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Mutation-derived neoantigens are now established as attractive targets for cancer
immunotherapy. The field of adoptive T cell transfer (ACT) therapy was significantly
reshaped by tumor neoantigens and is now moving towards the genetic engineering of
T cells with neoantigen-specific T cell receptors (TCRs). Yet, the identification of
neoantigen-reactive TCRs remains challenging and the process needs to be adapted
to clinical timelines. In addition, the state of recipient T cells for TCR transduction is critical
and can affect TCR-ACT efficacy. Here we provide an overview of the main strategies for
TCR-engineering, describe the selection and expansion of optimal carrier cells for TCR-
ACT and discuss the next-generation methods for rapid identification of relevant TCR
candidates for gene transfer therapy.
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INTRODUCTION

Pioneered by Rosenberg and colleagues, adoptive cell transfer (ACT) therapy is an immunotherapy
strategy relying on the infusion of autologous tumor-infiltrating lymphocytes (TILs) to cancer
patients. ACT demonstrated promising clinic outcomes in melanoma; with durable responses in 10-
20% of patients (1, 2). Despite this progress, however, the majority of patients does not respond (3,
4) and the efficacy of ACT remains limited to melanoma and cervical cancer (5). One of the possible
reasons for this limitation is the low frequency of antigen-specific T cells in TILs (1–3, 6–8).
Furthermore, the proportion of bystander (i.e. tumor unrelated) TILs, such as viral-specific T cells,
can be quite high in cellular products (9). Also, it was recently demonstrated that current cell culture
conditions do not lead to a consistent clonal expansion of ex vivo TILs but rather lead to a biased
immune repertoire (10). Altogether, these observations brought on the hypothesis that the
proliferative potential of tumor antigen-reactive TILs is likely to be limited, therefore leading to
their relative dilution in vitro by overgrowing bystander TILs.

To circumvent these issues, the field is moving towards the genetic engineering of T cells to express
either chimeric antigen receptors (CARs) (11) or tumor antigen-specific T cell receptors (TCRs)
(Figure 1) (12–17). CD19-targeting CAR T cells mediated complete responses in about 80% of patients
with B cell acute lymphoblastic leukemia cancer (18). Yet, CARs target tissue-restricted antigens
expressed on the surface of tumor cells (19), thus limiting their applications (20), while TCR-transduced
org July 2021 | Volume 12 | Article 7016361

https://www.frontiersin.org/articles/10.3389/fimmu.2021.701636/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.701636/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.701636/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:marion.arnaud@unil.ch
mailto:alexandre.harari@chuv.ch
https://doi.org/10.3389/fimmu.2021.701636
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.701636
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.701636&domain=pdf&date_stamp=2021-07-30


Arnaud et al. Personalized TCR Gene Transfer Therapy
cells can target any surface or intracellular antigen. In this report, we
will focus on TCR-based cellular immunotherapy (Figure 1).

TCRs are heterodimers consisting of disulfide-linked a and b
chains, each with a variable and a constant domain (21, 22). The
variable regions can bind the antigen-MHC complex. The
binding domain is constructed based on the recombination of
multiple gene segments, leading to the great diversity of the TCR
repertoire, with potentially >1015 distinct ab TCRs (23–25). TCR
gene-transfer therapy targeting tumor-associated antigens
(TAAs), such as MART-1 and NY-ESO-1, achieved clinical
responses ranging from about 10 to 60% of patients from
different malignancies (12, 14, 26, 27). Despite these promising
clinical outcomes, efficacy remained limited and important
toxicities occurred (13, 27, 28). The field was then rejuvenated
by the perspective of using TCRs targeting private neoantigens,
which have emerged as clinically relevant targets (29, 30). In this
review, we will discuss several issues including the common tools
used for cells transduction, the optimal cells to transduce for
ACT and the acceleration of the identification of relevant tumor-
specific TCRs for gene transfer therapy.
STRATEGIES FOR TCR-ENGINEERING
OF T CELLS

