan neoepitope issued from MMP cleavage measured in rat serum is correlated with
pathologies involving imbalanced ECM remodeling [123]. These features could be tracked down to
follow the initiation and development of pathologies that are hard to diagnose at an early stage.

In summary, post-translational events encompass a large number of modifications in the SLRP
core proteins. They help ECM assembly and are involved in the ECM physicochemical properties and
remodeling. They are also required by cells to regulate responses with higher precision. They are
valuable fingerprints of the tissues and a characterizing tool that can be used as biomarkers. Here, we
focused on the SLRP post-translational events and degradation in skeletal tissues; however, they exert
their modulation of biological functions in other tissues as well. Unfortunately, few studies discuss
their functions and take them into account when analyzing results. Given the findings summarized in
this review, we conclude that their biological functions are too often underestimated, and we hope that
future studies will be more careful to consider the impact of post-translational events on biological
functions and include them in their design.
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