Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

anti-Tricyclo[4.2.1.1 ${ }^{2,5}$]deca-3,7-diene-9-endo,10-endo-diol

Andria D. Harris, Amy D. Baucom, Maria del Rosario I. Amado Sierra, Daniel S. Jones* and Markus Etzkorn*

Department of Chemistry, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
Correspondence e-mail: djones@uncc.edu, metzkorn@uncc.edu

Received 30 September 2008; accepted 29 October 2008
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.039 ; w R$ factor $=0.100 ;$ data-to-parameter ratio $=12.7$.

The title compound, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$, was synthesized as a candidate for further functionalization. The asymmetric unit comprises two independent molecules, both of which are situated on a center of symmetry. Both molecules are involved in a network of hydrogen bonding, with each alcohol group participating in one hydrogen bond as a donor and in a second hydrogen bond as an acceptor.

Related literature

For a related structure, see: Eaton et al. (2002). For synthesis details, see: Baggiolini et al. (1967); Klinsmann et al. (1972); Prakash et al. (1987); Herzog (1958). For synthesis details and compound characterization, see: Amman et al. (1980). For synthetic routes utilizing the title compound as a starting material, see: Amman \& Ganter $(1977,1981)$.

Experimental

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$
$V=787.59(19) \AA^{3}$
$M_{r}=164.2$
Monoclinic, $P 2_{1} / c$
$a=10.3730$ (14) £
$b=9.8494$ (14) \AA
$c=7.7128$ (11) \AA
$\beta=91.850(11)^{\circ}$

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: none 5405 measured reflections 1419 independent reflections

$$
1386 \text { reflections with } I>2 \sigma(I)
$$

$R_{\text {int }}=0.038$
3 standard reflections frequency: 60 min intensity decay: none

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
112 parameters
$w R\left(F^{2}\right)=0.100$
H -atom parameters constrained
$S=1.08$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e} \AA^{-3}$
1419 reflections
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-HO1 \cdots O2 $^{\mathrm{i}}$	0.82	1.95	$2.7452(15)$	163
O2-HO2 $\cdots \mathrm{O} 1$	0.82	1.99	$2.8005(14)$	170

Symmetry code: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.
Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Acknowledgement is made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. This work was supported in part by funds provided by The University of North Carolina at Charlotte.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2159).

References

Amman, W. \& Ganter, C. (1977). Helv. Chim. Acta, 60, 1924-1925.
Amman, W. \& Ganter, C. (1981). Helv. Chim. Acta, 65, 966-1022.
Amman, W., Jäggi, F. J. \& Ganter, C. (1980). Helv. Chim. Acta, 63, 2019-2041.
Baggiolini, E., Herzog, E. G., Iwaski, S., Schorta, R. \& Schaffner, K. (1967). Helv. Chim. Acta, 50, 297-306.
Eaton, P. E., Tang, D. \& Gilardi, R. (2002). Tetrahedron Lett. 43, 3-5.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Herzog, E. G. (1958). PhD thesis, ETH Zürich, Switzerland.
Klinsmann, U., Gauthier, J., Schaffner, K., Pasternak, M. \& Fuchs, B. (1972). Helv. Chim. Acta, 55, 2643-2659.
Prakash, G. K. S., Farnia, M., Keyanian, S., Olah, G. A., Kuhn, H. J. \& Schaffner, K. (1987). J. Am. Chem. Soc. 109, 911-912.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

anti-Tricyclo[4.2.1.1 ${ }^{2,5}$]deca-3,7-diene-9-endo,10-endo-diol

A. D. Harris, A. D. Baucom, M. del R. I. A. Sierra, D. S. Jones and M. Etzkorn

Comment

The polycyclic title compound 4 has gained importance as a precursor to a bishomoaromatic dication (Prakash et al., 1987) and was furthermore investigated in a synthetic approach to heterodiamantanes (Amman et al., 1980; Amman \& Ganter, 1977; Amman \& Ganter, 1981). We were interested in the functionalization of dienedione 3, which is a rather challenging task if one considers the issue of chemoselectivity, regioselectivity and stereoselectivity in a relatively small polycyclic skeleton with two olefinic bonds and two carbonyl groups in close proximity. Furthermore, a thermally induced isomerization of compound 3 to the endo-cyclopentadienone dimer 2 (Baggiolini et al., 1967; Klinsmann et al., 1972) prohibited several functionalization reactions that required forcing conditions. We therefore focused on the thermally stable dienediol 4.