Viral Vectors
As for CAR-T cell based therapy, viral vectors were widely exploited
for ex vivo TCR gene transfer into recipient T cells (Figure 2).
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In clinical trials, the most common viral systems used are gamma
retrovirus- (RV) and lentivirus-based vectors (LV), as reviewed in
(31). Both RVs and LVs allow for stable integration and efficient
long-term expression of exogenous TCRs. However, safety concerns
to RVs and LVs remained, that are mainly insertional mutagenesis
and neoplastic transformation (32), as well as generation of
replication-competent viral particles. The latter limitations
boosted the development of novel vector designs, such as addition
of insulator sequences (33), disruption of the long terminal repeats
for self-inactivating viral vectors (34, 35) or pseudotyping (36). Of
note, RV transduction requires mitotic cells for the transgene to
penetrate the nucleus and integrate in the genome and thus
recipient cells must be activated beforehand. Conversely, LVs
allow the effective transduction of a variety of not actively
dividing and terminally differentiated cells. Yet, human resting T
cells are scarcely susceptible to transduction by LVs and need to be
minimally stimulated to enter the G1b phase (37, 38). Importantly.
several studies highlighted a positive correlation between the
proliferative potential of adoptively transferred cells and their in
vivo persistency (1), sustaining the use of LVs in the clinic to limit
recipient cell stimulation in vitro.

As alternative to RVs and LVs, adeno-associated virus-
derived vectors (AAVs) can be used for TCR-engineering.
AAVs are replication-deficient systems and are not known to
induce any side effects, making them ideal candidates from a
safety standpoint. AAV-based cancer treatments have not yet
been used in the clinic, however multiple strategies have been
developed and hold great promise for the future (39–41). It is to
A

B

D

C

FIGURE 1 | Overview of TCR-based immunotherapy. (A) Expansion of T cells from tumor or blood samples of patient or healthy donors. (B) Identification of antigen-
specific or tumor-reactive T cells and of cognate T cell receptors (TCRs). (C) Transduction of autologous or allogenic carrier cells. (D) Adoptive cell transfer of TCR-
engineered cells to the patient.
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be noted that vector manufacturing remains time consuming
(over six months) and expensive (42).

Non-Viral Systems
Non-viral methods for stable gene transfer into T cells were
investigated in CAR-T clinical trials and represent a future
opportunity for TCR gene transfer clinical studies. Non-viral
engineering strategies include transposon-based vector systems,
such as “Sleeping Beauty”, by which a transgene of interest
flanked by inverted terminal repeats is provided to target cells
as discrete DNAmolecule and randomly integrates in its genome
when a transposase is co-supplemented in trans (i.e. mRNA,
plasmid or protein) (43). Over the past decades, transposons and
transposases have been extensively optimized to increase their
activity and reduce toxicity (e.g. insertional mutagenesis) (44).
Alternatively, exogenous TCRs can be transiently expressed
in trans if transfected into T cells in the form of mRNA
molecules or non-integrating vectors (45, 46). All these non-viral
systems may be preferable to viral ones for the clinic because of
their easier handling and cheaper production costs. Of important
Frontiers in Immunology | www.frontiersin.org 3
note, gene editing of T cells with TCRs, as opposed to CARs,
has to face an extra challenge. Mispairing of exogenous and
endogenous TCR chains can indeed occur and lead to off-target
toxicity. Researchers have therefore developed several platforms
to specifically silence the expression of the endogenous TCR,
based on Sleeping Beauty, Zinc finger nucleases (47),
transcription activator-like effector nucleases (TALEN) (48,
49), mega-nucleases or Clustered Regularly-Interspaced Short
Palindromic Repeats (CRISPR)–Cas9 (50, 51) (Figure 2).

