
fncir-13-00036 May 13, 2019 Time: 14:58 # 1

ORIGINAL RESEARCH
published: 15 May 2019

doi: 10.3389/fncir.2019.00036

Edited by:
Nicoletta Berardi,

Italian National Research Council
(CNR), Italy

Reviewed by:
Jingxin Nie,

South China Normal University, China
Gang Li,

The University of North Carolina
at Chapel Hill, United States

*Correspondence:
Xi Jiang

xijiang@uestc.edu.cn;
superjx2318@gmail.com

Received: 17 November 2018
Accepted: 02 May 2019
Published: 15 May 2019

Citation:
Yang S, Zhao Z, Cui H, Zhang T,

Zhao L, He Z, Liu H, Guo L, Liu T,
Becker B, Kendrick KM and Jiang X

(2019) Temporal Variability of Cortical
Gyral-Sulcal Resting State Functional

Activity Correlates With Fluid
Intelligence.

Front. Neural Circuits 13:36.
doi: 10.3389/fncir.2019.00036

Temporal Variability of Cortical
Gyral-Sulcal Resting State
Functional Activity Correlates With
Fluid Intelligence
Shimin Yang1, Zhongbo Zhao1, Han Cui1, Tuo Zhang2, Lin Zhao2, Zhibin He2, Huan Liu2,
Lei Guo2, Tianming Liu3, Benjamin Becker1, Keith M. Kendrick1 and Xi Jiang1*

1 The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science
and Technology, University of Electronic Science and Technology of China, Chengdu, China, 2 School of Automation,
Northwestern Polytechnical University, Xi’an, China, 3 Department of Computer Science, Bioimaging Research Center,
The University of Georgia, Athens, GA, United States

The human cerebral cortex is highly convoluted as convex gyri and concave sulci. In
the past decades, extensive studies have consistently revealed substantial differences
between gyri and sulci in terms of genetics, anatomy, morphology, axonal fiber
connections, and function. Although interesting findings have been reported to date
to elucidate the functional difference between gyri and sulci, the temporal variability
of functional activity, which could explain individual differences in learning and higher-
order cognitive functions, and as well as differences in gyri and sulci, remains to be
explored. The present study explored the temporal variability of cortical gyral-sulcal
resting state functional activity and its association with fluid intelligence measures on the
Human Connectome Project dataset. We found that the temporal variance of resting
state fMRI BOLD signal was significantly larger in gyri than in sulci. We also found that
the temporal variability of certain regions including middle frontal cortex, inferior parietal
lobe and visual cortex was positively associated with fluid intelligence. Moreover, those
regions were predominately located in gyri rather than in sulci. This study reports initial
evidence for temporal variability difference of functional activity between gyri and sulci,
and its association with fluid intelligence measures, and thus provides novel insights to
understand the mechanism and functional relevance of gyri and sulci.

Keywords: functional activity, temporal variability, cortical folding, gyri and sulci, resting state fMRI,
fluid intelligence

INTRODUCTION

One of the most prominent organization principles of the human cerebral cortex lies in its highly
convoluted folding patterns which are composed of convex gyri and concave sulci (Barron, 1950;
Rakic, 1988; Zilles et al., 1988; Welker, 1990). The past decades have witnessed a variety of
hypotheses regarding the complex gyrification process, including cortex area increase and compact
wiring (Zilles et al., 2013), genetic regulation (Rakic, 2004), differential laminar growth (Richman
et al., 1975), and axonal fiber tension (Van Essen, 1997). Although the precise mechanisms of
gyrification process are still under debate, a growing number of studies suggests substantial
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differences between gyri and sulci in terms of genetics (Stahl
et al., 2013; Zeng et al., 2015), anatomy (Fischl and Dale, 2000;
Li et al., 2015), morphology (Magnotta et al., 1999; Hilgetag
and Barbas, 2005), and axonal fiber connections (Van Essen,
1997; Nie et al., 2012; Takahashi et al., 2012; Chen et al.,
2013; Deng et al., 2014; Zhang et al., 2014; Li et al., 2015;
Ge et al., 2018). For instance, cortical thickness is significantly
larger in gyri than in sulci in both human developing infant
(Li et al., 2015) and adult brains (Fischl and Dale, 2000). The
axonal connectivity and gene expression patterns are significantly
different between cerebellum gyri and sulci of rodent brains
(Zeng et al., 2015). The diffusion weighted imaging derived
axonal fibers concentrate significantly more on gyri than on sulci,
which is developmentally and evolutionarily consistent across
human fetus, human adult, chimpanzee, and macaque brains
(Nie et al., 2012; Takahashi et al., 2012), and was supported
by histology and dissection studies (Xu et al., 2010; Budde and
Annese, 2013). The diffusion weighted imaging derived axonal
fiber connection strength is strong between gyral–gyral regions,
weak between sulcal–sulcal regions, and moderate between gyral-
sulcal regions (Deng et al., 2014). Moreover, previous studies have
reported that the morphological feature of gyri and sulci changes
during aging (Magnotta et al., 1999) and development-related
psychiatric disorders such as schizophrenia (White et al., 2003),
reflecting a potential of gyral-sulcal indices as a biomarker for
developmental and aging related disorders.