Two pairs of independent molecules (Figure 1) comprise the four molecules in the unit cell, each of which is situated on a center of symmetry. All of the molecules are involved in a network of hydrogen bonding (Figure 2), with each alcohol group participating in one hydrogen bond as a donor and in a second hydrogen bond as an acceptor.

Experimental

Preparation of dienedione 2 (Herzog, 1958): A solution of sodium ethoxide in ethanol was prepared by adding sodium (44.4 $\mathrm{g}, 1.94 \mathrm{~mol}$) in small pieces to ethanol (2 1). A mixture of freshly distilled cyclopentadiene monomer ($74 \mathrm{~g}, 1.12 \mathrm{~mol}$) and isoamylnitrite ($131 \mathrm{~g}, 1.12 \mathrm{~mol}$) was then added dropwise at $15-20^{\circ} \mathrm{C}$. The dark brown reaction mixture was stirred for 30 minutes, poured on ice $(0.5 \mathrm{~kg})$ and extracted with ether $(3 \times 300 \mathrm{ml})$. These organic extracts were discarded, and the aqueous phase was acidified to pH 3 with 2.5 M sulfuric acid ($c a 600 \mathrm{ml}$). After saturating with sodium chloride (ca 250 $\mathrm{g})$ the aqueous phase was extracted with ether $(5 \times 600 \mathrm{ml})$. The combined organic phase was concentrated to a third of its volume, washed with water $(100 \mathrm{ml})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. After removal of the solvent the viscous brown oil obtained $(62 \mathrm{~g})$ was refluxed in $1 M$ sulfuric acid $(1500 \mathrm{ml})$ for several hours and stirred at room temperature overnight. The reaction mixture was saturated with sodium chloride $(c a 0.5 \mathrm{~kg})$ and extracted with ether $(5 \times 400 \mathrm{ml})$. The combined organic phase was concentrated, washed with water, and dried $\left(\mathrm{MgSO}_{4}\right)$. After removal of the solvent a pale-brown crude product was obtained. Sublimation furnished the clean product ($27 \mathrm{~g}, 30 \%$ with respect to cyclopentadiene) as a colorless solid.

After the photoisomerization of dienedione 2 to dienedione 3 (Baggiolini et al., 1967; Klinsmann et al., 1972) a reduction with LiAlH_{4} in THF yielded diol 4 (Amman et al., 1980; Prakash et al., 1987). We were able to grow single crystals of diol 4 from CHCl_{3} and thus provide structural details of the otherwise fully characterized compound (Amman et al., 1980).

Refinement

H atoms were constrained using a riding model. The olefinic $\mathrm{C}-\mathrm{H}$ bond lengths were fixed at $0.93 \AA$ and the methine $\mathrm{C}-\mathrm{H}$ bond lengths at $0.98 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\text {eq. }}$. C). The $\mathrm{O}-\mathrm{H}$ bond lengths were fixed at $0.82 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.5 \mathrm{U}_{\text {eq. }}$. (C), and the torsion angles about the $\mathrm{C}-\mathrm{O}$ bonds were refined.

supplementary materials

Figures

Fig. 1. View of the two independent molecules of the title compound, 4, with 50% probability displacement ellipsoids. [Symmetry codes: (i) $-x+1,-y,-z$; (ii) $-x+2,-y+1,-z]$

Fig. 2. Packing diagram showing two of the hydrogen bonds in the hydrogen bonding network of the structure.

Fig. 3. The formation of the title compound.

anti-Tricyclo[4.2.1.1 ${ }^{2,5}$]deca-3,7-diene-9-endo,10-endo-diol

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$

$M_{r}=164.2$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=10.3730$ (14) \AA
$b=9.8494(14) \AA$
$c=7.7128(11) \AA$
$\beta=91.850(11)^{\circ}$
$V=787.59(19) \AA^{3}$
$Z=4$
$F_{000}=352$
$D_{\mathrm{x}}=1.385 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54184 \AA$
Cell parameters from 22 reflections
$\theta=36.5-41.8^{\circ}$
$\mu=0.77 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Irregular, brown
$0.5 \times 0.5 \times 0.5 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
Nonprofiled $\omega / 2 \theta$ scans
Absorption correction: none
5405 measured reflections
1419 independent reflections
1386 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=67.5^{\circ}$
$\theta_{\text {min }}=4.3^{\circ}$
$h=-12 \rightarrow 12$
$k=-11 \rightarrow 11$
$l=-9 \rightarrow 9$
3 standard reflections
every 60 min
intensity decay: none