The CRISPR-Cas9 technology relies on short RNA sequences
which are used to target the site of insertion instead of proteins
and which are easily synthesized in vitro. As such, CRISPR-Cas9
enables the simultaneous targeting of multiple genome sites and
site-specific mutagenesis, allowing the knockout (KO) of
endogenous TCRs or of immune checkpoint such as PD-1 (52)
and the induction of cytokine expression (e.g. IL-7, IL-12, IL-15,
IL-18) (17) (Figure 2). The safety and feasibility of multiplex
CRISPR-Cas9 gene editing of T cells was demonstrated in a study
with advanced refractory cancer patients infused with autologous
T cells KO for the three genes TRAC, TRBC and PDC1
FIGURE 2 | Overview of main strategies to identify relevant TCRs, methods for transduction and options of carrier cells. (A) Identification of TCR candidates via
functional assays and sequential isolation of neoantigen-specific T cells based on pMHC multimer staining. Isolated neoantigen-reactive T cells can then be
sequenced in bulk for the identification of dominant TCR clonotypes (1). Alternatively, tumor-specific TCRs can be identified directly from ex vivo fresh tumor, without
intermediate culture, by sorting T cells by flow cytometry and performing single-cell TCR sequencing (2). (APC, antigen presenting cell; MHC, major histocompatibility
complex; LP, long peptide; TMG, tandem minigene). (B) Several carrier cells can be used for TCR transduction, including ab (CD4 or CD8) T cells, naïve or central
memory cells, NK cells, gd T cells and induced-pluripotent stem cells (iPSCs). Carrier cells can be derived from healthy donor or patient blood. (C) TCR engineering
into carrier cells can be obtained via viral (1) or non-viral vectors [such as CRISPR-Cas9 (2) or Sleeping Beauty (3)]. Additional modifications of cells to enhance their
functionality and in vivo persistency but also avoid TCR mispairing can be performed, such as the knock-out of endogenous TCR or immune inhibitor genes and the
induction of cytokines (4).
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(PD-1 loci) and transduced with a NY-ESO1 TCR (53). Of
interest, the KO by CRISPR-Cas9 of cytokine-induced SH2
protein (CISH), an immune checkpoint, was found to increase
the in vitro proliferation and functionality of TCR-engineered T
cells and such strategy will be further explored in an upcoming
clinical trial (NCT04426669) (54). Despite technical challenges
which still need to be overcome, in particular regarding the
delivery systems currently based on AAV and transfection (55–
59), CRISPR-Cas9 will likely become the method of choice for
therapeutic gene engineering in the upcoming years.
SELECTION AND EXPANSION OF
OPTIMAL CELLS FOR ACT

T Cells
T lymphocytes are the most common source of cells used as
carrier for gene transfer therapy. Following TCR engineering
into recipient cells, TCR-T cells need to be expanded to reach
sufficient numbers for ACT. The primary starting material is
most often autologous peripheral blood (Figure 2).

Thus far, TCR gene therapy mainly focused on CD8 T cells,
which represent key players of ACT. In particular, a retrospective
analysis of TIL ACT infusion products and clinical efficacy from
92 patients highlighted an association between the fraction of
CD8 T cells and clinical benefit (60). There is, however, an
emerging clinical relevance of CD4 T cells. Early evidence was
provided by Tran and colleagues who showed the antitumor
potential of neoantigen-specific CD4 TILs by ACT (61). Of
interest, the direct cytolytic capacity of CD4 T cells was
demonstrated (62–64). In addition, CD4 T cell’s help is
essential to generate efficient tumor-reactive effector CD8 T
cells (65), notably during the process of epitope spreading (29,
66). Yet TCR gene transfer therapy with CD4 tumor-specific
TCRs is also limited by the challenging prediction and detection
of MHC class II-restricted neoantigen-specific CD4 T cells,
despite major advances (67, 68).