Given the close relationship between brain structure and
function (Passingham et al., 2002; Zhang et al., 2011) and with
the development of advanced in vivo functional neuroimaging
such as functional MRI (fMRI) (Biswal et al., 1995; Logothetis,
2008; Friston, 2009), the functional characteristics of gyri and
sulci has gained increasing interests in recent years (Deng et al.,
2014; Jiang et al., 2015, 2018a,b; Liu et al., 2017, 2018; Zhang et al.,
2018). A multi-modal diffusion tensor imaging (DTI) and fMRI
study has reported that both structural fiber connectivity and
functional connectivity are strong between gyral–gyral regions,
weak between sulcal–sulcal regions, and moderate between gyral-
sulcal regions in the whole-brain, suggesting that gyri represent a
global functional hub and sulci a local function processing unit
(Deng et al., 2014). The heterogeneous functional regions which
are activated during multiple task conditions locate significantly
more in gyri than in sulci under both temporal stationary (Jiang
et al., 2015) and dynamics (Jiang et al., 2018a). The graph-
theoretic characteristics of functional interaction (Liu et al.,
2017) and functional signal reconstruction accuracy (Jiang et al.,
2018b) are also different between gyri and sulci. In addition,
recent studies using advanced deep learning methodologies have
reported the frequency-specific pattern differences between gyri
and sulci (Liu et al., 2018; Zhang et al., 2018).

In spite of these aforementioned interesting findings, the
temporal variability of functional activity of gyri and sulci
still remains to be explored. Instead of characterizing the
static functional activity by simply averaging the fMRI blood-
oxygen level-dependent (BOLD) signal, a growing number of
recent studies have shown the temporal-varying dynamics of
spontaneous neural activity within a single brain region as
well as the functional connectivity/interaction between brain

regions during both rest and task conditions (Gilbert and
Sigman, 2007; Chang and Glover, 2010; Garrett et al., 2010;
Protzner et al., 2010; Bassett et al., 2011, 2013, 2015; Smith
et al., 2011; Calhoun et al., 2014; Li et al., 2014; Zhang et al.,
2016; Vidaurre et al., 2017; Jiang et al., 2018a; Yuan et al.,
2018). The temporal variability of functional activity reflected
in neuroimaging fMRI signal could be related to the brain
learning skill (Bassett et al., 2011, 2013, 2015; Zhang et al.,
2016) and human intelligence (Saxe et al., 2018). Especially, fluid
intelligence, as a measure of higher-order relational reasoning
(Burgess et al., 2011), has been argued to be linked to specific
functional outcomes and to variations in human neuronal
structure and function (Duncan et al., 2000; Duncan, 2003,
2005). Previous studies have suggested that the higher temporal
variability of brain functional activity might be closely linked
with higher-order relational reasoning and learning (Bassett et al.,
2011, 2013, 2015; Zhang et al., 2016; Saxe et al., 2018). Therefore,
investigating the correlation between temporal variability in
the resting state fMRI signal and fluid intelligence measures
may allow to further determine whether intrinsic temporal
variations in brain activity are related to individual variations
in fluid intelligence. Taken together, investigating the temporal
variability characteristics of functional activity as well as its
associations with fluid intelligence on gyri and sulci could
provide novel insights to understand the functional relevance
of gyri and sulci.