Refinement

Refinement on F^{2}	H-atom parameters constrained
Least-squares matrix: full	where $P=\left(\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0449 P)^{2}+2 F_{\mathrm{c}}^{2}\right) / 3\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$	$(\Delta / \sigma)_{\max }<0.001$
$w R\left(F^{2}\right)=0.100$	$\Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3}$
$S=1.08$	$\Delta \rho_{\min }=-0.18 \mathrm{e} \AA^{-3}$
1419 reflections	Extinction correction: SHELXL97 (Sheldrick, 2008),
112 parameters	$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc} \lambda^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
	Extinction coefficient: $0.025(2)$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iss }}{ }^{*} / U_{\text {eq }}$
O1	$0.79276(9)$	$0.37798(11)$	$-0.08942(13)$	$0.0372(3)$
HO1	0.7463	0.3684	-0.1766	0.056^{*}
O2	$0.68564(9)$	$0.15711(10)$	$0.08353(13)$	$0.0375(3)$
HO2	0.7252	0.2197	0.0396	0.056^{*}
C10	$0.44926(13)$	$0.09207(14)$	$0.11758(19)$	$0.0306(3)$
H10	0.4357	0.1453	0.2228	0.037^{*}
C2	$0.96268(12)$	$0.55937(14)$	$-0.15964(18)$	$0.0301(3)$
H2	0.9118	0.607	-0.2501	0.036^{*}
C7	$0.53244(12)$	$0.06358(14)$	$-0.15675(17)$	$0.0296(3)$
H7	0.5816	0.0942	-0.2559	0.036^{*}
C5	$1.03469(12)$	$0.36341(14)$	$-0.01805(19)$	$0.0309(3)$
H5	1.0383	0.2646	-0.0035	0.037^{*}
C1	$0.92078(12)$	$0.40891(14)$	$-0.13877(18)$	$0.0307(3)$
H1	0.9328	0.3648	-0.251	0.037^{*}
C6	$0.55870(13)$	$0.15044(13)$	$0.00772(18)$	$0.0295(3)$
H6	0.5339	0.2437	-0.0224	0.035^{*}
C3	$1.09864(13)$	$0.52746(16)$	$-0.21451(18)$	$0.0352(4)$
H3	1.1454	0.5778	-0.2928	0.042^{*}
C8	$0.39004(13)$	$0.09802(14)$	$-0.1751(2)$	$0.0342(4)$
H8	0.3435	0.1069	-0.2796	0.041^{*}
C9	$0.34268(13)$	$0.11333(14)$	$-0.0195(2)$	$0.0352(4)$
H9	0.2573	0.1339	0.0027	0.042^{*}
C4	$1.13997(13)$	$0.41653(15)$	$-0.1333(2)$	$0.0363(4)$
H4	1.2207	0.3772	-0.1448	0.044^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0281(5)$	$0.0435(6)$	$0.0395(6)$	$-0.0110(4)$	$-0.0058(4)$	$0.0054(5)$
O2	$0.0326(6)$	$0.0343(6)$	$0.0447(6)$	$-0.0107(4)$	$-0.0120(4)$	$0.0087(4)$
C10	$0.0302(7)$	$0.0286(7)$	$0.0332(7)$	$0.0013(5)$	$0.0017(5)$	$-0.0035(5)$
C2	$0.0264(7)$	$0.0336(7)$	$0.0301(7)$	$-0.0008(5)$	$-0.0023(5)$	$0.0079(6)$
C7	$0.0291(7)$	$0.0315(7)$	$0.0281(7)$	$-0.0037(5)$	$-0.0017(5)$	$0.0057(5)$
C5	$0.0278(7)$	$0.0246(6)$	$0.0403(8)$	$0.0030(5)$	$0.0023(6)$	$0.0017(6)$
C1	$0.0276(7)$	$0.0332(7)$	$0.0312(7)$	$-0.0041(5)$	$0.0004(5)$	$-0.0012(6)$
C6	$0.0285(7)$	$0.0241(6)$	$0.0353(8)$	$-0.0024(5)$	$-0.0060(5)$	$0.0037(5)$
C3	$0.0311(7)$	$0.0438(8)$	$0.0310(7)$	$-0.0054(6)$	$0.0067(6)$	$0.0003(6)$
C8	$0.0313(7)$	$0.0279(7)$	$0.0424(8)$	$-0.0039(6)$	$-0.0124(6)$	$0.0100(6)$
C9	$0.0253(7)$	$0.0271(7)$	$0.0530(9)$	$0.0041(5)$	$-0.0012(6)$	$0.0042(6)$
C4	$0.0278(7)$	$0.0405(8)$	$0.0411(8)$	$0.0040(6)$	$0.0075(6)$	$-0.0050(6)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 1$	1.4261 (16)
$\mathrm{O} 1-\mathrm{HO} 1$	0.82
$\mathrm{O} 2-\mathrm{C} 6$	$1.4248(16)$
$\mathrm{O} 2-\mathrm{HO} 2$	0.82
$\mathrm{C} 10-\mathrm{C} 9$	$1.520(2)$
$\mathrm{C} 10-\mathrm{C} 6$	$1.5490(18)$
$\mathrm{C} 10-\mathrm{C} 7^{\mathrm{i}}$	$1.5728(18)$
$\mathrm{C} 10-\mathrm{H} 10$	0.98
$\mathrm{C} 2-\mathrm{C} 3$	$1.5183(18)$
$\mathrm{C} 2-\mathrm{C} 1$	$1.5542(19)$
$\mathrm{C} 2-\mathrm{C} 5$	$1.567(2)$
$\mathrm{C} 2-\mathrm{H} 2$	0.98
$\mathrm{C} 7-\mathrm{C} 8$	$1.5178(18)$
$\mathrm{C} 7-\mathrm{C} 6$	$1.5469(19)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{HO} 1$	109.5
$\mathrm{C} 6-\mathrm{O} 2-\mathrm{HO} 2$	109.5
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 6$	$95.61(11)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 7^{\mathrm{i}}$	$110.40(11)$
$\mathrm{C} 6-\mathrm{C} 10-\mathrm{C} 7^{\mathrm{i}}$	$112.38(11)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10$	112.4
$\mathrm{C} 6-\mathrm{C} 10-\mathrm{H} 10$	112.4
$\mathrm{C} 7^{\mathrm{i}}-\mathrm{C} 10-\mathrm{H} 10$	112.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$95.56(11)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 5^{\mathrm{ii}}$	$110.74(11)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5^{\mathrm{ii}}$	$111.67(11)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	112.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	112.6
$\mathrm{C} 5{ }^{\mathrm{ii}}-\mathrm{C} 2-\mathrm{H} 2$	112.6