T cell differentiation state is critical for ACT. The profile of
adoptively-transferred cells is indeed likely to affect their in vivo
persistency and thus treatment efficacy. T cell differentiation
states range from naïve to central memory, effector memory and
finally terminally differentiated (EMRA) (69). Accumulating
evidence shows that the effector phenotype acquired in vitro
negatively impacts the antitumor potential of T cells in vivo (70),
while ACT efficacy requires a long-term persistence of
transferred cells. Thus, less-differentiated T cell populations
that maintain self-renewal capabilities are preferred and were
associated with improved clinical benefit (71, 72). Naïve and
memory T cells maintain the highest proliferative potential
combined to the most potent fitness and stemness (73–76)
(Figure 2). Consistently, naïve and memory subsets were
found more effective than effector T cells for ACT (70, 74–77).
Furthermore, Hinrich and colleagues have demonstrated that
naïve CD8 T cells had a higher anti-tumor potential for ACT as
compared to central memory cells (77).
Frontiers in Immunology | www.frontiersin.org 4
The T cell state is also modulated during the expansion phase
in vitro. TCR-transduced T cells are commonly expanded with
anti-CD3/CD28 beads in the presence of IL-2 (12, 38, 78). It has
been demonstrated that the addition to the culture medium of
alternative cytokines, such as IL-7, IL-15 and/or IL-21, enabled to
the generation of less-differentiated TCR-engineered T cells thus
leading to increased persistency and ultimately improved efficacy
(71, 79–81).

Autologous T cells are available in limited quantities and their
state is likely to be affected by the multiple rounds of cancer
treatments which patients undergo before ACT, complicating the
manufacturing process and the feasibility of TCR gene transfer
therapy. Therefore allogenic universal T cells have also been
exploited for gene transfer therapy (82) (Figure 2). A few issues
are to be noted, including competition with endogenous TCRs,
mispairing of TCR subunits, risk of off-target toxicity due to
allogenic TCR-T cell infusion and ACT product rejection by the
host (83). It is thus required to KO endogenous TCRs to improve
the safety and efficacy of TCR-ACT with allogenic cells (49). For
all these reasons, several alternative non-T cell types
were evaluated.

Alternative to Autologous ab T Cells
Mensali and colleagues provided the first proof of concept that
cells other than ab T cells could be used as recipient cells for
TCR gene therapy. They transferred a TCR into NK cell line,
NK-92, and demonstrated efficacy in vivo (84). More recently,
Parlar and coworkers have engineered NK cells with a
tyrosinase-specific TCR and highlighted their cytolytic
potential in vitro (85). A potential benefit of using NK cells as
a carrier is their ability to remain cytotoxic in an MHC-
independent manner. This could be of interest in case of MHC
loss, which is a common immune suppressive mechanism
exerted by tumors (86). Alternatively, gd T cells can also be
TCR-engineered (Figure 2), thus avoiding the issue of TCR
mispairing. The latter strategy was proven efficient in leukemia
(87). Furthermore, as T cell exhaustion is a critical component of
ACT efficacy, there is an increasing interest in using induced-
pluripotent stem cells (iPSCs) for gene transfer therapy
(Figure 2). Nishimura and colleagues were able to generate
iPSCs from antigen-specific CD8 T cells and to re-differentiate
them. In this way, they obtained rejuvenated cells with longer
telomeres and a high proliferative potential, making them fitter
for therapy (88). The efficacy of TCR-engineered iPSCs was
shown in vivo (89).
IDENTIFICATION OF RELEVANT TCRS
FOR GENE TRANSFER THERAPY

As mentioned previously, neoantigens are attractive targets for
TCR-based therapy. To date, most neoantigens originated from
non-synonymous mutations. T cell reactivity to neoantigens was
associated with improved clinical benefit of immunotherapy, both
immune checkpoint blockade (90–92) and ACT (93–95). Early
reports showed promising results in terms of safety, feasibility and
July 2021 | Volume 12 | Article 701636
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efficacy with neoantigen targeting immunotherapy either in the
form of vaccination (29, 96–98) or ACT (30, 99). Strikingly,
complete remissions were observed following infusion of
neoantigen-reactive T cells, highlighting the potency of
mutanome based therapies (30, 99).

The first key challenge lies in the identification of
neoantigens, which is a long and tedious process and was
reviewed elsewhere (100). Upon neoantigen identification,
neoepitope-specific T cells are purified and their TCR is
sequenced. Candidate TCRs are then cloned to validate their
antigen specificity and tumor reactivity (Figure 2).