To this end, the present study adopted 68 subjects with both
resting state fMRI and fluid intelligence measures data in the
publicly released Human Connectome Project (HCP) Q1 release
(Barch et al., 2013; Smith et al., 2013) to test the hypothesized
associations. We employed a previously evaluated approach
to divide the fMRI BOLD signal into non-overlapping time
segments in order to assess the temporal variability of functional
activity on each gyral/sulcal region by means of calculating the
variance of time series correlations among all time segments. To
determine the behavioral relevance of the temporal variability we
correlated the temporal variance with the available three fluid
intelligence measures across subjects. Based on previous study
(Duncan et al., 2000) reporting that frontal, parietal, and visual
cortex were involved in intelligence-related cognitive tasks, we
hypothesized that the temporal variability of functional activity
in frontal, parietal, and visual cortex would positively correlate
with the fluid intelligence measures. Furthermore, based on
previous studies reporting the functional difference between
gyri and sulci (Deng et al., 2014; Jiang et al., 2015, 2018a,b;
Liu et al., 2017, 2018; Zhang et al., 2018), we hypothesized
that the distribution of those brain regions would be different
between gyri and sulci.

MATERIALS AND METHODS

Participants, Image Acquisition, and
Data Preprocessing
We adopted all 68 subjects in the publicly released Human
Connectome Project (HCP) Q1 data (Barch et al., 2013;
Smith et al., 2013; Van Essen et al., 2013) to test our
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hypotheses. There were 18 males and 50 females ranging
from 22 to 35 years old. More demographic information was
referred to Van Essen et al. (2013). The resting state fMRI
(rsfMRI) BOLD signal was acquired using 3T “multiband”
accelerated EPI when subjects were instructed to be relaxed,
with eyes fixation on a white cross and not to fall asleep
(Smith et al., 2013). The major acquisition parameters of
rsfMRI data were as follows: 2 mm × 2 mm × 2 mm spatial
resolution, TR = 0.72 s, TE = 33 ms, flip angle = 52◦, 90 × 104
matrix, 72 slices, in-plane FOV = 208 mm × 180 mm, 1200
whole-brain volumes (14.4 min). The major preprocessing
steps of rsfMRI data included skull removal, motion
correction, slice time correction, and spatial smoothing
(Smith et al., 2013).

Moreover, we adopted the preprocessed grayordinate
rsfMRI data after the minimal preprocessing pipelines
(Glasser et al., 2013) provided in the HCP datasets. The
minimal preprocessing mainly included spatial artifacts
and distortions removal, cortical surface generation, cross-
subject registration to standard grayordinate space (Glasser
et al., 2013). Specifically, the grayordinate space included
both the cortical surface vertices and subcortical voxels
of whole-brain gray matter in the MNI standard space.
Each of the 60K grayordinate cortical surface vertices
was associated with a set of geometric attributes and
corresponding rsfMRI time series, and had correspondence
across different subjects. Note that the grayordinate data had
both high spatial and temporal resolution, thus can reliably
differentiate gyri/sulci and map the fMRI signals on gyri/sulci.
Therefore, it provided the prerequisite for the present study
to investigate the temporal variability of cortical gyral-sulcal
functional activity.

The fluid intelligence measures of the 68 subjects were
also provided in the HCP dataset (Barch et al., 2013). The
Penn Matrix Test was adopted to measure fluid intelligence
via non-verbal reasoning using Form A of an abbreviated
version of the Raven’s Progressive Matrices as detailed in
Bilker et al. (2012). Three measures were finally provided for
each subject: number of correct responses, median reaction
time for correct responses, and total skipped items (items not
presented due to maximum errors allowed reached in the test)
(Barch et al., 2013).