C7-H7	0.98
C5-C4	1.5227 (18)
C5-C1	1.5469 (19)
C5-C2 ${ }^{\text {ii }}$	1.567 (2)
C5-H5	0.98
$\mathrm{C} 1-\mathrm{H} 1$	0.98
C6-H6	0.98
C3-C4	1.324 (2)
C3-H3	0.93
C8-C9	1.320 (2)
C8-H8	0.93
C9-H9	0.93
C4-H4	0.93
C2 ${ }^{\text {iii }}$ - $\mathrm{C} 5-\mathrm{H} 5$	112.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 5$	118.51 (12)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	119.82 (11)
C5- $\mathrm{C} 1-\mathrm{C} 2$	97.34 (10)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1$	106.7
C5- $\mathrm{C} 1-\mathrm{H} 1$	106.7
C2- $\mathrm{C} 1-\mathrm{H} 1$	106.7
O2-C6-C7	119.86 (11)
$\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 10$	118.46 (11)
C7-C6-C10	97.50 (10)
O2-C6-H6	106.6
C7- $\mathrm{C} 6-\mathrm{H} 6$	106.6
C10-C6-H6	106.6
C4-C3-C2	109.17 (12)

sup-4

$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$95.63(11)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 10^{\mathrm{i}}$	$110.29(11)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 10^{\mathrm{i}}$	$111.38(11)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$	112.8
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	112.8
$\mathrm{C} 10^{\mathrm{i}}-\mathrm{C} 7-\mathrm{H} 7$	112.8
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 1$	$95.60(11)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 2 \mathrm{ii}$	$110.56(11)$
$\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 2 \mathrm{ii}$	$112.16(11)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	112.5
$\mathrm{C} 1-\mathrm{C} 5-\mathrm{H} 5$	112.5

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $-x+2,-y+1,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H}^{\cdots} A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{HO} 1 \cdots \mathrm{O}^{\mathrm{iii}}$	0.82	1.95	$2.7452(15)$	163
$\mathrm{O} 2 — \mathrm{HO} 2 \cdots \mathrm{O} 1$	0.82	1.99	$2.8005(14)$	170

Symmetry codes: (iii) $x,-y+1 / 2, z-1 / 2$.

$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	125.4
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	125.4
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$109.28(12)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8$	125.4
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	125.4
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$109.46(12)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9$	125.3
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9$	125.3
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$109.41(12)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	125.3
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	125.3

supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