Neoantigen Identification
Neoantigen-specific T cells, and hence their cognate TCR, can be
identified in different samples including tumor or blood from
patient or naïve T cells from healthy donors. Briefly, neoantigens
can be identified from expanded TILs (7, 95, 101). However, due
to low frequencies, sensitive detection sometimes requires
antigen-specific in vitro stimulation (IVS). Of interest, we
developed a novel strategy to improve the detection of
neoantigens in TILs, based on the addition of pools of
predicted neo-epitopes at the initiation of the TIL culture (7).
Alternatively, TILs can be enriched prior to culture by sorting of
dissociated tumor material ex vivo, based on various activation
markers like PD-1 (CD279), OX40, CD137 (4-1BB), CD39 and
CD103 (102–106).

Peripheral blood lymphocytes (PBLs) can also be exploited
for neoantigen identification. IVS with antigen presenting cells
(APC) loaded with neoantigen candidates have been extensively
used to detect neoantigen reactivity (7, 30, 96, 107–110). Prior
enrichment strategies have also been used by different groups
including: the isolation of memory (107) or naïve T cells (108) or
the sorting with PD-1 (109). Most identification processes use
PBLs from autologous origin but it has been shown to be possible
from allogenic sources as well (108).

Neoantigen-Specific T Cell Isolation and
TCR Repertoire Analysis
Upon their identification, neoantigen-specific T cells can be
purified based on pMHC multimer staining or based on the
up-regulation of activation markers following specific-activation,
such as 4-1BB and OX40 (7, 107, 108, 111, 112). Isolated cells
then undergo bulk a and b TCR sequencing in order to select the
dominant a and b TCR clonotypes. Of note, TCR repertoire
analysis strategies are challenging due to the high diversity of
TCR repertoires (113). Advances in next-generation sequencing
has improved the interpretation of TCR repertoires. Using RNA
as a source of material allows allelic exclusion thereby avoiding to
overestimate repertoires diversity. RNA is also more sensitive
than DNA despite being less quantitative due to variation in
expression levels (114). Among the different sequencing
methods, multiplex polymerase chain reaction (PCR) (115)
remains the most commonly used strategy, despite
misrepresentation of clonotypes proportion introduced by
heterogeneity in primers efficiency (116). Other approaches
rely on the addition of adaptors prior to PCR amplification
Frontiers in Immunology | www.frontiersin.org 5
(117, 118), such as the 5’ RACE PCR or TCR amplification
following gene capture (119). For each method, the bias in
quantification reduces the ability for easy pairing of a and b
chains, which is required for therapeutic applications. A concept
based on multiple sequencing and combinatorial analysis was
developed to pair ab TCR chains, yet this strategy is limited to
high-frequency clonotypes and requires large cell numbers (120).
To avoid the above-mentioned limitations, both T cell cloning or
single-cell sequencing can be used.

Antigen Specificity Validation of Candidate
TCR Pairs
Interrogation of neoantigen-specificity and antitumor-reactivity
of candidate TCRs can be assessed following the expression of
TCR candidates into recipient cells, a strategy hereafter referred
as TCR cloning. Antigen-specificity can be challenged by
transducing TCRs into activated PBLs or Jurkat T cells which
are then co-cultured with APCs loaded with neoantigens (29, 86,
94, 95, 99, 101, 102, 107, 121–123). Next, tumor-reactivity can be
measured by co-culture of TCR-engineered T cells with
autologous tumor cells or APCs pulsed with tumor lysate (86,
94, 101, 102, 121, 124, 125). To enable a rapid identification of
neoantigen-reactive TCRs, Paria and colleagues have developed a
TCR cloning methodology using Jurkat T cells electroporated
with RNAs encoding TCR a and b chain, respectively (126). The
benefit of this approach lies in the use of RNA electroporation,
which is faster and more efficient than TCR transduction by
genetic engineering. TCR expression is transient but sufficient for
TCR interrogation. Interestingly, they used the Jurkat luciferase
system (under NFAT promotor) which is a rapid and easy
read-out.

Of important note, the reactivity of validated neoantigen-
specific TCRs to the wild-type peptide should be evaluated to
avoid autoimmunity and thus ensure patient safety. This can
done by performing a peptide dose response with APCs (86, 94,
95, 99, 102, 107). Another method consists of using a high-
throughput genetic platform (127).