Cortical Surface Parcellation of Gyri and
Sulci
To investigate the potential difference of BOLD signal temporal
variability between cortical gyri and sulci, we first performed
cortical surface parcellation to classify the cortical vertices
into gyri and sulci. The average convexity (i.e., “sulc” map
in FreeSurfer) of each cortical vertex, defined as the signed
distance of the movement during inflation with the surface
normal (Fischl et al., 1999; Destrieux et al., 2010; Fischl, 2012),
was adopted to classify gyri and sulci in line with previous
studies (Jiang et al., 2015, 2018a,b; Liu et al., 2018; Zhang
et al., 2018). A single vertex with higher average convexity
value would be more likely to be classified as gyri and vice

versa, resulting in the highest convexity values in the crown
of gyri and lowest values in the fundi of sulci. Moreover,
there were transitional or intermixed areas between gyri crown
and sulci fundi. To avoid any ambiguity and to ensure the
accuracy of gyri/sulci parcellation, we set a threshold value q
for the convexity values of all cortical vertices in line with
previous studies (Liu et al., 2018; Zhang et al., 2018). The q%
vertices with highest convexity values would be classified as
gyri, and the q% vertices with lowest convexity values would
be classified as sulci. The remaining (100-2q)% transitional
vertices between gyri and sulci would be classified as “undefined”
(which means not defined as gyri or sulci). As a consequence,
the cortical surface was parcellated into three parts: gyri,
sulci, and undefined (Figure 1). We tested different threshold
values q ranging from 10 to 30 as shown in Figures 1A,B
shows the parcellated cortical surface from different views
when q = 30. The rsfMRI BOLD signal was then extracted
for each vertex on gyri/sulci/undefined region. It is noted that
our following temporal variability analyses were applied to the
spectrum of qs.

Temporal Variability Assessment of
Functional Activity on Cortical Gyri and
Sulci
To assess the temporal variability of functional activity on cortical
gyri and sulci, we divided the rsfMRI BOLD signal into non-
overlapping windows in line with previous study (Zhang et al.,
2016). The overlapping windows would introduce the common
signal segments for two consecutive windows and could bias
the correlation value of BOLD activity of the two consecutive
windows. The detailed framework is presented in Figure 2. For
a BOLD signal of gyri, sulci, or undefined region (Figure 2A),
it was divided into n non-overlapping windows with size l
(Figure 2B). We tested different window size l ranging from
25 to 200 to avoid arbitrary choice of window size. Within
the time window i, the BOLD signal segment was annotated
as SGi , SSi , and SUi for gyral, sulcal, and undefined vertex,
respectively (Figure 2B). For any pair of signal segments in
time window i and j (i, j = 1, 2, 3,. . ., n, i 6= j), we assessed
the similarity between the signal segments pair by means of
calculating the Pearson’s correlation coefficient (Figure 2C).
Taking the gyral vertex as an example, the correlation PCCG

i, j of
signal segments between time window i and j was defined as:

PCCG
i, j = corrcoef

(
SGi , SGj

)
, i, j = 1, 2, 3, . . . , n, i =/ j

(1)
We then defined the temporal variability of

BOLD signal by means of calculating the variance
of all correlation values between time window pairs
(Figure 2D):

Var
(
PCCG)

=

∑(
PCCG

i, j − PCCG
i, j

)2
/m, i, j =

1, 2, 3, . . . , n, i =/ j, m = n (n− 1) /2 (2)
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FIGURE 1 | Cortical surface parcellation of gyri, sulci, and undefined. (A) The parcellated cortical surface when the convexity threshold value q equals 10, 15, 20,
25, and 30, respectively. (B) The parcellated cortical surface when q equals 30 from another five different views.

FIGURE 2 | Temporal variability assessment of functional activity in cortical gyri, sulci, and undefined regions. (A) The parcellated cortical surface of gyri, sulci, and
undefined regions. (B) Segmented n non-overlapping time windows of each BOLD signal in gyri, sulci, and undefined regions. (C) Assessment of correlation
between any pair of signal segments in time windows. (D) Assessment of variance of all correlation values between time window pairs.

where PCCG
i, j is the mean correlation value. The potential

difference of BOLD signal temporal variability among gyri, sulci,
and undefined regions could then be assessed by means of
comparing the mean temporal variance values of all vertices
among the three groups. Since the fMRI signal represents
the amplitude of BOLD oscillation, the correlation between
different time windows of fMRI signals in Eq. (1) reflects the
oscillation similarity of BOLD activity between different time
windows. The Pearson’s correlation coefficient is not 0 across
time, indicating that there is oscillation association of BOLD
activity between different time windows. And the temporal
variance of the oscillation similarity of BOLD activity is finally
calculated among all time window pairs to assess the oscillation
change of BOLD activity during the entire period of the time
series in Eq. (2). A previous study (Zhang et al., 2016) has
demonstrated that the variability of a brain region is modulated
by its BOLD activity, the α band power of its EEG, and the

ratio of intra- to inter-community structural connections. The
temporal variability of BOLD signal is also suggested to learning
performance (Bassett et al., 2011, 2013, 2015; Zhang et al.,
2016) and intelligence (Saxe et al., 2018). Taken together, the
abovementioned method is reasonable to assess the temporal
variance of BOLD activity.

Correlation of Gyral-Sulcal Temporal
Variability With Fluid Intelligence
Measures
To investigate the association between temporal variability of
functional activity and the fluid intelligence, we performed
correlation analysis of the variance value of each vertex with
each of the three fluid intelligence measures. Specifically, since
each vertex of the grayordinate data had correspondence across
different subjects, we correlated the variance value of signal
temporal variability with each of the three fluid intelligence
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measures for each vertex. Those vertices with significant
correlation values were counted for gyri, sulci, and undefined
regions, respectively, in order to assess the distribution of those
vertices on gyri, sulci, and undefined regions. The potential
difference of significantly correlated vertex distribution among
gyri, sulci, and undefined regions could then be compared
across subjects. Note that we performed above-mentioned
comparisons in both whole-brain scale and region of interest
(ROI)-scale. The whole-brain scale comparison helped the
assessment of averaged gyri-sulci-undefined regions difference
across all brain regions, while the ROI-scale comparison enabled
the assessment of gyri-sulci-undefined regions difference within
the same brain region. Based on previous findings (Duncan
et al., 2000), we adopted four ROIs provided in the used
HCP dataset which are related to fluid intelligence: Rostral
Middle Frontal, SupraMarginal, Inferior Parietal, and Lateral
Occipital regions. Visualization of the four selected ROIs is in
Supplementary Figure 1.

RESULTS

Temporal Variability Difference Between
Gyri and Sulci
We found that the mean temporal variance of functional
activity was significantly larger in gyri, smaller in sulci,
and moderate in undefined regions across all brain
regions within a single subject (independent sample t-test,

p < 0.001, Bonferroni correction for multiple comparisons).
Remarkably, this finding was consistent in thirty different
combinations of six window size values (l = 25, 50, 75,
100, 150, and 200) and five convexity threshold values
(q = 10, 15, 20, 25, and 30) shown in Figures 3A–F,
respectively. More results of other subjects are provided in
Supplementary Figures 2 – 5.

Moreover, we obtained similar findings in ROI-scale
comparison. Within each of the four ROIs, the mean temporal
variance of functional activity was significantly larger in
gyri, smaller in sulci, and moderate in undefined regions
(independent sample t-test, p < 0.001, Bonferroni correction
for multiple comparisons). Figures 4A–D presents the mean
temporal variance among gyri, sulci, and undefined regions in
ten subjects within each of the four ROIs, respectively.

Reproducibility of Temporal Variability
Difference via Permutation Test
We further assessed the reproducibility of temporal variability
difference among gyral/sulcal/undefined vertices via permutation
test. For each subject, we randomly assigned all vertices
into 10% gyri, 10% sulci, and 80% undefined groups in
line with the convexity threshold value 10, and compared
the mean temporal variance of functional activity among the
three groups. The procedure was repeated for 1000 times.
We found that the mean temporal variance of functional
activity was still significantly larger in gyri, smaller in sulci,
and moderate in undefined regions (1000-time permutation

FIGURE 3 | Mean temporal variance difference of functional activity among gyri, sulci, and undefined regions across all brain regions in a single subject. (A–F) The
mean temporal variance of gyri, sulci, and undefined regions when window size equals 25, 50, 75, 100, 150, and 200, respectively. Within each sub-figure, five
convexity threshold values (10, 15, 20, 25, and 30) corresponding to five percentages of vertices (10, 15, 20, 25, and 30%) are tested. ∗∗∗ Indicates p < 0.001.
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FIGURE 4 | Mean temporal variance difference of functional activity among gyri, sulci, and undefined regions in ROI-scale in ten subjects. (A–D) The mean temporal
variance of gyri, sulci, and undefined regions in ten subjects within each of the four ROIs, respectively. ∗∗∗ Indicates p < 0.001.

independent sample t-test, p < 0.05, Bonferroni correction for
multiple comparisons).