Selection of Tumor-Specific TCRs By
Single-Cell Technologies
As an alternative to the aforementioned time-consuming
strategies (based on TCR isolation and downstream TCR
validation), new developments enable the direct identification
of tumor-specific TCRs by pre-selecting the most frequent
clonotypes from fresh tumor samples (121) (Figure 2).
Selected ab TCR pairs are then challenged against tumor cells
by TCR cloning. Others have however found that the tumor
reactivity of intra-tumoral TCR repertoire was low (125),
highlighting a potential limitation of using this strategy for
gene transfer therapy. Identified tumor-reactive TCRs can then
be examined retrospectively for antigen specificity using ligand
discovery approaches, based for instance on trogocytosis, a
process in which T cells exchange membrane proteins with
APC presenting candidate antigens (128). Other possibilities
for TCR ligand discovery include the use of chimeric signaling
and antigen presenting bifunctional receptors (SABRs) (129).
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It is to be noted that the development of microfluidic-based
platforms will accelerate and automate the isolation of relevant
TCRs for TCR-ACT in the near future (130–132).

Instead of direct TCR identification, combined single-cell
transcriptomics and TCR sequencing (133) could be exploited
to define intra-tumoral signatures of neoantigen-specific or
tumor-reactive TCRs (134). Old-generation single-cell
methodologies are tedious and allow the sequencing of a
limited number of cells (135, 136). Single-cell TCR sequencing
and profiling of T cells was recently eased by the development of
a commercially available strategy by 10x Genomics (137–139).
Briefly, the latter microfluidic-based technology is able to
generate an emulsion containing one trapped cell with a
uniquely barcoded bead and, upon cell lysis polyadenylated
mRNA is captured. The process results in barcoded libraries,
which undergo both downstream single-cell TCR sequencing
and transcriptomic profiling. Overall, 15’000-20’000 cells can be
covered. The 10x Genomics strategy allows the analysis of clones
in a timely manner and was applied for the identification of a
signature of clone persistency in the circulation after ACT (140).
In the near future, intra-tumoral signatures of neoantigen and/or
tumor-reactive TCRs may be defined based on a comprehensive
database of TCRs combined to their ex vivo transcriptomic
profiling. We foresee that these signatures will enable the
direct identification of relevant TCR pairs from ex vivo tumor,
which will considerably facilitate and accelerate the selection of
TCR candidates for gene transfer therapy.
DISCUSSION AND FUTURE
PERSPECTIVES

In this review, we provided an overview of the available
therapeutic engineering systems, but also of the optimal carrier
cells for TCR gene transfer therapy, and finally we described
strategies to identify new TCR candidates. The field is constantly
evolving and future advances are likely to reshape the landscape
of TCR-ACT. Multiple clinical trials are currently ongoing in
different types of cancer (17) and the results are awaited with
much anticipation. In the future, we could take advantage of
unique intra-tumoral transcriptomic signatures from identified
Frontiers in Immunology | www.frontiersin.org 6
neoantigen-specific or tumor-reactive TCRs. These signatures
may then be used to directly and rapidly fish out TCRs of interest
for gene transfer therapy. Challenges of TCR-ACT remain,
in particular immune-editing following therapy, ultimately
leading to immune evasion and progression (86). To increase
the efficacy of TCR-ACT therapy and counter potential immune-
editing, multiple TCRs should be targeted, which is currently
possible with the CRISPR-Cas9 technology. Future strategies
may also focus on the simultaneous targeting of MHC-restricted
epitopes together with membrane antigens. Importantly, to
extend the reach of therapy and benefit more cancer patients,
‘shared’ neoantigens (141, 142) arising from ‘hotspots’mutations
shared between unrelated individuals should be preferentially
targeted and these approaches will be further explored in
upcoming clinical trials (e.g. NCT03190941). Additionally, it is
likely that next-generation improvement of carrier cells will
further potentiate TCR-ACT efficacy. Given the plethora of
existing technologies and their constant amelioration, together
with the many ongoing clinical trials, we expect the immune-
oncology field to be fundamentally modified by TCR gene
transfer therapy in the upcoming years.
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