Correlation Between Temporal Variability
and Fluid Intelligence Measures
We found that the temporal variability of functional activity
in certain gyral/sulcal/undefined vertices had significant
positive correlation with each of the three fluid intelligence
measures (r > 0.2, p < 0.05, Bonferroni correction for
multiple comparisons) across all brain regions. Taking the
“number of correct responses” measure as an example,
Figures 5A–C present the correlations between temporal
variance and this measure across all 68 subjects of three
example gyral vertices, three example sulcal vertices in
Figures 5D–F, and three undefined vertices in Figures 5G–
I. Moreover, those vertices which are significantly positively
correlated with the “number of correct responses” measure
are visualized on the cortical surface shown in Figure 6
and are mainly located in the middle frontal cortex,
inferior parietal lobe and visual cortex. More results of

the other two fluid intelligence measures are provided in
Supplementary Figures 6–9.

Moreover, we found that for those vertices with significant
positive correlations between temporal variance and the “number
of correct responses” measure across all brain regions, the
percentage of vertices was significantly larger in gyri, smaller in
sulci, and moderate in undefined regions across all 68 subjects
as presented in Figure 5J (independent sample t-test, p < 0.001,
Bonferroni correction for multiple comparisons). For the other
two measures “median reaction time for correct responses” and
“total skipped items,” the percentage of vertices was significantly
smaller in gyri, larger in sulci, and moderate in undefined
regions across all 68 subjects as presented in Supplementary
Figures 6J, 7J (independent sample t-test, p < 0.001, Bonferroni
correction for multiple comparisons).

For ROI-scale comparison, we obtained similar findings
as the whole-brain comparison. Within each of the four
ROIs, the temporal variability of functional activity in
certain gyral/sulcal/undefined vertices had significant
positive correlation with each of the three fluid intelligence
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FIGURE 5 | Correlation between temporal variability of functional activity and fluid intelligence measure “number of correct responses” (PMAT24_A_CR) across all
brain regions. (A–C) The correlations between temporal variance and “number of correct responses” measure across all 68 subjects of three example gyral vertices,
respectively. (D–F) The correlations between temporal variance and “number of correct responses” measure across all 68 subjects of three example sulcal vertices,
respectively. (G–I) The correlations between temporal variance and “number of correct responses” measure across all 68 subjects of three example undefined
vertices, respectively. (J) The mean percentage of gyral/sulcal/undefined vertices with significant positive correlations with the “number of correct responses”
measure across all 68 subjects. ∗∗∗ Indicates p < 0.001.

measures (r > 0.2, p < 0.05, Bonferroni correction for
multiple comparisons) as illustrated in Figures 7A–L and
Supplementary Figures 10, 11. Those vertices which are
significantly positively correlated with the three fluid intelligence
measures within each of the four regions are visualized on
the cortical surface shown in Figure 8 and Supplementary
Figures 12, 13. Moreover, for those vertices with significant
positive correlations between temporal variance and the
“number of correct responses” measure within each of the
four regions, the percentage of vertices was significantly
larger in gyri, smaller in sulci, and moderate in undefined
regions across all 68 subjects as presented in Figures 7M–P
(independent sample t-test, p < 0.001, Bonferroni correction
for multiple comparisons). For the other two measures
“median reaction time for correct responses” and “total skipped
items,” the percentage of vertices was significantly smaller
in gyri, larger in sulci, and moderate in undefined regions
in three regions while no significant difference in middle
frontal cortex as presented in Supplementary Figures 10, 11

(independent sample t-test, p < 0.001, Bonferroni correction for
multiple comparisons).

Furthermore, we adopted all 12 temporal variance values of
gyri/sulci/undefined regions in the four ROIs as independent
variables to predict the fluid intelligence measure “number of
correct responses.” Specifically, we adopted linear regression
model and leave-one-out cross validation implemented in Weka
software. The result showed that the correlation coefficient value
indicating how well the predictions are correlated with the actual
value is as high as 0.41, suggesting that the temporal variance
values of gyri/sulci/undefined regions in the four ROIs can
predict the fluid intelligence.

DISCUSSION

We found that the temporal variance of resting state fMRI
BOLD signal was significantly larger in gyri, smaller in sulci,
and moderate in undefined regions. Since the undefined regions
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FIGURE 6 | Visualization of the vertices with significant positive correlation between temporal variance and the “number of correct responses” measure across all
brain regions on cortical surface across three subjects. (A–C) shows the vertices distribution on cortical surface from three views across three subjects, respectively.
The main locations of those vertices on cortical surface are highlighted by yellow dashed ovals.

were intermixed areas between gyri crown and sulci fundi, it was
reasonable that their associated temporal variance of resting state
fMRI BOLD signal was moderate between gyri and sulci. Notably,
the current findings were consistent across different subjects, with
a variety of combinations of time window size and convexity
threshold values, and under different vertices selection strategies
(convexity threshold and permutation test), demonstrating that
gyri truly had significant larger temporal variance of resting
state functional activity compared with sulci. This finding was
supported by our recent study (Liu et al., 2018) showing that gyral
resting state fMRI BOLD signals had lower frequency than sulcal
signals. The fMRI BOLD signals with lower frequency tend to
have more global temporal changes. Therefore, gyral resting state
BOLD signals were more variable in global temporal changes
represented as temporal variance than sulcal signals in this study.

We found that the temporal variability of functional
activity in the middle frontal cortex, inferior parietal lobe,
and visual cortex had significant positive correlation with
the fluid intelligence measures. Previous studies have argued
that fluid intelligence was linked to variations in human
neuronal structure and function (Duncan et al., 2000; Duncan,
2003, 2005). The brain with higher variability of functional
activity might be more easily for learning and higher-order
relational reasoning of variable external environments (Bassett
et al., 2011, 2013, 2015; Zhang et al., 2016; Saxe et al.,
2018). Therefore, the identified positive correlation between
temporal variability of functional activity and fluid intelligence
measures was reasonable. The current finding was also consistent

with previous studies reporting the correlation between fluid
intelligence related networks and individual fluid intelligence
scores (Santarnecchi et al., 2017), and that brain entropy
measured by resting state fMRI was positively associated with
intelligence (Saxe et al., 2018). Moreover, it was reported that
in a spatial task with high Spearman’s g (general intelligence)
involvement, there were high-g activations occurred bilaterally
in the prefrontal cortex, parietal lobe, and visual cortex (Duncan
et al., 2000). The prefrontal cortex was recruited by different
forms of cognitive demand such as working memory load,
task novelty, response competition, and perceptual difficulty,
etc. (Duncan and Owen, 2000) which were critical building
blocks for fluid intelligence. The parietal lobe cortex was
recruited in a variety of visuospatial task (Corbetta et al.,
1995). The recruited visual cortex might presumably reflect more
extensive visual analysis and/or the effects of eye movements
(Duncan et al., 2000).

We found that the vertices with significant positive
correlations between temporal variability and the fluid
intelligence measure “number of correct responses” were
predominately located in gyri, moderate in undefined regions,
and less in sulci, while the other two measures “median
reaction time for correct responses” and “total skipped
items” generally showed reversed distributions, i.e., more
in sulci, moderate in undefined regions, and less in gyri
(Supplementary Figures 6, 7, 10, 11). This is reasonable
since higher fluid intelligence corresponded to more “number
of correct responses,” and less “median reaction time for

Frontiers in Neural Circuits | www.frontiersin.org 8 May 2019 | Volume 13 | Article 36

https://www.frontiersin.org/journals/neural-circuits/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-13-00036 May 13, 2019 Time: 14:58 # 9

Yang et al. Gyral-Sulcal Functional Activity Variability and Intelligence

FIGURE 7 | Correlation between temporal variability of functional activity and fluid intelligence measure “number of correct responses” (PMAT24_A_CR) within each
of the four ROIs. (A–D) The correlations between temporal variance and “number of correct responses” measure across all 68 subjects in one example gyral vertex
within each of the four ROIs, respectively. (E–H) The correlations between temporal variance and “number of correct responses” measure across all 68 subjects in
one example sulcal vertex within each of the four ROIs, respectively. (I–L) The correlations between temporal variance and “number of correct responses” measure
across all 68 subjects in one example undefined vertex within each of the four ROIs, respectively. (M–P) The mean percentage of gyral/sulcal/undefined vertices with
significant positive correlations with the “number of correct responses” measure across all 68 subjects. ∗∗∗ Indicates p < 0.001.

correct responses” and “total skipped items.” As visualized
in Supplementary Figures 6, 7, 10, 11, a number of data
points may qualify as outliers and thus potentially bias the
correlation. Moreover, in Supplementary Figures 7, 11 there
is a population of “no skipped item” subjects (26 out of 68
subjects) whose temporal variance spans almost the entire range
of temporal variations in the sample, which may weaken the
correlation. It is suggested that the “median reaction time for
correct responses” and “total skipped items” measure of fluid
intelligence may not have as strong correlations with temporal
variations as the “number of correct responses” (Figure 5).
Nevertheless, the positive correlation between the temporal
variations and the first fluid intelligence measure “number of
correct responses” is significant and supports our conclusion.
This finding provided more evidence to elucidate the temporal
variability difference of functional activity among gyri, sulci,

and undefined regions. That is, gyri might participate more
in the fluid intelligence than sulci and undefined regions. Our
previous studies have demonstrated that gyri represent a global
functional hub that performs neural communication among
remote brain regions, and sulci a local function processing
unit that directly communicates with neighboring gyri (Deng
et al., 2014). The fluid intelligence might be more related to and
supported by global neural communication among gyral regions
in the whole brain.

This study assessed the temporal variability of functional
activity using resting state fMRI signals in line with previous
study (Zhang et al., 2016), since the resting state fMRI
signals represent intrinsic functional brain activity without being
affected by any external stimuli in task-based fMRI. Illustration
of the temporal variability mapped on cortex with different time
windows is in Supplementary Figure 14. Therefore, it would
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FIGURE 8 | Visualization of the vertices with significant positive correlation between temporal variance and the “number of correct responses” measure within single
brain region on cortical surface of one subject. The vertices distribution on cortical surface are shown from three views within (A) Rostral Middle Frontal,
(B) SupraMarginal, (C) Inferior Parietal, and (D) Lateral Occipital regions, respectively. The main locations of those vertices on cortical surface are highlighted by
yellow dashed ovals.

be more suitable in the present study to assess the correlation
between temporal variability of intrinsic functional activity and
general human intelligence which is not related to specific task
stimulus. In the future, it would be interesting to investigate
the relationship between temporal variability of task-based fMRI
signals and the in-task performance under specific task stimuli.

The present study has several limitations. First, the
current study used average convexity (see section “Cortical
Surface Parcellation of Gyri and Sulci”) to define gyri/sulci
within the brain regions. However, certain brain regions,
e.g., insula, are hard to be defined as gyri/sulci merely
based on the average convexity information. Although
those brain regions were not identified to be related to
fluid intelligence in the current study, more cautiousness
is needed to study the gyral/sulcal characteristics of those
regions in the future. Second, the current study adopted
HCP grayordinate rsfMRI data to explore the temporal
variability of BOLD signals on gyri/sulci. Due to the natural
characteristics of fMRI imaging, more direct evidence in a
finer-scale (e.g., neuron-level) is needed in the future to further
validate the current findings of temporal variability difference
between gyri and sulci.

In conclusion, the present study is one of the first studies
to assess the temporal variability characteristics of resting state
functional activity in gyri and sulci as well as its association

with behavioral measures (fluid intelligence in this study).
The findings could provide novel insights to understand the
functional mechanisms of gyri and sulci and to demonstrate
their functional relevance on the behavioral level. A future work
would be applying the analysis framework on more subjects
and to correlate with other behavioral measures which might
be scientifically related to temporal variability. It would be also
interesting to compare the temporal variability of functional
activity between resting state and task-based fMRI signals in gyri
and sulci and its association with behavioral measures.
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